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LECTURE 1 

The idea of degree theory is to give a "count" of the number of solutions of 

nonlinear equations but to count solutions in a special way so that the count is 

stable to changes in the equations. To see why the obvious count does not work 

well consider a family of maps ft( x) on R defined by ft( x) = x2 - t. As we vary 

t,ft changes smoothly. Fort< 0, it is easy to see that ft(x) = 0 has no solution, 

f 0 (x) = 0 has zero as its only solution while fort> 0, there are two solutions ±Vt. 
Hence the numbers of solutions changes as we vary t. Hence, to obtain something 

useful, we need a more careful count. A clue is that 0:: has different signs at the 
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two solutions ±vt. 
Before, we proceed further, we need some notation. AssumeD is a bounded open 

set in Rn and f : D ---+ Rn is C 1 . We say p is a regular value off if det f' (X) -I- 0 

(equivalently f' ( x) is invertible) whenever x E D and f( x) = p. One thinks of the 

regular points as the nice points. Note that pis a regular value if p rf. f(D). Now 

suppose f : D ---+ Rn is smooth, p rf. f(8D) and pis a regular value of f. Since 

pis a regular value off, the inverse function theorem implies that the solutions of 

.f(x) =pin Dare isolated in D. On the other hand {xED: f(x) = p} is compact 

since it is a closed subset of D. Since a compact metric space which consists of 

isolated points is easily seen to be finite, it follows that {xED: f(x) = p} is finite. 

We then define the degree of .f 

deg (f,p, D) to be L sign det .f'(x;) 

where x; are the solutions of .f(x) =pin D. I stress that we are assuming f is 

smooth, p rf. f( aD) and p is a regular value of f. Here 

and sign 0 is not defined. 

sign y = { 1 
-1 

if y > 0 

if y < 0 

You might ask why we assume p rf. f(8D). The reason is that, otherwise, a 

solution might move from inside D to out of D as we make small perturbations of 

f or p. In this case, we would expect that any "count" of the number of solutions 

might well change. 

Suppose pis not a regular value off (but .f is smooth and p rf. .f(oD)). We try 

to define 

deg (f,p, D)= lim deg (f,p;, D) 
•---oo 

where p; are regular values off approaching p. There are two problems with this. 

Firstly, we need to know that there are such regular values and secondly that the 

limit exists (and is independent of the choice of p;). The first problem is resolved 

by the following. 
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Sard's Theorem. Assume f : D ----+ Rn is C 1 where D is open in Rn (not 

necessarily bounded). Then the set of regular values off are dense in Rn. 

This is proved by showing that the complement of the set of regular values of 

f has measure zero. We only sketch the main idea. The main idea in the proof 

is to show that if .To tfc D is and f' ( x 0) is not invertible, then, for B a small ball 

center xo, f(B) is squashed close to the hyperplane f( x0 )+ f' ( x0 )Rn (since f is well 

approximated by its derivative near xo). Note that a hyperplane has zero measure. 

One uses this to show f(B) has much smaller measure than B if jj has small radius. 

To overcome the second problem is more difficult. (Note that the set of regular 

values off need not be connected). It turns out that the shortest proof is indirect. 

We consider the integral 

where Jf denotes the Jacobian off (where f is as above),¢> in coo on Rn, support 

of ¢> is contained in an n- dimensional cube C, p E int C, C II f( 8D) is empty and L = 1. Such a ¢> is said to be admissible. It is easy to find at least one 

admissible ¢> exists by choosing C a small cube center p. The advantage of using 

integrals is that they are much more regular under perturbations. We will show 

(rather sketch) that d( ¢>) is in fact the same as de g. To see this, note that, if ¢> 1 

and are admissible with support in the same cube C, then 

One proves the right hand side is zero by proving that the integrand is the 

eli vergence of a (vector) function vanishing near 8 D and applying the eli vergence 

theorem. This is the messy part of the proof. This implies that d( ¢>) is independent 

of admissible ¢>. 

Secondly, note that p does not appear explicitly in the integral defining d( ¢>) and 

hence we deduce that d( ¢>) is locally constant in p. 

Thirdly, if pis a regular value of j, then d(¢>) = deg(f,p,D). To see this 

note that, by the implicit function theorem, f( x) = p has only a finite number of 

solutions {x;}7=l in D and we can choose disjoint neighbourhoods D; of x; in D 
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such that f maps D; diffeomorphically on to a neighbourhood of p and f' ( x) has 

fixed sign on D; (by shrinking D; is necessary). vVe than choose admissible cp such 

that the cube C <;;;; n.f(D;). By the change of variable theorem for integrals 

{ cf;(.f(x))JJ(x)dx =sign JJ(x;) r cf;(z)dz 
lv, Jf(Di) 

=sign J1(x;) since support cp <;;;; f(D;) 

Thus 

h 

d(cf;) =!, cf;(.f(x))JJ(x)dx = L!, cf;(.f(x)JJ(x)dx 
D i=l D; 

since the integrand is zero outside Uf= 1 D; 

k 

= L sign JJ(xi) 
i=l 

= deg (.f,p, D) 

Note that we have used that d( cp) is independent of cp to be able to choose a 

special ¢ and the reason the argument works is the close relation between d( cp) and 

the change of variable theorem. 

We now easily complete the proof that the degree is defined. If p is not a regular 

value for f. Then d( cjJ) is the same for all q near p. However, if q is a regular 

value, d(¢) = deg(f,q,D). Hence we see that for all regular values p; off near p, 

deg (f,p;,D) = d(cf;) and hence lim deg (f,p;,D) exists, as required. 
1---+00 

Note that we could use the interval d(¢) to define the degree but it is harder to 

deduce properties of the degree from this definition. 
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LECTURE 2 

Assume f : Rn -----+ Rn is smooth, Dis bounded open in Rn and p tf:_ f( aD). Our 

proof that .lim deg (!,pi, D) has a limit if Pi are regular values off approaching 
Z--+00 

p was rather indirect (by way of d( ¢)). There is another proof which considers 

two regular values Pi, Pi of f near p and studies how the solutions off( x) = tp; + 
(1- t)pj changes as t varies from 0 to 1. This proof while more intuitive is rather 

more technical. Note that the degree can also be constructed by more topological 

arguments. 

Note that by its construction deg (!, p, D) is integer valued. 

We now consider properties of the degree we have constructed. The basic prop

erties are the following where we assume D is bounded open in Rn, f : D -----+ Rn 

is continuous and p t/:- f( aD). 

(i) If deg (!, p, D) "I 0, there exists x E D such that f( x) = p. 

(ii) (excision) If D;, i = 1, · · · , m, are disjoint open subsets of D and f( x) "I p 

if x ED\ U£~ 1 D;, then 

m 

deg (.f,p,D) =I: deg (f,p,D;) 
i=l 

(iii) (products) If D 1 is bounded open in Rm, g : D 1 -----+ Rm is continuous and 

q t/:- g(8D1), then deg ((f,g),(p,q),D x DI) = deg (f,p,D) deg (g,q,D1 ). 

Here (!,g) is the function on Rm+n defined by (f,g)(x,y) = (f(x),g(y)) 

for X E Rn, y E Rm. 

(iv) homotopy invariance. IfF : D X [a, b] -----+ Rn is continuous and ifF( x, t) -:j:; p 

for x E 8D and t E [a, b], then deg (F1 ,p, D) is defined and independent of 

t fortE [a, b]. Here F1 is the map of D into Rn defined by F1(x) = F(x, t). 

Note that we have not actually defined the degree of maps f which are only 

continuous. The above 4 properties are first proved for smooth functions. Properties 

(i) - (iii) are proved first for p a regular value and the general case is proved by 

approximating p by regular values. In the smooth case, (iv) is proved by using the 

integral formula for the degree (i.e. d( ¢)) to show that deg ( Ft, p, D) is continuous 
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in t and then using that a continuous integer valued function on [a, b] is constant. 

Finally, iff is only continuous, deg (f, p, D) is defined to be deg (.f, p, D) where .f 
is a smooth function uniformly close to f on D. To show that this is independent 

of the choice of f one uses that, if h is another smooth approximation to j, 

then one can apply homotopy invariance to the smooth homotopy t.f(x) + (1 -

t)h(x) for xED, t E [0, 1]. Lastly, one uses an approximation argument to extend 

properties (i) - (iv) from the smooth case to the continuous case. This is actually 

all straightforward, albeit a little tedious. This completes the construction of the 

degree. 

It is easy to deduce from the definition a number of other properties of the 

degree. In particular, 

deg (f,p, D)= deg (f(x)- p, 0, D) 

whenever deg (f,p, D) is defined and that deg (A, 0, D) = sign det A if A is an 

invertible n x n m.atrix and D is a bounded open set containing zero (and where 

we are identifying a matrix and the corresponding linear map). 

In general, one can prove many properties of the degree by first proving it for f 

smooth and p a regular value off and then using limit arguments. 

The homotopy invaria.nce property is a very important property of the degree 

because it often enables us to calculate the degree by deforming our map to a much 

simpler map. This enables us to calculate the degree of some complicated maps. 

As a simple application, we prove the very useful Brouwer fixed point theorem. 

Assume S is closed bounded and convex in Rn and f : S --+ S is continuous. 

Then f has a fixed point i.e. there exists xES such than x = f(x). This theorem 

is used in many places. For example, it is frequently used to prove the existence 

of periodic solutions of ordinary differential equations. To prove the theorem, we 

assume that int S is non-empty and 0 E int S. (It is not difficult to reduce the 

general case to this case using the geometry of convex sets). We assume .4(x) f:. x 

if X E as. (Otherwise we are finished). We use the homotopy (x, t)--+ X- tA(x). 

The convexity and that 0 E int S imply that x f:. tA( x) if x E S and t E [0, 1] (since 

if x - tA(x) = 0, x = (1 - t)O + tA(x) E int S). Thus, by homotopy invariance, 
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deg (I- A, 0, int S) = deg (J, 0 int S) = 1 # 0 and hence there exists x E int S 

such that x - A( x) = 0 i.e. x is a fixed point. 

I mention one more useful property of the degree. Firstly if D ~ Rn is bounded 

open and symmetric (that is x E D +----+ - x E D), 0 E D, f : D ----+ Rn is 

continuous and odd and if f(x) # 0 for x E 8D, then deg (f,O,D) is odd. (The 

most important point is that it is non-zero.) If f is smooth and zero is a regular 

value of f, then this is easy to prove because (f(O) = 0 and if f(x) = 0 then 

f( -x) = 0 and J1(x) = J1( -x) (since f is odd). The main difficulty in the general 

case is to prove that we can approximate a smooth odd map by a smooth odd 

map which has zero as a regular value. This is rather technical. This result has 

many uses. for example, it easily implies that a continuous odd mapping of Rm 

into Rn with m > n has a zero on each sphere llxll = r. We will return to uses 

for differential equations later. It has many other uses on the geometry of Rn. For 

example, it can be used to prove that iff: Rn ----+ Rn is 1-1 and continuous then 

it is an open map (that is, .f maps open sets to open sets). 

There are many other results on the computation of the degree but do not assume 

the degree is always easy to evaluate! 
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LECTURE 3 

In this lecture, we extend the degree to infinite dimensions. It turns out that 

this is important for many applications. 

First note that we cannot expect to be able to do this for all maps. The simplest 

way to see this is to note that the analogue of Brouwer's fixed point theorem fails 

in some infinite dimensional Banach spaces. We consider the Banach space c0 

of sequences (x;)~ 1 with norm ll(x;)ll = sup;;::::1lx;1. We then consider the map 

T: co--+ co defined by T(x1,x2,···) = (1,x 1 ,x2 ···). Note that Tis an affine 

map. It is easy to check that T is continuous and that T maps the closed unit 

ball in co into itself. However, T has no fixed point in c0 because if T(x;) = (x;), 

then x1 = 1 and Xi+l = x; for i 2:: L Thus x; = 1 for i 2:: 1, which contradicts 

that (xi) E c0 . It turns out that in every infinite- dimensional Banach space there 

is always a closed bounded set S and a continuous map of S into itself without a 

fixed point. 

Hence to proceed further, we need a restricted class of maps. Assume that W 

is a closed subset of a Banach space I<. We say that A : W --+ E is completely 

continuous if A is continuous and if A( S) is a compact subset of E for each bounded 

subset S of VV. We will construct a degree for maps I- A where A is completely 

continuous. It turns out that many (but far from all) of the mappings occurring in 

applications are completely continuous. 

The reason that we can construct a degree for such maps is that we can approx

imate completely continuous maps by maps whose range lie in a finite- dimensional 

space. 

Lemma. If }( is a compact convex subset of a Banach space E and E > 0, there 

is a continuous map Pc : }( --+ }( such that II P,( x) - x II :::; E for x E K and the 

range of Pc is contained in a finite-dimensional subspace of E. 
1 

This is proved by noting that a compact set has a finite "2E net and using some 

form of partition of unity. The details are not difficult. In using this in our appli

cations, it is useful to note that the closed convex hull of a compact set is compact. 

If D is bounded and open in E and A : D --+ E is completely continuous, then 
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P,A = P,oA is a continuous map such that JIP,A(x)- A(x)JI ::::; eon D and the 

range of P,A is contained in a finite-dimensional subspace of E. (We define I< to 

be the closed convex hull of A( D). If p rt (I- A)( an) and e is small, we define deg 

(I -A,p,D) = deg ((I -A,)JM,p,DnM) where A,= P,A,M is a finite-dimensional 

subspace of E containing p and the range of A,. Note that I- A, will map D n M 

into M. There is quite a bit to be checked here. The right hand side is defined 

by our earlier construction. We need to prove that the finite-dimensional degree is 

defined and is independent of e and the choice of M. The details are tedious but 

not difficult. Note that a simple compactness argument ensures that there is an 

a> 0 such that Jlx- A(x)ll 2: a if X E an, that our finite-dimensional degree is a 

degree on finite dimensional normed spaces rather than just Rn because it is easy 

to check that our original degree on Rn is independent of the choice of basis in Rn 

and that we need to prove a lemma on the finite- dimensional degree to prove that 

the right hand side of the definition is independent of the choice of M. 

By using finite-dimensional approximations and compactness arguments, it 1s 

not difficult to check that the four basic properties of the finite-dimensional degree 

have analogues here. Assume that D is bounded and open in E and A : D ~ E 

is completely continuous such that Xi= A(x) + p for X E an. 
The following hold. 

(i) If deg (I- A,p,D) =/= 0, there exists xED such that x = A(x) + p. 

(ii) If Di, i = 1, · · · , m, are disjoint open subsets of D such that x =/= A( x) + p 
m 

if X E D\ u~l Di, then deg (I- A,p, D) = L deg (I- A,p, Di)· 
i=l 

(iii) products. If D 1 is bounded open in a Banach space F, G : Di ~ F is 

completely continuous and q E F such that x =/= G( x) + q for x E an1, then 

deg (I- (A, G), (p, q), D x Dl) = deg (I- A,p, D) deg (I- G, q, DI). 

(iv) homotopy invariance. If H : D x [a, b] ~ E is completely continuous and 

X- H(x, t) i= p for X E an, t E [a, b], then deg (I- Ht,p, D) is independent 

oft fortE [a,b]. 

Note that in (iv) it is not sufficient to assume that H is continuous and each H, 

is completely continuous. However this is sufficient if we also assume that Ht is 

uniformly continuous in T (uniformly for xED). 
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There is analogue of Brouwer's fixed point theorem, known as Schauder's fixed 

point theorem. Assume that D is closed and convex in a Banach space E, A is 

continuous, A( D) ~ D and A( D) is compact. Then A has a fixed point. The easiest 

way to prove this to use the lemma to find a finite dimensional approximation to 

which we can apply Brouwer's theorem. 

Nearly all the extra properties of the degree in finite dimensions have natural 

analogues here. The only one that is a little different is the formula for the degree 

of a linear map. 

Assume that B : E ----t E is linear and compact and I - B has trivial kernel. 

(Note that for linear maps complete continuity is equivalent to compactness.) The 

spectrum of B consists of zero plus a finite or countable sequence of eigenvalues 

with 0 as it only limit point. If .\; is a non-zero eigenvalue of B, the algebraic 

multiplicity m(.\;) of.\; is defined to be the dimension of the kernel of (.\;I- B)q 

for large enough q. It can be shown that m( A;) is finite and independent of q for 

large q. The result is then that 

deg (I- B,O,Eo) = (-l)I:;m(.>.;) 

where the summation is over the (real) eigenvalues of B in (1, oo) and E 0 is the 

open ball of radius 8 in E. Note that the sum is finite. The proof of this is by 

using linear operator theory and constructing homotopies to reduce to the finite 

dimensional case. 

As a final comment, there has been a good deal of work on extending the degree 

to mappings only defined on closed convex subsets of Banach spaces and to evalu

ating degree of critical points obtained by variational methods (as in Chabrowski's 

lectures or Chang's book). One major difference in the extension to closed convex 

sets is that the formula for the degree of isolated solutions becomes rather more 

complicated. This is discussed in my chapter in the book of Matzeu and Vignoli. 
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LECTURE 4 

In this lecture, we consider some very simple applications of the degree. We do 

not try to obtain the most general results. 

Firstly, we consider an application of Brouwer's fixed point theorem to prove 

the existence of periodic solutions of ordinary differential equations. Assume f : 
Rn+l ~ Rn is C 1 and T periodic in the last variable, i.e., f(x, t + T) = f(x, t) 

if x E Rn, t E R. We are interested in the existence of T periodic solutions of the 

equation 

x1(t) = f(x(t), t) (1) 

To do this, we let U(t,x 0 ) denote the solution of (1) with U(O,x 0 ) = x0 (for 

x 0 E Rn). Standard results ensure that (1) has a unique solution satisfying the 

initial condition. Vl!e need to place an assumption on f which ensures that U(t, x0 ) 

is defined for 0 :::; t :::; T. (The only way this could fail is that the solution blows up 

before t = T). A sufficient condition ensuring this is true is that there is a ]{ > 0 

such that llf(x, t)ll :::; Kllxll fort E [0, T] and for llxlllarge (where II II is one of 

the standard norms on Rn). In this case U(t,x 0 ) is continuous in t and x0 . Since 

f is T periodic in t, it is not difficult to show that U ( t, x0 ) is a T periodic solution 

of (1) if and only if U(T, x0 ) = x0 i.e. x0 is a fixed point of the map x ~ U(T, x ). 

Hence we can hope to our earlier degree results (to the map f(x) = x- U(T,x)). 

The simplest rest of the this type is that if we can find a closed ball Br in Rn 

such that U(T,x) E B,. if x E Br then Brouwer's theorem (applied on Br) implies 

that the map x ~ U(T, x) has a fixed point and hence the original equation 

has a T periodic solution. For example, the inclusion condition on Br holds if 

< f(x, t), x > < 0 for llxll = r and 0 :::; t :::; T (where <, > is the usual scalar 

product on Rn and we must use the norm induced by the scalar product). 

Before we look at the second example, I need one very useful consequence of 

degree theory. Assume that E is a Banach space and H : E X [0, 1] ~ E is 

completely continuous, the map x ~ H( x, 0) is odd and there is an R > 0 such 

that x #- H(x, t) if llxll = Rand t E [0, 1]. Then the equation x = H(x, 1) has a 
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solution. This is proved by noting that by homotopy invariance 

deg (I- H(, 1),0,ER) = deg (I- H( ,O),O,ER)-=/= 0 

by the result on the degree of odd mappings. This is a very nice theorem because 

the statement is very simple and it is very widely applied. In practice, one usually 

establishes for a largeR that x-=/= H(x, t) if t E [0, 1] and llxll 2: R. In other words, 

one is proving that any solution of x = H(x, t) satisfies llxll :SR. In practice, this 

is usually by far the most difficult step in verifying the assumption of the result 

above. Such a result is called an a priori bound. In some of the lectures on partial 

differential equations, I am sure you have discussed the problem of obtaining a 

priori bounds. In fact, the above result often reduces the proof of the existence of a 

solution of a partial differential equation to the proof of a priori bounds in a suitable 

Banach space. (The choice of a suitable Banach space is not always simple). 

vVe give a very simple application of the result above which requires few technical

ities. Assume Q is a bounded domain in Rn with smooth boundary and g : R----+ R 

is continuous such that y- 1g(y)----+ a as IYI----+ oo where a is not an eigenvalue of 

-tl under Dirichlet boundary conditions on D. We prove that the equation 

-tlu(x) = g(u(x)) inn 

u(x) = 0 on on (2) 

has a solution. By a solution we mean a function in W 2'P(Q) n C(D) which satisfies 

the equation almost everywhere. (It will be a classical solution if g is a little more 
1 

regular). It is convenient to work in the space W 2,P(fl) with p > 2n (and p > 1 ). 

By the Sobolev embedding theorem, this ensures that W 2,P(Q) ~ C(TI). We write 

K to denote the inverse of -6 under Dirichlet boundary conditions. We define 

G: C(TI)----+ C(TI) by (G(v.))(x) = g(u(x)). Then (2) is equivalent to the equation 

·u = KG( tl ). Thus (2) becomes a fixed point problem. KG is easily seen to be 

completely continuous since we can think of KG as the composite J( o go i where 

i is the natural inclusion of W 2,P(fl) into C(TI), since i is compact, since G is 

continuous and since J{ is a continuous map of LP(fl) into W 2,P(Q). (The latter is 
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a regularity result for the Laplacian.) Lastly, if we define H: W 2•P(SZ) x [0, 1] ~ 

W 2 •P(SZ) by H(u, t) = K(tG(u) + (1 - t)au) it is fairly easy to prove that the 

assumption of the above result hold and thus (2) has a solution. (The a priori 

bound corresponds to proving a bound for solutions of 

We omit the details. 

-.6-u = tg(u) + (1- t)au inn 

u = 0 on an.) 

In general in partial differential equations, one often has to choose the spaces 

carefully especially if the equations are nonlinear in derivatives in u. (In fact, these 

methods run into severe difficulties if the equations are highly nonlinear.) The 

methods also tend to run into difficulties if n is not bounded because the complete 

continuity fends to fail. There have been many attempts to define degrees for 

mappings which are not completely continuous to try to overcome this last problem. 

Some of these are discussed in Ize's chapter in the book of Matzeu and Vignoli. 

Thirdly, I obtain a result on Banach spaces though it could be very easily applied 

to ordinary and partial differential equations. In many applications, there is a 

rather trivial solution of the problem and we want to look for other solutions. For 

simplicity, assume that the trivial solution is zero. Hence, we assume that E is 

a Banach space, A : E ~ E is completely continuous, A(O) = 0 and we look 

at the equation x = AA( x ), (A might correspond to some physical parameter.) 

Our assumptions ensure 0 is a solution of the equation for all A and we look for 

other solutions. We assume that there is a linear mapping B on E such that 

IIA(x)- Bxll/llxll ~ 0 as x ~ 0. (B is in fact the derivative of A at zero in a 

certain sense. One can in fact define a calculus on Banach spaces). It is not difficult 

to prove that B is compact (since A is completely continuous). Assume Il-l is a 

non-zero eigenvalue of B of odd algebraic multiplicity. One can then prove that 

there are solutions (x,A) of x = AA(x) with x =/:- 0 and llxll + lA -Ill arbitrarily 

small. One usually says that ( 0, 1-l) is a bifurcation point. The interest here is that 

the main assumption (that 1-l has odd multiplicity) is purely on the linear part of A. 
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I omit the proof but the key ideas are the formula. for the degree of a. linear map and 

that if T =f. 0 is small and 8 is very small compared with T, deg (I- (f.-L + T )A, 0, E 0 ) 

= deg (I- (f.-L + r)B, 0, Eo) and we can evaluate the right hand side. It turns out 

that much more is true. There is a connected set of solutions of x = >.A( x) in E x R 

with x =f. 0 which starts at (0, f.-L) (as above) and continues rather globally (that is 

to points where xis not small or>. is not close to f.-L). This can be found in Brown's 

book. 

Lastly, in many applications, the problem may require that we only look for non

negative solutions of our equation. Thus it might be natural to look for solutions 

u of an elliptic equation which satisfy u( x) ~ 0 on n (for example if u represents 

a population). Thus it is often natural to look at problems on convex sets such as 

{u E C(f!): u(x) ~ 0 on n} rather than the whole space. 
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