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The main purpose of the present article is to discuss the existence of positive 

solutions of the exterior problem 

u 0 on an 

(1) 

where p* = (m + 2)(m- 2)-1 and m 2: 3. 

Our main result is the following. 

Theorem 1. Assume that m = 3, 4 or 6, fl is a bounded open set in Rm with 

smooth boundary such that Rm \ fl is connected and the reduced homology ii * ( fl, Z2 ) 

is non-trivial. Then fort: small and positive, (1) has a solution 

Remarks 1. The condition on m is only needed for technical reasons and should 

not be necessary. It is only needed to ensure that the solutions of ( 1) with E = 0 

have a good local structure. In particular, this holds if the solutions of (1) with 

E = 0 are isolated (for an appropriate norm). 
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2. Note that solutions of (1) necessarily decay at infinity by Lemma 2 in [6]. 

3. The reduced homology conditions always holds if Q is not connected. In [4], it is 

shown that there exists Q satisfying the assumptions of Theorem 1 but ( 1) only has 

a solution for f small. We do not know if there is such an Q with Q connected. If Q 

is star shaped, (1) never has a solution for 1 < p*- f < p*. Thus some condition on 

Q is necessary. There are examples of contractible Q for which (1) has a solution. 

In general it appears complicated to decide for which n and E ( 1) has a solution. 

4. The problem arose in (4] as a limiting problem for problems on bounded domains 

with small holes. 

It turns out that our techniques can also be used to establish the following 

theorem. 

Theorem 2. Assume that m = 3, 4 or 6 and Q is a smooth bounded domain such 

that the reduced homology H*(Q, Z2 ) is non-trivial. Then the problem 

u 0 on Q 

u > 0 in Q 

bas a solution for small positive c:. 

Remark. Once again the condition on m is probably unnecessary. We do not have 

any example showing that E must be small though, if m > 3, Passaseo [7] has an 

example showing that the result need not be true for every E > 0. Indeed it is 

expected that the result is probably true for E :S tm where tm depends only on m. 

The idea of the proof of Theorem 1 is simple though the details are complicated. 

The Bahri-Coron theorem implies that (2o) has a positive solution. We essentially 

prove that (20 ) has a solutions which persists under small perturbations. Now 

solutions of (2o) are smooth on n and solutions which are close in W1 ,2 (Q) are 

uniformly close (cp part of the proof of Theorem 3 in [5]). On C(f2), the right 

hand side defines a real analytic mapping. This is where we use our assumptions 

on m. Thus, on C(Q), the solutions of (20 ) are the zeros of a real analytic compact 
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Fredholm map and hence by (3] the solutions T of (2o) have the following nice 

properties; Components of T are path connected (in fact points in a component 

can be connected by piecewise smooth continuous curves). By differentiating the 

natural energy of (20 ) along such a curve, following that the energy is constant 

on a component. Moreover, since there are only a finite number of components 

intersecting each ball in C(O), E takes only countably many values on its critical 

points (i.e. on solutions of (2o). This is one minor point in the above argument. 

Zero is an isolated solution of (20 ) and it is easy to see that the set of positive 

solutions of (20 ) is an open and closed set in the set of all solutions, Thus the 

positivity condition causes no problem. 

Without loss of generality, we can assume 0 E n. By an inversion about 0 ( cp 

(4]), (3) is equivalent to the problem 

v = 0 on an* 

v > 0 i~ n*\{0} 

where q(p) = (m + 2)- p(m- 2) and n* = {llxll-2x: X E Rin\0} u {0}. As shown 

in (4], (1) is equivalent to (3,) and the condition on the homology of n in Theorem 

1 is equivalent to the reduced homology of Q* being non-trivial. We will construct 

solution of (3,) which are positive and continuous at zero. Note that if pis near p*, 

we can think of IIYII-q(p)vP as a small perturbation of vP· and we expect solutions 

of (3,) near those of (2o) (for n replaced by Q* in (20 ). Now it is shown in (5] 

that an isolated solution of (2o) (with n replaced by n*) with non~trivial Morse 

numbers (or indeed suitable compact sets of solutions) continues to solutions of 

(3,). This is provided by using a truncated version of (3,). Since the Bahri-Coron 

theorem is proved by relative homology calculations, it is natural to expect that a 

solution of (2o) (for n replaced by 0*) with the above properties to exist and hence 

we expect that (3,) has a solution. If every component of the solutions of (20 ) 

(with n replaced by n*) is compact, and if no component satisfies the non-trivial 

Morse number condition, we prove that the calculations for the relative homologies 
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H*(Eb,Ea) are unaffected and hence we can obtain a contradiction much as in 

Bahri [1]. Here E is the natural energy for (20 ) (with n replaced by n*) and 

Eb = {u: W1 '2 (n*): E(u):::; b}. The proof calculates H*(Eb,Ea) and eventually 

obtains a contradiction by choosing b large and a close to zero. Note that both 

Bahri [1] and Bahri-Coron [2] work with a reduced energy on the unit sphere in 

W1 '2 (n*) but it is easy to change from one formulation to the other. 

There are two major complications in the above argument which need to be con­

sidered. Firstly, the presence of these topological trivial solutions uo produce extra 

levels where the Palais-Smale condition may fail (at the levels E(u0 ) + km-1 S~m 

for k a positive integer). Here S is defined in Bahri-Coron [2]. This leads to the 

possibility that the Palais-Smale condition may fail at a countable number of points 

with only limit points in {km-1 S~m}. However, in this case we use ideas in [2] 

to show that crossing one of the above levels does not change relative homologies. 

(Here for simplicity, I am assuming E(u0 ) is not an integer multiple of m-1 s~m). 

Essentially one proves that near such levels and near non Palais-Smale sequences 

our mappings can be nearly split as a product. 

The second complication is that at levels where the Palais-Smale conditions fail, 

there may be non-compact components of the solutions of (20 ) (for n replaced 

by n*). To make our argument work, we need to consider two cases for such a 

component T. Firstly for any compact subset K ofT and for all t small there is a 

solution near]{ of a truncated version of (3<) and hence of (3,) (as in [4]). In this 

case, we are finished. If not, we show by piecing together deformations (including 

one determined by the truncated version of ( 3<)) that we can deform down across 

the energy level C (where E(T) = C = km-1 S~m) except near "oo" (and in fact 

except in V(P, E) with the notation of [1]) where we can then use the Bahri ideas 

from [1] to calculate the change in relative homology. 

There are extra complications in that the two difficulties may interact at the 

same energy level, the non Palais-Smale sequences at the same energy level may be 

generated by solutions at different lower energy levels and it is necessary to check 

carefully that some small perturbations we have to make do not affect the Bahri 

argument. Thus the full details are longer and rather tedious. They will appear 
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elsewhere. 
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