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THE SOLUTION OF SINGULAR-VALUE AND EIGENVALUE 

PROBLEMS ON SYSTOLIC ARRAYS 

Richard P, Brent and Franklin To Luk 

o. SUM~1ARY 

Parallel algorithms ax'€.! praS811:ted for :;;omptrti]."!i.g cl s:LngnlaJ::-=valu€ 

decomposition of an m x n mai:rix {m::: nl and an eigenvalue 

decomposition of an n x n symmetric matrix. A linear array of 0 (n) 

processors is proposed for the singular-value problem and the associated 

algorithm requires -time 0 (runS), where S is the n1llIliber of Jacobi 

sweeps (typically s:so 10). A square array of 0 processors wi-th 

nearest-neighbor communication is proposed for the eigenvalue problem; 

the associated algorithm requires time o(nS). 

1. INTRODUCTION 

A singular-value decomposition (SVD) of a real m x n (m::: nl 

matrix A is its factorization into the product of three matrices: 

(1.1) A 

where U is an m x n matrix with orthonormal columns, L: is an 

n x n nonnegative diagonal matrix and the n x n matrix V is 

orthogonal. This decomposition has many important scientific and 

engineering applications (cf. [1,11,27,28]). 
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If the ma>crix A is square (Le., m= nl and symmetric, we may 

adjust the sign of the elements of I so that U = V. We then obtain 

an eigenvalue decomposition: 

(1. 2) A 

where U is orthogonal and D diagonal. The advent of massively 

parallel computer architectures has aroused much interest in parallel 

singular-value and eigenvalue procedures, e,g, [2,4,5,6,7,9,13,14,16, 

18,20,22,23,24,25]. Such architectures may turn out to be indispensable 

in set-tings where real-time computation of the decompositions is 

required [27,28]. Speiser and Whi-tehouse [27] survey parallel 

processing architectures and conclude that systolic arrays offer the 

bes'c combina-tion of characteristics for utilizing VLSI/VHSIC technology 

to do real-time signal processing. (See also [17,28].) 

In this paper we present an array of O(n) linearly-connected 

processors which computes an SVD in time o (mnS) . Here S is a slowly 

growing function of n which is conjectured to be a (log n); for 

prac-tical purposes S may be regarded as a constant (see [21]). Our 

array implements a one-sided orthogonalization method due to Hestenes 

[15]. His method is essentially the serial Jacobi procedure for finding 

an eigenvalue decomposi-tion of the matrix A TA , and has been used by Luk 

[20J on the ILLIAC IV compu-ter. We also describe how one may implement 

a Jacobi me"t-l1od on a t~lo-dimensional array of processors to compute 

an eigenvalue decomposition of a symmetric matrix. OUr array requires 

0(n2 ) processors and o(ns) units of time. Assuming that S=O(log nl, 

this tLme requirement is within a factor O(log nl of that necessary 

for the solution of n linear equations in n unknovms on a systolic 

array [2,3,17]. 
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Results similar to ours have been reported in the 

literature. For comppting the SVD,Sameh [23] describes an 

implementation of Hestenes'method on a ring of O(n) processors. 

Suppose n is even (the result is similar for an odd n). At 

each orthogonalization step n 
2 

column rotations are performed. 

Sameh's permutation scheme requires 3n - 2 steps to ensure the 

execution of every possible pairwise rotation at leas~once; our 

permutation scheme (presented in Section 3) requires only n - 1 

steps. 

Parallel Jacobi methods for computing eigenvalues are 

given in [7,16,22]. However, the procedure of Sameh [22] may be 

unsuitable for multiprocessor arrays. For simplicity, assume again 

that n is even, so n 
2 

off-diagonal elements can be set to zero 

at each elimination step. Let us compare the number of permutations 

necessary for the annihilation of each off-diagonal element at least 

once. OUr procedure (see Sections 3 and 6) requires n - 1 

permutations, which is optimal; that of Chen and Irani [7] requires 

n permutations. The scheme of Kuck and Sameh [16] is worse. 

Their basic scheme appears to cycle every 2n - 2 steps and to miss 

some off-diagonal elements. A modification ("the second row and 

column are shifted to the n-th position after every (n - 1) orthogonal 

transformations") can be made to overcome this problem, but 

the modified scheme requires (n - 1)2 permutations [7]. 

Let us generalize the notion of a "sweep" and use it to 

denote a minimum - length sequence of rotations that eliminates each 

off-diagonal element at least once [7]. It is probably fair to assume 
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that the Jacobi procedures in [7, ,16J and in this paper require an 

equal number (say S) of sweeps for convergence. For the algori,thms 

presented in this paper a sweep always consists of n(n - 1)/2 

rotations (the minimal number possible), but -this is not the case 

for the Chen and Irani or Kuck and Sameh algori'chllls mentioned above. 

The archi,tecture proposed in [7] is a linear array of 0 (nl processors; 

the associated Jacobi method requires time o(n2s). The architecture 

described in [16] is a square array of O(n) processors, with boundary 

wraparounds and a broadcas't unit. The associated algorithm requires 

') 

In comparison, our procedure requires O(n~) processors 

and 0 (nS) units of ,time. 

The principal. results of this paper were first reported in 

[4,5 J. A related SVD algori,thm is presen'ted by the authors and Van Loan. 

It requires 0(n2) processors and 0(n8) time to compute 'i:..he 

singular values of an 11 x n matrix. For a generalization of this result, 

see [6J. 

This paper is organized as fol.lows. Sections 2-4 are 

devoted to the singular-value problem and SectionG5-'1 to the eigenvalue 

proble."ll. Hestenes'method is reviewed in Section 2. The ne", ordering 

is described in section 3 and the corresponding SVD algorith..m in Section 4. 

The serial Jacobi method is outlined in Section 5. Details are filled in 

and some variations and extensions of the basic algoriUlln are mentioned in 

S8ction 7. 

The SVD algorithm described in Sections 3-4 below is being 

implemented on an experimental 64-processor systolic array by Speiser 

at the Naval Ocean Systems Center (San Diego) . 
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HESTENES'METHOD 

We wish to compute an SVD of an m x n matrix A, where 

m ::: n. An idea is to generate an orthogonal matrix V such that 

the 'crans formed matrix AV = W has orthogonal columns" Normalizing 

the ,euclidean length of each nonnull column to uni'cy, we get the 

relation 

(2.1) 

where D is a matrix Itlhose nonnu11 columns form an orthonormal se'c of 

vectors and Z is a nonnegative diagonal matrix. An SVD of A is 

given by 

(7. .1' ) A 

As a null colUlI1lll of U is always associated with a zero diagonal 

element of Z, there is no essential difference between (1.1) and (2.1'). 

Hestenes [151 uses plane rotations to construct V. He 

generates a sequence of matrices {'\:} using the relation 

where Al and is a plane rotation. Let 
(k) (k) 

= A Qk '\: - (~1 ' •• ":-n ) 
and Qk :: 

(k) 
(qrs l, and suppose Qk represents a rotation in -the (i, j) 

plane, with i < j, i.e. 



cos a , 
(2.2) 

-sin 8 , 

(k) 
qij 

(k) 
qjj 
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sin S 

cos a . 

We note that postmul"tiplication by Qk affects only 

and that 

(lI:) 
a. 
-~ 

(2.3) (a~k+l), a~k+l) 
-~ -J 

(k) a ~k) ) C c~sS sinS). 
(~i '~J -s~na cosa 

and 
(k) 

a. 
-J 

The rotation angle a is chosen so that the two new columns are orthogonal. 

Adopting the formulas of Rutishauser [21], we let 

(2.4) II (kl112 , i3 - ~j 2' Y -

We set e = 0 if Y = 0" otherwise we compute 

l; 
i3 - a, 

= ---::z:y 

(2.5) ·t 
sign (1:;) 

It;! + 11 +~ 

cose 
1 

~ 

(k) T (k) 
a. a. 
-~ -J 
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and sine t cos8 • 

The rotation angle always sat:isfies 

(2.6) < 
Ti 

4 

However, there remains the problem of choosing (i,j), which is usually 

done according to some fixed cycle. An objective is to go through all 

column pairs e",actly once in any sequence (e sweep) of n (n - 1) /2 

rotations. A simple sweep consists of a cyclic-by-rows ordering: 

(2 .7) (1 ,2) , (1,3) , ••• r (1, n) r (2 ,3) , ••• , (2 ,n) , (3 ,4) r ••• , (n-l ,n) • 

Forsythe and Henrici [10] prove that, subject to (2.6), the cyclic-by-rows 

Jacobi method always converges. Convergence of the cyclic-by-rows Hestenes' 

method thus follows. 

Unfortunately, the cyclic-by-rows scheme is apparen'tly not 

amenable to parallel processing. In section 3 we present an ordering 

that enables us to do L%J ro'tations simultaneously 0 The (theorei;ical) 

price we pay is the loss of guaranteed convergence. Hansen [12] 

discusses the convergence properties associated with'various orderings 

for the serial Jacobi methodo He defines a certain "preference factor" 

for comparing different ordering schemes. Our new ordering is in fact 

qui te desirable, for it asymp,totically optimizes the preference factor 

as n +00. Thus, although the convergence proof of [10] does not apply, 

we expect convergence in practice to be faster than for the cyclic-by-

rows ordering. Simulation resul,ts support this conclusion. 
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To enforce convergence, we may choose a threshold approach 

[30, pp.277-278]. That is, we associate with each sweep a threshold 

value, and when making the ·transfoDlIations of that slt/eep, we ami t any 

rotation based on a normalized inner product 

which is below the threshold value. Al though such a stra·tegy guarantees 

convergence, we do not know any example for which .our new ordering fails 

to give convergence even without using thresholds. Our method, like 

the cyclic-by-rows method, is ultimately quadratically convergent [29J. 

The plane rotations are accumulated if the matrix V is 

desired. We compute 

with VI 

by v(k) 

= 1. Denoting the r-th Column of Vk (respectively 

(respectively v (k+l) ) , 
_r we may update both IlK and _r 

simultaneously, 

I r (k) 
( 

,l.ne 1 (k+1) (k+1) (kll feo,e a. a. a. a, 
-~ -J -~ -J 

(2.8) 
(k+l) (k+l) v~k) 

v (k'i sinS case 

J 
v. V. 
_l -J -~ -J 
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3. G~NERATION OF ALL PAIRS. 

In this section we show how O(n} linearly-connected 

processors can generate all pairs (i,j), I ~ i < j ~ n, in O(n} 

steps. The application to the computation of the SVD and of the 

symmetric eigenvalue decomposition is described in section 4 and in 

sections 6-7, respectively. 

First, suppose n is even. We use n/2 processors 

PI' ••• , Pn/2 , where Pk and Pk+l communicate (k = 1,2, ••• , 

n/2 - l) • Each . processor Pk has registers ~ and ~ , outpUt 

lines ou~ and ou~, arid input lines inLk and i~, except 

that outLl , ·inLl , OUtRn/2 and inRn/2 are omitted. The 

output out~is connected to the input inLk~l as shown in 

Figure 1. 

ILl R11 inR1 outL~ B inRZ outL: B inR3 outL~ B 
P1 Pz P3 P4 

Figure 1: Inter-processor connections for .n = 8 
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Initially = 2k - I and ~ 2k. At each time step processor 

Pk executes the follo\lIing program: 

if Lk < ~ then process (Lk'~) else process (~,Lk); 

if k=l then out~:=P~ 

else if k < n/2 then out~:=~; 

if k > 1 then outLk:=~; 

{wait for outputs to propagate to inputs of adjacent processors} 

if k < n/2 then Rk:=in~ else ~:=Lk; 

if k > 1 then Lk:=inLk ; 

Here ''process (i,j'j'means perform whatever operations are required on 

the pair (i,j), I ,,; i < j ,,; n 0 The operation of the systolic array 

is illustrated in Figure 20 

We see that the index 1 stays in the regis'cer Ll of 

processor Pl. Indices 2, 0 •• , n travel through a cycle of 

length n-l consisting of the registers LZ,L3, ... , Ln/ 2 ,Rn / 2 , 

R R During an·y n-l consecutive steps a pair (i,J") n/2-1' ... , l' 

or (j,i) can appear in a register pair (Lk'~~) at most once. A 

parity argument 8ho"'18 that (i,j) and (j ,i) can not both occur 

(see Figure 2). Since there are n/2 register pairs at each of n-l 

time steps, each possible pair (i,j) , 1"; i < j ,,; n , is processed 

exactly once during a cycle of n-1 consecutive steps. 
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Figu!e 2: Full cycle of the systolic array for n 8 

If n is odd, we use rdf\ processors hut initialize 

- 2k - 1 for k-l , ...• and omit any 

calls from processor 

It is interesting to note that similar permuta-tions are "",ell 

known" for use in chess and bridge t.ournamen'cs, but have apparently 

not been applied to parallel computation. 

4. A ONE-DIMENSIONAL SYSTOLIC ARRAY FOR SVD COMPUTATION 

Assume that n is even {else we can add a zero column to A 

or modify the algorithm as described at the end of Section 3), We 

use n/2 processors PI' .. " Pn/2' as described in Section 3, 

except that Lk and are now local memories large enough to store 

a column of A (Le., Lk and ~ each has at least m floating-point 
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words) . Shift regis·ters or other sequential access memories are 

sufficien·t as we do not need random access -to the elements of each row. 

Suppose processor contains column 
c 

a. 
-~ 

in and 

column 
c 

a. 
-J 

in It is clear that can implement the column 

or-thogonalization scheme in time Oem) by making one pass through 

c 
and 

c 
to the inner produc'cs (2.4) , and another a. a. compute pass 

~~ -] 
to 

perfoTIl1 -the transformations (2.3) or (2.8) . Adjacent processors can 

then exchange columns in the same way that the processors of Section 3 

exchange indices. This takes time 0 (m) if the bandwidth bet1iJeen 

adjacent processors is one floating-point vvord. (Alternatively, 

exchanges can be combined with the transformations (2.3) or (2.8).) 

Consequently, we see tha-t n/2 processors can perform a 

full sweep of the Hestenes method in n - 1 steps of time O(m) each, i.e., 

in total 'cilue 0 (mnl. Ini-tial.ization requires tha-t the (2k-l) -th 

and 2k-·th colurrms of p, be stored in ·the local memory of processor 

Pk for k = 1, ••• ,11./2; clearly this can also be performed in time 

O{mn) . 

'l'he process is iterative. Suppose S sweeps are required -to 

orthogonalize 'che columns to full machine accuracy. We ·then have a 

systolic array of n/2 processors which computes the SVD in time O(mnS). 

By comparison, -the serial Hestenes algorithm takes time 0(mn2s). Our 

simulation results suggest -that S is 0 (log n) 1 although for practical 

purposes we can regard S as a constant in the I'ange six -to ten [21]. 

Af-ter an integral nUI11ber of sweeps the columns of the matrix 

W ::: AV (see (2.1» "7ill be s·tored in the systolic array (two per 

processor). If V is required, i'c can be accumulated a·t the same time 

that W is accumulated, at the expense of increasing each processor's 

local memory (but the computation time remains O(mnS»: see (2.8). 
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5. SERIAL JACOBI METHOD 

We now consider the related problem of diagonalizing a 

given n x n symmetric matrix A The serial Jacobi method 

generates a sequence of symmetric matrices via the relation 

where is a plane rotationo Let and suppose 

represents a rotation through angle 8 in the (i, j) plane, with i < j 

(see (2.2)). We choose the rotation angle to annihilate the (i,j) 

element of ~. If 
(k) a, , = 0, we do not rotate, i.e., e = o. 

:LJ 

we use the formulas in [21] to comput:e sinS and cosS 

(k) (k) 
a .. - a .. 

JJ Ll 

2a ~l~) 
~J 

t 
sign (0 ·tanS , 

(5.1) 

cosS 
1 

and 

sinS t cos8 • 

Note that the rotation angle S 

\8\ < 

may be chosen to sa·tisfy 

1T 

4 

Otherwise 

The new matrix differs from ~ only in rows and columns i 

and j. The modified values are derined by 
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(k+l) 
aii 

(k) 
aii - t 

(k) 
a ij 

(k+l) (k) + t 
(k) 

a jj a jj a .. 
1J 

(5.2) 
(k+l) 

a ij 
(k+l) 

a ji 
,., 0 

(k+I) (k+l) 
cosS 

(k) (k) 
a iq a . a. 

q1 1q Jq ,m' a. 1 
(q " i ,j) • 

(HI) (HI) 
sinS a~k)+ cosS 

(k) 
a jq a qj 1q 

a jq 

Again we choose (i,j) in accordance to the new ordering introduced 

in Section 3. The comments that were made in Section 2 concerning 

various aspects (convergence proof, convergence rate, threshold approach, 

etc.) of the Hestenes method apply equally well here to the Jacobi 

procedure. 

6. AN. IDEALIZED SYSTOLIC ARCHITECTURE 

In this section we describe an idealized systolic architecture 

for implementing the Jacobi method to compute an eigenvalue decomposition 

of A. The architecture is idealized in that it assumes the ability to 

broadcast row and column rotation parameters in constant time. In Section 

7 we mention how to avoid this assumption. 

Assume that the order n is even and that we have a square 

array of n/2 by n/2 processors, each processor containing an 2 x 2 

submatrix of A == (a~. '). Initially processor P .. 
1J 

contains 

[
a 2i- 1 ,2 j -l a2i-l,2j 

a 2i ,2j-l a 2i ,2j 
for i,j 1, ... ,n/2 

to its nearest neighbors 

and P .. 
1J 

general P .. 
1J 

P i±1, J' and P. . +) (see Figure 
1,J- a... 8"1 

contains four real numbers 1J ~1J , l Y ij U ij J 

is connected 

3) • In 
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where 

The diagonal processors p, . 
J.:l. 

(i '" 1,0 •• ,n/2) act diffel:errtly 

from the off-diagonal processors P (i ~ j 1 < i j < n/2) Each t.ime 

.cep the diag=al procee'o", ~~pu,. ro~ti:n; [~i ~:l to 

annihilate their off-diagonal elements Bii and Yii ' 

(actually , i.8., so that 
2 2 

c. + S. = 1 
:J. 1. 

and 

r"A---'~_~"~---~------"-~~ 
_._. 

~,-- /'~~. 

all aU , aU a 14 a l6 

I'll P12 1'13 

a 21 a 22 
, a 23 a 24 8 25 a 26 

f' "-

- ~ 
,;' 

1 
81 32 

" 
8133 a 34 a 35 8136 

PZl 1'22 1'23 
8141 £1 42 1/ a 43 a 44 , 8 45 8146 

,-- i , I I 
I I 

a S1 aS2 --;;. 
a S3 £154 r-----) 

a S5 £156 

1'31 P32 1"33 
a 61 a 62 8 63 a64 I' 

a 65 a 66 

Figure 3: Initial configuration (idealized, n - 6) 

[
OC1i 
o 

o 1 is diagonal. 

8i i 

From (5.1) and (5.2) 

with a change of notation we find that 

(6.1) [:~ 1 
:I. 

-=/1===+=t=: tJ 
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and 

(6.2) 

and 
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[
et. .1 [-1] 

11j + t_, 13, , 
0, , L 11 1 

11 

t if SE 

I sign(~i) 

0 .. - a,. 
11 11 

2(3 .. 
11 

o 

if BE of 0 , 

To complete the rotations which annihilate 13ii and Yii , 

1, ... ,n/2 , the off-diagonal processors P. , 
1J 

(i f j) must perform 

the transformations 

processor 

and 

rCi -si]l(aij13ij] r c j Sj] We assume that the diagonal 

~ s , c , y .' cS ,. l -s , c , 
1 1 1J 1J J J 

P" broadcasts the rotation parameters 
Ll. 

c, and s. 
1 1 

to processors 

(j = 1, ... ,ni2) in constant time, so that the off-diagonal 

processor Pij has access to the parameters c 1" S4' c, and s 
~ J j 

when required. 

(This assumption is removed in Section 8,) 

To complete a step, columns (and corresponding 1:01.18) are interchanged 

bet'Jleen adjacent processors so that a new set of n off-diagonal elements is 

ready to be annihilated by the diagonal processors during the next time~tep. 

This is done in two sub-steps, First, adjacent colum.TJS are exchanged as in the 

SVD algorithm described in Sections 3-4 and as illustrated in Figure 20 

Next, the same permutation is applied to rows, so as to maintain symmetry, 

Formally, we can specify the operations performed by a processor P ij with 

outputs outha." ... ,outh6,.,outva", ... ,outvo", 
1J 1J 1J 1J 

and inputs inha, . , .•. , invo , , 
1J 1J 

by Program 1, Note that outputs of one processor are connected. to inputs of 

adjacent processors in the obvious way, eog, outhS" is connected to iuha, '+1 
1J 1,] 
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{subscripts (i,j) omitted if no ambiguity results} 

{column interchanges} 

if i '" 1 then [outhS +- 8; Gutho +- 6] 

else if i < n!2 then [outhS +- Ci.; outM +- y]; 

if i > 1 then [outha +- 13; outhy +- 0]; 

{wait for outputs to propagate to inputs of adjacent processors} 

if i < n/2 then [8 +- tnh8; 0 ~- inho] 

else [6 +- a; 6 +- yl; 

if i :;, 1 then [0, +- inh(1.; y +- inhy]; 

{row interchanges} 

if j = 1 then [outvy +- y; outvo +- oj 

else if j < n/2 then [outvy +- a; outva +- 8]; 

if j > 1 then [outva +- y; outvS + 0]; 

{wait for outputs to propagate to inputs of adjacent processors} 

if j < n/2 then [y -<- invy; a +- invo] 

else [y +- u; 0 +- SJ; 

if j > 1 then [a +- inva; S +- inv6l; 

Program 1: Column and row interchanges for idealized processor Po. 
~J 

(1 ~ i ~ n/2, 1 ~ j < n/2): see Figure 4. Note that, in Figure 4 and elsewhere, 

we have omitted subscripts (i,j) if no ambiguity arises, e.g. inva is used 

instead of invaij • 

The only difference between the data flow here and that in Section .. 4 is that 

here rows are permuted as \,ell as columns in order to maintain the sYlIlllIetry of 

A and move the elements to be annihilated during the next time step into the 

diagonal processors. Hence, from Section 3 it is clear that a complete 

sweep is performed every n - 1 steps, because each off-diagonal element of A 

is moved into one of the diagonal processors in exactly one of the steps. 

Each sweep takes time 0 (n) so, assuming that 0 (log nl sweeps are 
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required for convergence, the total -time required to 

diagonalize A is 0 in log nl. 

inha 

outha 

tully ---" 

,'Ie 
outval 

I 

0; 

inv(~, 

outbY~ y 

inv'( T J,UlVY 

outv linvS 

P .. 
J.] 

Figure 1.[: Input and output lines for idealized processor 

nearest-neighbour connections 

T. FURTHER ~ETAILS 

outhS 

inhi3 

outho 

fuhO 

with 

Several assumptions were made in Section 6 to simplify the exposition. 

In this section ",e shmoJ hOvl to remove these assumptions. 

7.1 Threshold strategy':' 

It is clear that a diagonal processor Pii might omit rotations if 

its off-diagonal elements Pii 

required is to broadcast (:~] 
~ 

Y ii "lere sufficiently small. All that is 

[~J along processor row and column i 
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As discussed in Section 2, a suitable threshold strategy guarantees 

convergence, although we do not know any example for which our ordering 

fails to give convergence even ~li.thout a threshold strategy. 

'1.2 Computat:ion ·of eigenvectors 

If eigenvectors are required, the matrix U of eigenvectors can be 

accumulated at the same time as A is being diagonalized. Each systolic 

processor P .. 
l.J 

(1 ~ i,j ~ n/2) needs four additional memory cells 

• and during each step sets 

\) i j ] [ Sj] 
T .• -5. C. 

1.J J J 

l'l1o \iT) Each processor transmits its values to adjacent processors in the 

same way as its (ay ~) u values (see Program i). Initially 

if Vii ~ 0 , 

After a sufficiently large (integral) number of sweeps, we have U defined 

to working accuracy by 

[
U 2i- 1 ,2 j -1 

U 2i ,2j-l 

1.3 Diagonal connections 

U 2i- 1 ,2J] 

U 2i, 2j 

In Program 1 we assumed that only horizontal and vertical nearest-

neighbour connections were available. Except at the boundaries, diagonal 

connections are more convenient. This is illustrated in Figures 5 and 6 

(with subscripts (i,j) omitted). 
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ina: outS 

inS 

iny I P I out6 

/~~ 
o8ty in6 . 

Figure 5; Diagonal input and output lines for processor Pij 

~,,-/~_P_42--k-
Figure 6: "Diagonal" connections, n = 8 

(here and below ~ stands for « ») 
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Diagonal outputs and inpu·ts are connected in ·the obvious '!tlay, as shmVYl 

in Figure 6. Horizontal and vertical connections (not shown) are still 

required for the transmission of rota'cion parameters" 

7.4 Taking full advantage of symmetr~ 

Because A is symmetric and our transformations preserve symm.etry, only 

a triangular array of 
1 + 1) n(n + 2)/8 systolic prccecssors is necessary 

for the eigenvalue computation. In the description above, Silllply replace any 

reference to a below-d.i.agonsl element (or processor P ij) with i:> j 

by a reference to the corresponding above-diagonal element a ji (or processor 

Pji ). Note, however, that this idea complicates the programs, and. cannot be 

lIsed if eigenvectors as well ·as eigenvalues are to be compute.d, 

7.5 Odd n 

So far '!tIe assumed n to be even. For odd n we can modify the 

program for processors P Ii and P i1 (i = 1,",. ,fIl) in a manner analogous 

to that used in section 3, or simply border A by a zero row and colunITl. For 

simplicity we continue to assume that n is even. 

7.6 Rotati.on parameters 

In Section 6 we assumed that the diagonal processor Pii would compute 

and according to (6, 1) , 

s, along 
1. 

processor row and column 

only t, (given 
], 

by (6.2) ) and let 

c, , c, and s, from 
1. J J 

and then bro2.dcast both c. a.nd 
1. 

i It may be preferable to broadcast 

each off-diagonal processor compute 

and t, Thus communication costs are 
J 

reduced at the expense of requiring off-diagonal processors to compute t\W 

square roots per time step (but this may not be significant since t.he diagonal 

processors must compute one or two square roots per step tn any case). In 

t.hat follows a "rotation parameter" may mean either or the pair 

(c~, s.). 
b 1. 
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7,7 Avoiding broadcast of rotation parameters 

The most serious assumption of section 6 is that rotation parameters 

computed by diagonal processors can be broadcast along rows and COlUIlLTlS in 

cons-tant time. However, it is possible to avoid this assumption, using a 

special case of the general technique of Leiserson and Saxe [19]. For the 

details, see [5]. The conclusion is that we only need to transmit rotation 

parameters at constant speed between adjacent processors. 

7.8 Solving large problems on small systolic arrays 

We have assumed that an array of r%l by r%l systolic processors is 

available. In practice the systolic array would have a fixed number of 

processors, and a large problem might have to be decomposed in some 

manner in order to fit on -the available hardware. This is an interesting 

problem of some practical significance, but space limitations preven-t us 

from discussing it here. For some ideas (which might be improved) on how 

to solve it, see [26]. 
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8. CONCLUS ION 

We have presented a linear array of r %l processors, . each 

able to perform floating-point operations (including square roots) 

and with O(m) local storage; for computing. the SVD. of a real. mx n 

matrix in time O(mn log n), with a small constant. We have also 

described how a square array of r ~ by r ~ 1 processors, each 

with similar arithmetical capabilities but with only 0(1) local 

storage, and having connections to nearest horizontal and vertical 

(and preferably also diagonal) neighbors, can compute the eigenvalues 

and eigenvectors of a real symmetric matrix in time 0 (n log n) • 

The constant is sufficiently small that the method is competitive 

with the usual 0(n3) serial algorithms, e.g., tridiagonalization 

followed by the QR iteration, for quite small n. The speedup 

should be significant for real-time computations with moderate or 

large n. For further results along these lines, see [6]. 
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