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THE SOLUTION OF SINGULAR-VALUE AND EIGENVALUE
PROBLEMS ON SYSTOLIC ARRAYS

Richard P. Brent and Franklin T. Luk

0.  SUMMARY

Parallel algorithms are presented for computing a singular-value
decomposition of an m X n matrix (m=n) and an eigenvalue
decomposition of an n X n symmetric matrix. A linear array of 0 (n)
processors is proposed for the singular-value problem and the associated
algorithm requires time O(mnS), where S is the number of Jacobi
sweeps (typically S<10). A square array of O(nz) processors with
nearest-neighbor communication is proposed for the eigenvalue problem; -

the associated algorithm requires time 0O(nS).

1.  INTRODUCTION

A singular-value decomposition (SVD) of a real m X n (m=Zn)

matrix A is its factorization into the product of three matrices:

(1.1) A=UZLV ,

where U is an m X n matrix with orthonormal columns, Y is an
n X n nonnegative diagonal matrix and the n X n matrix V is
orthogonal. This decomposition has many important scientific and

engineering applications (cf. [1,11,27,28]).



39

If the matrix A is square (i.e., m=n) and symmetric, we may
adjust the sign of the elements of I so that U=V . We then obtain

an eigenvalue decomposition:
(1.2) A=UDU ,

where U is orthogonal and D diagonal. The advent of massively
parallel computer architectures has aroused much interest in parallel
singular-value and eigenvalue procedures, e.g. [2,4,5,6,7,9,13,14,16,
18,20,22,23,24,251. Such architectures may turn out to be indispensable
in settings where real-time computation of the decompositions is
required [27,28]. Speiser and Whitehouse [27] survey parallel
processing architectures and conclude that systolic arrays offer the
best combination of characteristics for utilizing VLSI/VHSIC technology

to do real-time signal processing. (See also [17,28].)

In this paper we present an array of O(n) linearly-connected
processors which computes an SVD in time O(mnS). Here S is a slowly
growing function of n which is conjectured to be O0(log n); for
practical purposes S may be regarded as a constant (see [21]1). Our
array implements a one-sided orthogonalization method due to Hestenes
[15]. His method is essentially the serial Jacobi procedure for finding
an eigenvalue decomposition of the matrix ATA , and has been used by Luk
[20] on the ILLIAC IV computer. We also describe how one may implement
a Jacobi method on a two-dimensional array of processors to compute
an eigenvalue decomposition of a symmetric matrix. Our array requires
O(nz) processors and 0(nS) units.of time. Assuming that S=0(log n),
this time requirement is within a factor O(log n) of that necessary
for the solution of n linear equations in n unknowns on a systolic

array [2,3,17].
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Results similar to ours have been reported in the
literature. For computing the SVD, Sameh [23] describes an
implementation of Hestenes'method on a ring of O(n) processors.
Suppose n is even (the result is similar for an odd n). at
each orthogonalization step %- column rotations are performed.
Sameh's permutation scheme requires 3n - 2 steps to ensure the
execution of every possible pairwise rotation at least once; our
permutation scheme (presented in Section 3) requires only n - 1

steps.

Parallel Jacobi methods for computing eigenvalues are
given in [7,16,22]. However, the procedure of Sameh [22] may be
unsuitable for multiprocessor arrays. For simplicity, assume again
that n is even, so §~ off-diagonal elements can be set to zero
at each elimination step. Let us compare the number of permutations
necessary for the annihilation of each off-diagonal element at least
once. Our procedure (see Sections 3 and 6) requires n - 1
permutations, which is optimal; that of Chen and Irani [7] requires
n permutations. The scheme of Kuck and Sameh [16] is worse.

Their basic scheme appears to cycle every 2n - 2 steps and to miss
some off-diagonal elements. A modification ("the second row and

column are shifted to the n-th position after every (n - 1) orthogonal
transformations") can be made to 4overcome this problem, but

2 .
the modified scheme requires (n - 1) permutations [7].

Let us generalize the notionof a "sweep" and use it to
denote a minimum - length sequence of rotations that eliminates each

off-diagonal element at least once 17]. It is probably fair to assume
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that the Jacobi procedures in [7, 16] and in this paper require an
equal number (say S) of sweeps for convergence. For the algorithms
presented in this paper a sweep always consists of n(n - 1)/2
rotations (the minimal number possible), but this is not the case
for the Chen and Irani or Kuck and Sameh algorithms mentioned above.
The architecture proposed in [7] is a linear array of O0(n) processors;
the associated Jacobi method requires time O(nZS). The architecture
described in [16] is a square array of O(n) processors, with boundary
wraparounds and a broadcast unit. The associated algorithm requires
time O(n3S). In comparison, our procedure requires O(n2) processors
and O(nS) units of time.

The principal results of this paper were first reported in
[4,5]. A related SVD algorithm is presented by the authors and Van Loan.
It requires O(nz) processors and O(nS) time to compute the
singular values of an n x n matrix. For a generalization of this result,

see [6].

This paper is organized as follows. Sections 2-4 are
devoted to the singular-value problem and Sectiong5-7 to the eigenvalue
problem. Hestenes' method is reviewed in Section 2. The new ordering
is described in Section 3 and the corresponding SVD algorithm in Section 4.
The serial Jacobi method is outlined in Section 5. Details aré filled in

and some variations and extensions of the basic algorithm are mentioned in

Section 7.

The SVD algorithm described in Sections 3-4 below is being
implemented on an experimental 64-processor systolic array by Speiser

at the Naval Ocean Systems Center (San Diego).
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2. HESTENES' METHOD

We wish to compute an SVD of an m x n matrix A, where
m =Zn. An idea is to genérate an orthogonal matrix V such that
the transformed matrix AV = W has orthogonal columns. Normalizing
the euclidean length of each nonnull column to unity, we get the

relation

(2.1) W = UZI,

where U is a matrix whose nonnull columns form an orthonormal set of
vectors and ¥ is a nonnegative diagonal matrix. An SVD of A is

given by

(2.1") A=UZLV .

As a null column of ﬁ is always associated with a zero diagonal

element of I , there is no essential difference between (L.1) and (2.1').

Hestenes [15] uses plane rotations to construct V. He

generates a sequence of matrices {Ak} using the relation

Bt = B v

_ . . - (k) (k)
where Al = A and Qk is a plane rotation. Let Ak = (g reees B )
and Qk = (qr;k)), and suppose Qk represents a rotation in the (i,3)

plane, with i < j, i.e.
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(k) _ k) _ _.
4; = cos B , qij = sin® ,
(2.2)
q..(k) = -sin6 , q.fk)= cos O .
Ji 3]

We note that postmultiplication by Qk affects only al.(-k) and agk) v

and that

(2.3) (a,(k+1), afk+l)) = (a(k), fgk))( cosb s:mG).

~i <3 ~i -5in® cosb

The rotation angle 0 is chosen so that the two new columns are orthogonal.
Adopting the formulas of Rutishauser [21], we let
= Q07,0

_ oL (k)2 o )2
(2.4) o= fla; ;8= lla g o v = e ey

We set O =0 if Yy =0; otherwise we compute

_B-a
£=52,
(2.5) t = Sign (E)
lg] +v1 + &
cosh = 1

/1 + £2
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and sin® = 't cosf .

The rotation angle always satisfies

(2.6) ' o] =

N

However, there remains the problem of choosing (i,j), which is usually
done according to some fixed cycle. An objective is to go through all
column pairs exactly once in any sequence (a sweep) of n(n - 1)/2

rotations. A simple sweep consists of a cyclic-by-rows ordering:
(2.7) (1,2),(1,3)yeces(1,0),(2,3)...,(2,n),(3,4),...,(n-1,n).

Forsythe and Henrici [10] prove that, subject to (2.6), the cyclic-by-rows
Jacobi method always converges. Convergence of the cyclic-by-rows Hestenes'
method thus follows.

Unfortunately, the cyclic-by-rows scheme is apparently not
amenable to parallel processing. In Section 3 we present an ordering
that enables us to do L%w rotations simultaneously. The (theoretical)
price we pay is the loss ;f guaranteed convergence. Hansen [12]
discusses the convergence properties associated with various orderings
for the serial Jacobi method.v He defines a certain "preference factor"
for comparing different ordering schemes. Our new ordering is in fact
quite desirable, for it asymptotically optimizes the preference factor
as n + o, Thus, although the convergence proof of [10] does not apply,
we expect convergence in practice to be faster than for the cyclic-by-

rows ordering. Simulation results support this conclusion.
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To enforce convergence, we may choose a threshold approach
[30, pp.277-278]1. That is, we associate with each sweep a threshold
value, and when making the transformations of that sweep, we omit any

rotation based on a normalized inner product

R
~i ~J

(k) (k)
2B, 1220,

which is below the threshold value. Although such a strategy guarantees

convergence, we do not know any example for which our new ordering fails

to give convergence even without using thresholds. Our method, like

the cyclic-by-rows method, is ultimately quadratically convergent [29].
The plane rotations are accumulated if the matrix V is

desired. We compute

Ve = Ve & v

with V., = I. Denoting the r-th Column of V. (respectively V. )

1 k k+1
by v(k) (respectively V(k+l)), we may update both A and V,
~r ~¥ k
simultaneously:
\ [ }

afk+1) a(k+1) afk) afk) cosO sinb

~i ~J ~1 ~J
(2.8) = | .

v$k+1) V$k+1) vfk) vgk) sinb COSGJ
~i ~3 J ~i  ~j
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3. GENERATION OF ALL PAIRS

In this section we show how O(n) linearly-connected
processors can generate all pairs (i,j), 1 =i < j=mn, in O(n)
steps. The application to the computation of the SVD and of the
symmetric eigenvalue decomposition is described in Section 4 and in
Sections 6-~7, respectively.
First, suppose n is even. We use n/2 processors
where P and P communicate (k = 1,2,...,

Bile coee BPryp e k k+1

n/2 - 1). Each processor P has registers Lk and Rk ;, output

k

lines outh and outRk, and input lines 1nLk and 1an, except

that outLl, 1nL1, outRn/2 and 1an/2 are omitted. The
output outRk is connected to the input 1nLk'+1 as shown in
Figure 1.
outRl 1nL2 outR2 1nL3 outR3 1nL4
L R . R L R . L
1 "1} inR; outL, 2 72 inR, outL, 3 73 inR, outL, 4
f———— e e
Pl P2 P3 P

Figure 1l: Inter-processor connections for n = 8
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Initially Lk =2k - 1 and Rk = 2k . At each time step processor

Pk executes the following program:

if Lk < Rk then process (Lk’Rk) else process (Rk’Lk);
if k=1 then outRk:=Rk
else if k < n/2 then OutRk:=Lk;
i > = .
if k 1 then outLk Rk’
{wait for outputs to propagate to inputs of adjacent processors}

if k < n/2 then Rk:=ian else Rk:=Lk;

if k > 1 then Lk:=1nLk;

Here "process (i,j) means perform whatever operations are required on
the pair (i,j), 1 £ i < j < n . The operation of the systolic array
is illustrated in Figure 2.

We see that the index 1 stays in the register L., of

1

processor Pl . Indices 2, ..., n travel through a cycle of

length n-1 consisting of the registers LZ’L3’ ooy Ln/Z’Rn/2’
Rn/2-—1’ coes R1 . During any n-1 consecutive steps a pair (i,3)
or (j,i) can appear in a register pair (Lk’Rk) at most once. A
parity argument shows that (i,j) and (j,i) can not both occur
(see Figure 2). Since there are n/2 register pairs at each of n-1
time steps, each possible pair (i,j) , 1 si<j<n, is prgcessed

exactly once during a cycle of n-1 consecutive steps.
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ste 1 3..4 5. .6 8
step 0 | A Px o 3.
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H M \/\/ S \
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step 1 14 2.6 3.8 5,7
[ N P N < ~ P2
1] AN P ~ 7 “~ rd A Y
: /\,\ A~ \\<’ ‘\
] )/ N e ~ /’ ~ %
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! ~7 =<7 N7 .
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step & 1 77 ) 6.3 ‘AV,Z
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t - N SN Y
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step 5 1 5 7. .3 ~8._.2 N6 A
N e ~ \ -
S AN 4 ‘ ~ )
1 N - ~ ’ s
! w N N
-'r N AN N !
6 . J \\ A N - SL \
step 6 i 3 5 2 7 &4 8 6

Figure 2: Full cycle of the systolic array for n = 8

If n is odd, we use {ﬁ/ I processors but initialize

Lk =2k - 2, Rk =2k - 1 for k=1, ..., [%1 and omit any "process"”

calls from processor Pl .

It is interesting to note that similar permutations are "well
known" for use in chess and bridge tournaments, but have apparently
not been applied to parallel computation.

4. A ONE-DIMENSIONAL SYSTOLIC ARRAY FOR SVD COMPUTATION

Assume that n is even (else we can add a zero column to A
or modify the algorithm as described at the end of Section 3). We
use n/2 processors Pl’ ceos Pn/2’ as described in Section 3,

except that L and Rk are now local memories large enough to store

k

a column of A (di.e.,L, and Rk éach has at least m floating-point

k
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words). Shift registers or other sequential access memories are
sufficient as we do not need random access to the elements of each row.

. c .
Suppose processor Pk contains column a, in Lk and

column ag in Rk. It is clear that Pk can implement the column

orthogonalization scheme in time O(m) by making one pass through

3§ and 3? to compute the inner products (2.4), and another pass to
perform the transformations (2.3) or (2.8). Adjacent processors can
then exchange columns in the same way that the processors of Section 3
exchange indices. This takes time O(m) if the bandwidth between
adjacent processors is one floating-point word. (Alternatively,
exchanges can be combined with the transformations (2.3) or (2.8).)

Consequently, we see that n/2 processors can perform a
full sweep of the Hestenes method in n - 1 steps of time O(m)each, i.e.,
in total time O(mn). Initialization requires that the (2k-1)-th
and 2k-th columns of A be stored in the local memory of processor
Pk for k=1, ..., n/2; clearly this can also be performed in time
O(mn) .

The process is iterative. Suppose S sweeps are required to
orthogonalize the columns to full machine accuracy. We then have a
systolic array of n/2 processors which computes the SVD in time O(mnS).
By comparison, the serial Hestenes algorithm takes time O(mnzs). Ouxr
simulation results suggest that S is O(log n), although for practical
purposes we can regard S as a constant in the range six to ten [21].

After an integral number of sweeps the columns of the matrix
W = AV (see (2.1)) will be stored in the systolic array (two per
processor). If V is required, it can be accumulated at the same time

that W is accumulated, at the expense of increasing each processor's

local memory (but the computation time remains O(mnS)): see (2.8).
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5. SERIAL JACOBI METHOD

We now consider the related problem of diagonalizing a

given n x n symmetric matrix A = Al, The serial Jacobi method

generates a sequence of symmetric matrices {Ak} via the relation

_ T
Bt = A&

k)

. . - (
where Qk is a plane rotation. Let Ak = (ars ) and suppose Qk

represents a rotation through angle 6 in the (i,]) plane, with i<3j

(see (2.2)). We choose the rotation angle to annihilate the (i,3)

element of Ak. If ai;k) = 0, we do not rotate, i.e., 0 = 0. Otherwise

we use the formulas in [21] to compute sin® and cosd

S (k)
g = A,
ZaSF)
1]
g o= —stan &) e,
(5.1) lg| + /1 +E%
cosb = S , and
/1 + €2
sin® = t cosb .

Note that the rotation angle © may be chosen to satisfy

|6

IA
INE]

The new matrix Ak+1 differs from Ak only in rows and columns i

and J. The modified values are defined by
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WD 0
ii ii ij
§¥+1) = agg) +t agg) s
a3 33 1]
(5.2) a§?+1) = a§§+1) = 0,
a§k+l) = a(¥+l) = cosb agk)— sinb a{k)
iq qi iq J
. (q #1,3) .
a§k+l) = a(%+l) = sinb agk)+ cosb agk)
Jq q] iq Jq

Again we choose (i,j) in accordance to the new ordering introduced

in Section 3. The comments that were made in Section 2 concerning
various aspects (convergence proof, convergence rate, threshold approach,
etc.) of the Hestenes method apply equally well here to the Jacobi

procedure.

6. AN. IDEALIZED SYSTOLIC ARCHITECTURE

In this section we describe an idealized systolic architecture
for implementing the Jacobi method to compute an eigenvalue decomposition
of A. The architecture is idealized in that it assumes the ability to
broadcast row and column rotation parameters in constant time. In Section

7 we mention how to avoid this assumption.

Assume that the order n is even and that we have a square
array of n/2 by n/2 processors, each processor containing an 2 x 2

submatrix of A = (aj

;). Initially processor Pij contains

32i-1,2-1 22i-1,27]

for i,j =1, ...,n/2 , and P,., is connected
Ao, oo a. - ij
2i,23-1 2i,23
to its nearest neighbors Pitl,j and Pi,jil OL(seeBFigure 3). In
general Pij contains four real numbers ] 1] ,

l ij ljJ



where O, .
i

= 0, .
31

14

¢

ij

8

ji
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and Bij = in

by symmetry.

The diagonal processors Pii (i =1,...,n/2) act differently
from the off-diagonal processors Pij (i#3, 1% i,% £ n/2). Each time
c, s,
step the diagonal processors Pii compute rotations + + to
-s, C,
annihilate their off-diagonal elements Bii and Yii ,l t
. 2. 2
(actually Bii = Yii)' i.e., so that c; +s8; = 1 and
11 %12 %13 214 %15 %16
P11 P2 P13
21 %22 323 824 a5 226
A
N
231 232 #33 234 a a
P P 35 36
21 22 P23
241 342 K 343 Bhy € 245 246
N
a a a a a a
51 . 52 — 53 54 N 55 . 56
31 P32 33
261 362 263 %64 [ %65 266
Figure 3: 1Initial configuration (idealized, n =-6)
c, =-s.| [o.,. B.. c; 8y aii 0
1 1 e o= is diagonal. From (5.1) and (5-2)
s, c.) {Yss OG..) |=s, c. 0 )
i i ii ii i ii

with a change of notation we find that

(6.1)

S

1
/1 + t§

{1

£y
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and
g G4 -1
v +tByy ’
854 844 !
where
Jo if B, =0
6. =
(e f1 sign(E,)
—_— if B . #0,
tlgi| T+ ] ii
i3 = %44
and &, T B
il

To complete the rotations which annihilate Bii and Y4 0

i=1,...,0/2 , the off-diagonal processors Pij (i # j) must perform

a . By ai. Bi.
the transformations J 1« J J , where
] ]
Yig %) Wiy Cug
al. BI. ey =8yl (945 By c, s,
+ H = + +J d J J1 . We assume that the diagonal
1] 1] -
iy Sy g ey gy Sgy) 1785 <y

processor Pii broadcasts the rotation parameters c, and s, to processors
Pij and Pji (j =1,...,0/2) in constant time, so that the off-diagonal
processor Pij has access to the parameters ;s Si’ cj and sj when required.
(This assumption is removed in Section 8.)

To complete a step, columns (and corresponding rows) are interchanged
between adjacent processors so that a new set of n off-diagonal elements is
ready to be annihilated by the diagonal processors during the next time istep.

This is done in two sub-steps. First, adjacent columns are exchanged as in the

SVD algorithm described in Sections 3-4 and as illustrated in Figure 2.

Next, the same permutation is applied to rows, so as to maintain symmetry.

Formally, we can specify the operations performed by a processor Pij with

outputs outhd. .,...,outhd ,,outvo,,s...,outvd,, , and inputs dinho, . ,...,invé, .
ij ij ij ij ij i

by Program l. Note that outputs of one processor are connected to inputs of

adjacent processors in the obvious way, e.g. outhBij is connected to inhai j+1
9
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{subscripts (i,j) omitted if no ambiguity results}
{column interchanges}
if i = 1 then [outhB < B; outhd « §]
else if i < n/2 then [outhf < a; outhd <« Y];

if 1 > 1 then [outha <« B; outhy « 6];
{wait for outputs to propagate to inputs of adjacent processors}
if i < n/2 then [B < inhB; & « inh§)

else [B <« a; § « y];
if 4 > 1 then [a « inha; vy <« inhy];
{row interchanges}
if j = 1 then [outvy < Y; outvd <« §]

else if j < n/2 then [outvy + a; outvd « B];

if j > 1 then [outva + Y; outvB <« 8];
{wait for outputs to propagate to inputs of adjacent processors}
if j < n/2 then [Y « invy; § <« invd{]

else [y « a; & « Bl;
if § > 1 then [0 « inva; B + invf];

Program l: Column and row interchanges for idealized processor Pij

(1 £i<n/2, 1< 3j<n/2): see Figure 4. Note that, in Figure 4 and elsewhere,
we have omitted subscripts (i,j) if no ambiguity arises, e.g. invo 1is used
instead of invaij .

The only difference between the data flow here and that in Section.4.is that
here rows are permuted as well as columns in order to maintain the symmetry of
A and move the elements to be annihilated during the next time step into the
diagonal processors. Hence, from Section 3 it is clear that a complete
sweep is performed every n - 1 steps, because each off-diagonal element of A
is moved into one of the diagonal processors in exactly one of the steps.

Each sweep takes time O(un) so, assuming that O(log n) sweeps are
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required for convergence, the total time required to

diagonalize A is O(n log n).

outva,f iinvot outhT lian

inh0 ——3 ——s outhf

outho ¢&—| é ° &~ inhf
P..

inhy — + > outhd

outhy &— ! ° £— inhé

ianT loutvy invST lputvé

Figure 4: Input and output lines for idealized processor P'j with

nearest-neighbour connections

T FURTHER DETAILS

Several assumptions were made in Section 6 to simplify the exposition.

In this section we show how to remove these assumptions.

7.1 Threshold strategy

It is clear that a diagonal processor Pii might omit rotatioms if

its off-diagonal elements B,. = V..

. were sufficiently small. All that is
ii ii

[ 1
required is to broadcast {Sl] = {0} along processor row and column 1 .
i
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As discussed in Section 2, a suitable threshold strategy guarantees
convergence, although we do not know any example for which our ordering

fails to give convergence even without a threshold strategy.

7.2 Computation of eigenvectors

If eigenvectors are required, the matrix U of eigenvectors can be
accumulated at the same time as A 1is being diagonalized. Each systolic

processor Pij (1 £i,j £ n/2) needs four additional memory cells

Hi3 Vi
, and during each step sets
g,. T..
i3 1]
. V.. V.. C. S,
Hij ij| L Hij ij j i
ag T, . g, . T, =S . c,
ij ij ij ij J 3

v
H ] values to adjacent processors in the

Each processor transmits its [0 T

same way as its [$ S} values (see Program 1l). Initially
Mig = Vi3 =04y =Ty =0 if iF 3, and wy, =T, =1, 04y "V =0

After a sufficiently large (integral) number of sweeps, we have U defined

to working accuracy by

Y2i-1,25-1  “2i-1,2j Hig o Vi

Y21,25-1 Y21,2j ij ij

7.3 Diagonal connections

In Program 1 we assumed that only horizontal and vertical nearest-
neighbour connections were available. Except at the boundaries, diagonal
connections are more convenient. This is illustrated in Figures 5 and 6

(with subscripts (i,j) omitted).



outd

iny

Figure 5: Diagonal input and output lines for processor Pi

¥

olity

outf

inB

out$

ind

J

Pl #12 P13 Py
Po1 Pao a3 Pos
Py EY) P33 P34
Pu1 ) Pu3 L

Figure 6:

"Diagonal' connections, n = 8

(here and below ¢«—» stands for &)
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Diagonal outputs and inputs are connected in the obvious way, as shown
in Figure 6. Horizontal and vertical connections (not shown) are still

required for the transmission of rotation parameters.

7.4  Taking full advantage of symmetry

Because A 1is symmetric and our transformations preserve symmetry, only
a triangular array of %u%(% + 1) = n(n + 2)/8 systolic processors is necessary
for the eigenvalue computation. In the description above, simply replace any

reference to a below-diagonal element aij (or processor P j) with i > j

i
by a reference to the corresponding above-diagonal element aji (or processor
Pji ). Note, however, that this idea complicates the programs, and cannot be

used if eigenvectors as well .as eigenvalues are to be computed.

7.5 0dd n

So far we assumed n to be even. For odd n we can modify the
program for processors Pli and Pil (i = 1,...,f%‘) in a manner analogous
to that used in Section 3, or simply border A by a zero row and column. For

simplicity we continue to assume that n is even.

7.6 Rotation parameters

In Section 6 we assumed that the diagonal processor Pii would compute
ey and s; according to (6.1) , and then broadcast both c, and
55 along processor row and column 1 . It may be preferable to broadcast
only ti (given by (6.2)) and let each off-diagonal processor Pij compute
Ci 5 Si s Cj and Sj from ti and tj . Thus communication costs are
reduced at the expense of requiring off-diagonal processors to compute two
square roots per time step (but this may not be significant since the diagonal
processors must compute omne or two square roots per step in any case). In

what follows a "rotation parameter’ may mean either ti or the pair

(ci, si).
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7.7 Avoiding broadcast of rotation parameters

The most serious assumption of Section 6 is that rotation parameters
computed by diagonal processors can be broadcast along rows and columns in
constant time. However, it is possible to avoid this assumption, using a
special case of the general technique of Leiserson and Saxe [19]. For the
details, see [5]. The conclusion is that we only need to transmit rotation

parameters at constant speed between adjacent processors.

7.8 Solving large problems on small systolic arrays

We have assumed that an array of (%1 by r%} systolic processors is
available. In practice the systolic array would have a fixed number of
processors, and a large problem might have to be decomposed in some
manner in order to fit on the available hardware. This is an interesting
problem of some practical significance, but space limitations prevent us
from discussing it here. For some ideas (which might be improved) on how

to solve it, see [26].
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8.  CONCLUSION

We have presented a linear array of [ﬁgfl processors, .each
able to perform floating-point operations (including square roots)
and with O(m) local storage, for computing.the SVD.of a real mxn
matrix in time O(mn log n), with a small constant. We have also
described how a square array of {_é:‘ by rgJ processors, each
with similar arithmetical capabilities but with only 0(1) local
storage, and having connections to nearest horizontal and vertical
(and preferably also diagonal) neighbors, can compute the eigenvalues
and eigenvectors of a real symmetric matrix in time O(n légrﬂ .
The constant is sufficiently small that the wethod is competitive
with the usual O(n3) serial algorithms, e.g., tridiagonalization
followed by the QR iteration, for quite small n. The speedup
should be significant for real-time computations with moderate or

large n. For further results along these lines, see [6].
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