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COLLOC/HION METHODS FOR SECOND KIND FREDHOLM 

I NTEGRAL EQUATIONS 

s. Joe 

1. INTRODUCTION 

In this paper we consider the application of the collocation method 

and its iterated variant to the numerical solution of the Fredholm integral 

equation 

(Ll) yet) f(t) + A f: k(t,sly(s)ds , t E [O,lJ , 

where f and k are known, A is a given scalar and y is the solution to be 

determined. The equation can be written in operator notation as 

y f + AKy . 

Taking C to be the Banach space of continuous functions on [0, IJ equipped 

with the uniform norm, we shall make the following assumptions on (1.1): 

AI: fEe 

A2: K is a compact operator from C to C; 

A3: the homogeneous equation y = Ky has only -the trivial 

solution. 

It then follows from standard Fredholm theory that there exists a unique 

solution y E C 

In the collocation method, y is approximated by a function belong

ing to some finite-dimensional subspace taken here to be a space of dis

con-tinuous piecewise polynomials. It is well-know-n that under suitable 
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conditions the collocation solution converges with the same asymptotic order 

as the best approximation to y out of the chosen subspace. Here, however, 

we are mainly concerned 'with the iterated variant of the collocation method 

obtained by substituting the collocation solution into the right-hand side 

of (1.1). with a suitable choice of collocation points, we shall see that 

the iterated collocation solution exhibits (global) superconvergence, that 

is, it converges faster than the actual collocation solution itself. The 

superconvergence results for the iterated collocation method which are 

given here come from recently completed work in [5]. 

In the actual practical implementation of the collocation scheme, 

certain integrals need to be evaluated, but it is not always possible (or 

perhaps even desirable) to evaluate them analytically. Hence numerical 

quadrature needs to be employed and this results in the discrete collocation 

and discrete iterated collocation methods. For these two methods, we indi-

cate the precision of quadrature rule that should be used so as to be best 

possible, in the sense that the predicted theoretical order of convergence 

is not improved if a quadrature rule of higher precision is used. 

2. THE COLLOCATION SCHEME 

We first of all define our approximating subspace within which the 

collocation solution will be sought. For any positive integer n , let 

I:J.n : 0 = Xo < Xl < ••• < xn_l < xn = 1 be a mesh on [O,lJ , and with 

h = h(n) max 
l:>i:>n 

that h -+- 0 as 

h. where 
~ 

hi = Xi - xi_I' we make the natural assumption 

Our approximating subspace, denoted by S r,n 

is taken to be the space of piecewise polynomials of order :> r (that is, 

degree :> r-l ) with no continuity requirement at the knots xi' 

1 :> i :> n-l • We arbitrarily take any member of S r,n to be left contin-

uous at every non-zero knot and to be right continuous at O. It is clear 

that N = dim (S ) = nr . r,n 
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be a basis for S r,n The collocation sol-

ution is then defined by 

(2.1) 

where the coefficients {a~}~l are found by 'collocating' at N distinct 

points {Tj}~=l in [O,lJ , known as the collocation points. Thus we re

quire 

(2.2) y (T.) 
n J 

f(T.) + A fl k(T.,S)Y (s)ds , 
J 0 J n 

1 ~ j ~ N • 

Substitution of (2.1) into (2.2) leads immediately to the fOllowing system 

of N linear equations 

(2.3) f(T .) 
J 

l~j~N. 

We now specify the choice of collocation points that shall be used: 

for 1 ~ i ~ nand 1 ~ j ~ r , we take T(i_l)r+j to be the j th zero 

of the rth-degree Legendre polynomial shifted to J i = (xi_l,xi ) • In 

other words, on each J i , 1 ~ i ~ n , there are r collocation points 

which come from the" shifting of the zeros of the rth-degree Legendre poly-

nomial to J .• 
~ 

Assuming that Yn exists, the iterated collocation solution y~ is 

defined by 

(2.4) y' 
n 

We note that if 

f + AKYn 

N 

f + A L a~Ku~. 
~=l 

has been calculated, so that the are known, 



llO 

then most of the extra work required in calculating (t) for general 

t E [O,lJ is that required to calculate the integrals 

Usually these can be done by making use of the code already present 'co cal-

culate the 1:S; j:S; N, in (2.3) for the colloca'[:ion me'thod. 

To do an error analysis of the collocation method and its i,terated 

variant, it is convenient to ,cas't them into a projection method framework. 

Examination of (2.2) s1o.o,,,s ,that can be al'terna,t,ively defined by 

(2.5) P f + i\p Ky , 
n n n 

where P 
n 

is the interpolatory projection from c + S r,n to S 
r,n 

fying, for gEe and ¢ E S 
n r,n 

P g(T.) 
n J 

g ) , ¢ . 
n 

satis-

Comparison of (2.4) and (2.5) shm"s p y' "" 
11 n 

and it then follows from 

(2.4) that an alternative definition of 

(2.6) 

v' 
~,n 

is 

Taking Loo(O,I) to be the space of all essentially bounded and 

measurable functions on (0,1) equipped with the usual Loo norm, we see 

'that p 
n 

is a uniformly bounded operator from C + 
11 

to Loo(O,l) 

since lip II is simply the norm of the Lagrange interpolation opera'cor for 
n 

polynomial interpolation at the r Gauss-Legendre points. Hence 

(2.7) lIP II :0; 
n 

c , 

where c is a constant independent of n. (In this paper c, c l ' c 2 
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denote generic constants which may take different values a't their different 

occurrences but will be independent of n.J 

standard arguments, based on (2.5) and (2.6) (e.g. [lJ), can then be 

used to obtain the following theorem. 

THEOREM 1. Suppose Al-A3 hold. Then for n sufficiently large 

iJ Yn exists uniquely in S 
r/n 

Y~ exists uniquely in C 

ii) 

3. SUPERCONVERGENCE 

In this section we give our superconvergence result for the iterated 

collocation method, which is an extension of the results of [3, 41. To do 

so, it is convenient to introduce some function spaces. For any open inter-

val Q C JR, let L (m , 
p 

1 ~ P ~ 00 , denote the space of functions with 

integrable pth power .Thich we equip with the usual 

Also for m a positive integer, we define 

space of func-tions satisfying 

if1(m 
p 

L -norm II· II ("). p p,,, 

to be the usual Sobolev 

{g: 
(m-l) 

g is absolutely continuous and (m) E L (m} 
9 p 

where 
em) 

9 is the mth (distributional) derivative of g. 

space with the norm Ilgllm,p,Q 
m 
\' II (k) II 
L 9 p,Q 

k=O 

We equip this 

Writing J (0,1) and k (s) 
t 

k(t,s) , we have the following theorem, 

taken from [5]. 

THEOREM 2. Suppose AI-A3 hold, y E W~(J) (0 < 2 ~ 2r) and k t E wi(J) 

(0 < m ~ r), with IIktllm,l,J bounded independently of t. Then 

lIy - ylll 
nco O(hS) h B \>' ere . min (2,r+m) . 
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PROOF. Only the essence of the proof is given. Full details may be fOQ~d 

in [5] . 

It follows from Theorem L iii "that the order of convergence of v' 
~n 

is given by IIK(y - Pny) II"", Denoting the usual L2 inner product on J 

by ( • , • ) J we have, for t E [0, 1] , 

(3.1) 
J 

+ 

t' (I-Pn ) (y-I/!n l ) J 

t' (I-Pn)lj!n) J ' 

where <Pn,t E Sm,n 

approximation to y 

is an approximation to and 1jJ E So 
n N,n is an 

To prove our result we need to show that each of 

the three terms in (3.1) is bounded uniformly in "t by chS . 

Bounds on the first two terms in (3.1) can be made independently of 

the choice of co11oca"tion points. Using (2. 7) and the fact that P n ~n ~n 

for any t;, E S ,one can !!lake appropriate choices of 
n r,n 

1J!n to show that 

(3.2) I (k t -¢ t' (I-P ) (y-i; » J I nu n n 

oS Chm+min (9--l,r) Ilk II lIyll oS chi3 
t m,l,J ~,l,J 

(3.3) 

The particular choice of collocation points taken becomes important 

when we consider the final term (~n,t' (I-Pn)Wnl J which we shall look at 

in a bit more detail. If o < 9- oS r then (I-PnlWn ~ 0 , so we consider 

only the case r < ~ oS 2r Clearly we can write 
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n 
I (<jJ "' (I-P ) 1jJ ) J 

i=l n,~ n n i 

L2-inner product on J. 
1. 

As ~n,t is a polynomial of degree ~ 00-1 on J. 
1. 

we can write 

where t. 
1. 

(3.5) 

<P t (s) n, 

L [¢ (k) (t. ) m-l J" 

k=O n,t 1. J. 
1 

s E J. 
1. 

k 
(s-t.l (I-P )1jJ (s)dsJ/k! . 

1 n n 

with our specific choice of collocation points it will be shown below tha"t 

for any polynomial of degree :S 2r-k--l, v2r- k - 1 (sl , we have 

(3.6) t. o . 
1 

Then after applying the Bramble-Hilbert Lemma [2] in (3.5), we can use (3.4) 

as well as the properties of appropriate ~I 
n 

to show -Chat 

(¢ t' (I-P lljJ lJ ~ ch2r ~ chS . 
n" n n 

This together with (3.2) and (3.3) completes the proof once we prove 

(3.6) which we now" do. For convenience let the r collocation points on 

we can clearly write 

(I-P ) v2 k 1 (T .. ) = 0 , 1 ~ j ~ r, n r- - 1J 

r 

II (S-T .. ).W kl(s) 
j=l 1) r--

P. (S)w k l(s) , 
1.r r--

where wr_k_l(s) is a polynomial of degree ~ r-k-l. From our choice of 
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collocation points, P ir (s) is orthogonal to polynomials of degree 5: r-l 

k ' and since (s-til wr _k _l (s) is a polynomial of degree :<; k+r-k-l r-l, 

(3.6) then follows. 

REMARK. The theorem suggests tha'c we require y to be very smooth for use-

ful superconvergence to take place. For instance, to achieve full supercon-

vergence of o , the 'theorem requires 
')r 

y E w~ (J) 
1 

and k E 
t 

(J) • 

This raises the question of whether ,the smoothness condition on y is in 

any sense necessary, and this has been looked at in detail in [5J. Some 

nu.merical resul'ts in Section 5 will indicate that the smoothness condi'cion 

on y is essentially necessary in the sense 'that if we relax the condi,tion 

on y in Theorem 2 to Y E W~-I(J) , then the order of convergence given is 

not necessarily achieved. 

4. THE DISCRETE COLLOCATION SCHEME 

To calculate Yn , we recall from (2.3) that we need to calc1uate the 

integrals 

(4.1) fl k(T.,S)U£(s)ds , 
o J 

l5:£,j:<;N, 

while calculation of the iterated collocat,ion solution, y~ , from ::In in-

valves the evaluation of Ku£(t) , 1 ~ t :<; N , for general t. In prac-

tice it is not always possible to calculate these integrals analytically and 

it is common to use numerical integration. This gives rise to the discrete 

collocation and discrete iterated collocation methods. For simplicity, we 

shall assume that the approximation of the integrals in (4.1) and (2.4) re-

quired for these two methods respectively are done by using the same 

quadrature rule. 

To be more specific, suppose for gEe we have points PI' 

and weights WI' ••• ,Wq such that the approximation f: g (5) ds '" 

> • .,p E J 
q 

~ w.g(p.) 
j=l J J 
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for all q 

where 

solution 

(4.2) 
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is a polynomial of degree y vJe assume that r iUJ·1 
j=l J 

Then for any ill E S K¢n is approximated by 
'n r,n 

I r 
i=l j=1 

w.h.k(t,s .. )¢ (s,.) , 
J 1 1J n 1J 

+ h.p. 
1 J 

It then follO\~s that the discre-te collocation 

satisfies 

+ .AP K Y , 
n n n 

while the discrete iterated collocation solution, , , satisfies 

(4.3) f + AK Y . 
n n 

00; 

Now ,ve would like to choose a suitable precision y. Clearly using 

a highly accurate rule may be expensive computationally, while a rule of 

insufficien~c accuracy may not allow the full potential of -the method to be 

realised. In the next two theorems, we indicate the precisions of the 

quadrature rule that should be used for the discrete collocation and 

discrete iterated collocation me-thods. The precisions indicated are best 

possible in the sense that increasing the precision of qudrature rule will 

not, in general, improve the predicted orders of convergence given in the 

theorems. 

The proofs of the two theorems are not given but -they may be found in 

[6] and are based on (4.2) and (4.3). The results given here generalise 

those of [3J . 

Th"'EOREM 3. Suppose Al-A3 hold, y E 'tJ:(J) , k t E 1~(J) !tiith 

bounded independently of t and take y min(2-1,m-l,r-l) Then 

II 1- a* y-y I = 0 (h ) u n 00 
r4he:re 01,* = min (2,m,r) 0 

c 
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REMARK. If the integrals had been done analytically then it can be shown, 

using Theorem l.ii, that ~ O(ha ) where a = min(2,r) . 

TIIEORE~i 4. Suppose Ai-A3 bold, y E wi<Jl , E ~(J) with 1,J 

bounded independently of t, and take y min(1-1,m-l,2r-l) . Then 

min (!i,m,:lr) . 

REMARK. We see from the two theorems that the predicted order of conver-

gence will depend on the smoothness of the kernel, so that the order of 

convergence of the discrete methods maybe less than that of the correspond-

ing methods in which the int:egrals are done analytically. This results from 

the fact that we have opted for generality so that our approach to approxi-

ma'cing the integrals is rather naive. For instance, if the kernel had 

singularities one would not usually use a simple quadrature rule but would 

use techniques such as a change of variable, singularity sub'traction or 

product integration. 

5. NUMERIC.l\L RESULTS 

In this section we give some numerical results which come from use of 

the iterated collocation method to solve the integral equation which has 

A 2, k(t,s) :: 1 and y(t) = to where 0 is a positive non-integer 

< 2r 0 The inhomogeneous term f is chosen to satisfy (101). Application 

of Theorem 2, with m = r , shows that for 
J1, 

Y E Wl(J) , one would expect the 

iterated collocation solution to converge with order h.Q,. It is easy to 

show ma t for .11,-1 < IS < fI, (0 < fI, :s; 2r) , y E W~(J) but 

Results (with r = 3 ) for three different values of 0 are given in 

Tables 1,2, 3. The order of convergence is estimated by using the ratio 

of -two consecutive errors. We have taken h = l/n. 



117 

TABLE 1 

3.8 Predicted Convergence Order 

n Ily-y'li nco Order of Convergence 

4 3.144 E -8 4.781 

8 1.143 E -9 4.790 

12 1.639 E -10 4.795 

16 4.128 E -11 

TABLE 2 

4.8 Predicted Convergence Order 

n lIy-y'll nco Order of Convergence 

4 1.743 E -8 5.621 

8 3.541 E -10 5.654 

12 3.577 E -11 5.670 

16 7.000 E -12 

TABLE 3 

5.8 Predicted Convergence Order 

n lI y- y ; II n co 
Order of Convergence 

4 1.258 E -7 5.984 

8 1.988 E -9 5.990 

12 1.752 E -10 5.992 

16 3.126 E -11 



118 

The results given indicate that if 
~-l 

Y E TN (J) 
1 

then 0 convergence 

will not. be achieved. The results also suggest that for 0 < /) < 2r-l , 

'rheorem 2 gives only the integer part of the power of h correctly and in 

fact it is proved in [5] thai: the exac·t order of convergence is 

since we are dealing with Sobols" spaces of only integral order, this result 

is the best possible. To ge·t -the exact order 'li\K)uld requil~e the introduction 

of I fractional 0 derivative spaces. A few numerical tests have also been 

done using 'che discrete collocation and discrete iterated collocat:ion methods 

and the results obtained show agreement with Theorems 3 and 4. 

6. CONCLUSION 

It has been shown ·that the iterated. collocation me·thad does have the 

potential for superconvergenc:e provided ·the approxima1:ing subspace and 

collocation points have been chosen appropriately. HOwever, because of the 

smoothness requirements on the kernel and especially on ·the solution (see 

Theorem 2), it is not clear whether useful superconvergence is obtained for 

integral equations that arise in practice, as typically the exact solution 

t:o these problems has only a limited number of derivatives. Thus there is 

a need for the version of the iterated collocation me·thod described in this 

paper to be tested out in the "real world". 

In the practical implementation of the collocation scheme, it is some-

times necessary t:o use nUlllerical quadrature to calculate the required 

integrals and we have indicated the appropriate precision of quadrature rule 

tha t should be used for these discrete methods. Moreover, if the kernel 

is sufficiently smooth, it can be seen from Theorems 3 and 4 that it is 

possible to choose a precision of quadrature rule which is consistent, that 

is, the predic'ced order .of convergence for the discre·te method is the same 

as that for the method in which the integrals are calculated analytically. 

Even if the kernel is not sufficiently smooth the form of the kernel may 
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suggest the use of a more appropriate numerical integration technique which 

would give a better order of convergence than that predicted by the theorems. 
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