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COLLOCATION METHODS FOR SECOND KIND FREDHOLM

INTEGRAL EQUATIONS

S. Joe

1. INTRODUCTION
In this paper we consider the application of the collocation method
and its iterated variant to the numerical solution of the Fredholm integral
equation
1
(1.1) y(t) = £(t) + A j k(t,s)y(s)ds , t€T[0,1],
[¢]
where £ and k are known, A is a given scalar and y is the solution to be

determined. The equation can be written in operator notation as
y = £ + ARy .

Taking C to be the Banach space of continuous functions on [0,1] equipped
with the uniform norm, we shall make the following assumptions on (1.1):

Al: fE€cC;

A2: K is a compact operator from C to C ;

A3: the homogeneous equation y = Ky has only the trivial

solution.
It then follows from standard Fredholm theory that there exists a unique
solution y €C .
In the collocation method, y is approximated by a function belong-

ing to some finite-dimensional subspace taken here to be a space of dis-

continuous piecewise polynomials. It is well-known that under suitable
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conditions the collocation solution converges with the same asymptotic ordef
as the best approximation to y out of the chosen subspace. Here, however,
we are mainly concerned with the iterated variant df the collocation method
obtained by substituting the collocation solution into the right-hand side
of (1.1). With a suitable choice of collocation points, we shall see that
the iterated collocation solution exhibits (global) superconvergence, that
is, it converges faster than the actual collocation solution itself. The
superconvergence results for the iterated collocation method which are

given here come from recently completed work in [5].

In the actual practical implementation of the collocation scheme,
certain integrals need to be evaluated, but it is not always possible (or
perhaps even desirable) to evaluate them analytically. Hence numerical
quadrature needs to be employed and this results in the discrete collocation
and discrete iterated collocation methods. For these two methods, we indi-
cate the precision of quadrature rule that should be used so as to be best
possible, in the sense that the predicted theoretical order of convergence

is not improved if a quadrature rule of higher precision is used.

2. THE COLLOCATION SCHEME
We first of all define our approximating subspace within which the

collocation solution will be sought. For any positive integer n , let

A : 0=x <x < ...<x <x =1 be ameshon [0,1] , and with
n 0 1 n-1 n
h=h(n) = max h, where h, =x, - x, ., we make the natural assumption
. i i i-1
1<i<n
that h+0 as n =+ ®© , Our approximating subspace, -denoted by S '

r,n

is taken to be the space of piecewise polynomials of order < r (that is,

degree < r-1 ) with no continuity requirement at the knots 'xi v

1 <i<n-1. We arbitrarily take any member of Sr 0 to be left contin-
14
uous at every non-zero knot and to be right continuous at 0 . It is clear
that N = dim(S ) = nr .
r,n
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Now let {u,, ...,u.} be a basis for S . The collocation sol-
1 N r,n

ution Y, is then defined by

N
(2.1) v, = gzl agu

where the coefficients '{a£}2=1 are found by 'collocating' at N distinct
. N . . .
points {Tj}j=l in [0,1] , known as the collocation points. Thus we re-

quire

1

A

(2.2) yn('[j) = f(Tj) + A [ k(Tj,s)yn(s)ds B 1< N .

0
Substitution of (2.1) into (2.2) leads immediately to the following system
of N 1linear equations

N
(2.3) QE [uﬂl(‘tj) -AKuQI(Tj)]ax =£(1), l<jsn.

1

We now specify the choice of collocation points that shall be used:
< i< < 49 < N

for 1 i n and 1 3j r , we take T(i-l)r+j to be the 3jth zero

of the rth-degree Legendre polynomial shifted to Ji = (xi_l,xi) . In

other words, on each Ji , 1< i< n, there are r collocation points

which come from the shifting of the zeros of the rth-degree Legendre poly-

nomial to Ji .

Assuming that Y, exists, the iterated collocation solution yﬁ is

defined by

(2.4) y! = £+ ARy

N
£+ X ) a,Ku

=1 *

0 °

We note that if y_  has been calculated, so that the {ag}%=l are known,

n
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then most of the extra work required in calculating yﬁ(t) for general
t € [0,1] is that required to calculate the integrals {Kul(t)}g=l .

Usually these can be done by making use of the code already present to cal-

culate the {Kul(Tj)}E—l ;, 1< 3 <N, in (2.3) for the collocation method.
To do an error analysis of the collocation method and its iterated
variant, it is convenient to cast them into a projection method framework.

Examination of (2.2) shows that y, can be alternatively defined by
(2.5) Y, = Pnf + )\PnKyn ’

where P is the interpolatory projection from C + S to S satis-
n r,n r,n

fying, for g € C and ¢n € S, n *

4

Pg(t,) =g(T.) , 1<35<N; Pod =¢ .
nq(TJ) g(TJ) 3j N ¢ ¢

Comparison of (2.4) and (2.5) shows Pnyé =Y, and it then follows from

(2.4) that an alternative definition of yﬁ is
13 - L
(2.6) vy £+ AKPnyn .

Taking L_(0,1) to be the space of all essentially bounded and
measurable functions on (0,1) equipped with the usual L norm, we see
that Pn is a uniformly bounded operator from C + Sr n to L (0,1) ,

14

since UPn" is simply the norm of the Lagrange interpolation operator for

polynomial interpolation at the r Gauss-Legendre points. Hence
(2.7) l!Pnll <c,

where ¢ 1is a constant independent of n . (In this paper ¢ , C, ; C



111

denote generic constants which may take different values at their different
occurrences but will be independent of n .)

Standard arguments, based on (2.5) and (2.6) (e.g. [1]l), can then be
used to obtain the following theorem.

THEOREM 1. Suppose Al1-A3 hold. Then for n sufficiently large

i) v exists uniquely in S , y' exists unigquely in C ;
n r,n n
ii) My - ynll00 <c, inf ly - ¢n"w ;
¢ Es
n “r,n

iii) Ny - yr'lﬂ‘” < c2||K(y—Pny) I, -

3. SUPERCONVERGENCE

In this section we give our superconvergence result for the iterated
collocation method, which is an extension of the results of [3, 4]. To do
so, it is convenient to introdgce some function spaces. For any open inter-
val Q@ C R, let LP(Q) ;, 1 <p <o, denote the space of functions with
integrable pth power which we equip with the usual Lp—norm e "P:Q .
Also for m a positive integer, we define wg(ﬂ) to be the usual Sobolev

space of functions satisfying

W?(Q) = {g: g(m_l) is absolutely continuous and g(m) € LP(Q)},'

(m)

where g is the mth (distributional) derivative of g . We equip this

m
= 7 1e®
k=0

space with the norm gl

m,p,N P, "

Writing J = (0,1) and kt(s) = k(t,s) , we have the following theorem,
taken from [5].
THEOREM 2. Suppose Al-A3 hold, y € Wi(J) (0 <% <2r) and k_€ W’{‘(J)

(0 <m<1x), with "kt"m bounded independently of t . Then

1,0

B

Iy - Yéuw = 0(h”) where B = min(%,r+m) .
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PROOF. Only the essence of the proof is given. Full details may be found

in [5].
It follows from Theorem 1.iii that the order of convergence of Yﬁ

is given by [K(y - Pny)ﬂco . Denoting the usual L, inner product on J

2

by (°,*). we have, for t € [0,1] ,

J

(3.1) K(y-Pny) (t) (kt,y-Pny)J

= (kt-¢n,t 'y"Pny)J * (¢n,t'(I-Pn)(y-wn))J

+ (¢n’tl (I-Pn)‘i'n)J [

(S i s : c .
where ¢n,t Sm,n is an approximation to kt and wn Sl,n is an

approximation to y . To prove our result we need to show that each of
the three terms in (3.1) is bounded uniformly in t by chB .
Bounds on the first two terms in (3.1) can be made independently of

the choice of collocation points. Using (2.7) and the fact that Pngn = £n

for any En €s , one can make appropriate choices of En ' ¢n,t and

r,n

wn to show that

(3.2) l(kt—¢n't,y—Pny)J| = l(kt_¢n,t'(I-Pn)(y_€n))Jl
m+min (2-1,1) B
< ch “kt“m,l,J“y"Z,l,J < ch® ;
3 B
(3.3) l(¢n t,(I-Pn)(y-wn))Jl < ch "y“z Lz Sch .

The particular choice of collocation points taken becomes important
when we consider the final term (¢n t,(I—Pn)lbn)J which we shall look at
4
in a bit more detail. If 0 < £ < r then (I—Pn)ll)n = 0 , so we consider

only the case r < £ £ 2r . Clearly we can write
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n

(3.4) (¢n,t'(I_Pn)wn)J = izl (¢n,t’(I-Pn)wn)Ji

where (~,°)J is the usual L2—inner product on Ji .
i

As ¢ is a polynomial of degree < m-1 on Ji we can write

n,t

(k)

k
t - | S
,t( ) (s-t,) "/ k!, s J. 4

m-1
boefe) = L0

where t, = (x,
i

1-l+xi) /2 . We then have

m=-1 () k
Eo[¢“'t(ti) IJ (s-t;) (I-Pn)wn(s)ds]/k! .

i

(3.5) (¢n’t,(I-Pn)1Pn)Ji = .

With our specific choice of collocation points it will be shown below that

for any polynomial of degree < 2r-k-1 , (s) , we have

Vor-k-1

(3.6) IJ (s—ti)k(I-Pn)v (s)ds = 0 .

i

2r-k-1

Then after applying the Bramble-Hilbert Lemma [2] in (3.5), we can use (3.4)

as well as the properties of appropriate ¢n and wn to show that
’

t

2r B
(¢n’t:(I—Pn)wn)J < ch®" < ch” .

This together with (3.2) and (3.3) completes the proof once we prove
(3.6) which we now do. For convenience let the r collocation points on

J; be relabelled as {T..}° . . Since (I—Pn)v

= <9 <
ij79=1 (Ti.) 0, 1<3j r,

2r-k-1 j

we can clearly write

r
(I-p v (s) = I (s—Tij).wr_k_l(S) =P, shw__, ,(s)

where wr_k_l(s) is a polynomial of degree < r-k-1 . From our choice of
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collocation points, Pir(S) is orthogonal to polynomials of degree < r-1

and since (s—ti)kwr (s) 1is a polynomial of degree < k+r-k-1 = r-1

7

-k-1
(3.6) then follows.

REMARK. The theorem suggests that we require y +to be very smooth for use-
ful superconvergence to take place. For instance, to achieve full supercon-
vergence of O(hzr) , the theorem requires y € Wir(J) and kt € Wi(J) .
This raises the question of whether the smoothness conditibn on y is in
any sense necessary, and this has been loocked at in detail in [5]. some
numerical results in Section 5 will indicate that the smoothness condition
on y is essentially necessary in the sense that if we relax the condition
on y in Theorem 2 to y € Wi_l(J) , then the order of convergence given is

not necessarily achieved.

4, THE DISCRETE COLLOCATION SCHEME

To calculate y, + we recall from (2.3) that we need to calculate the

integrals

(4.1) Kul(Tj) = f; k(Tj,s)ul(s)ds , 1< 83swN,
while calculation of the iterated collocation solution, yg , from Y, in-
volves the evaluation of Kuz(t) , 1< 2 <N, for geheral t . In prac-
tice it is not always possible to calculate these integrals analytically and
it is common to use numerical integration. This gives rise to the discrete
collocation and discrete iterated collocation methods. For simplicity, we
shall assume that the approximation of the integrals in (4.1) and (2.4) re-
quired for these two methods respectively are done by using the same
quadrature rule.

To be more specific, suppose for g € C we have points Py ...,pqEES

and weights

1
1 ...,wq such that the approximation J g(s)ds = % wjg(p.)

0 3=1 J
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is exact if g is a polynomial of degree 7Y . We assume that ? ijl < c
j=1

for all g . Then for any ¢n € S, n* K¢n is approximated by

n
(K )y(t) = z ? w.h . k(t,s,.)¢_(s..) ,
n'n i=1 4=1 ji i3’ 'n'"ij
where sij =%, 4 + hipj . It then follows that the discrete collocation
solution §n satisfies
(4.2) Y, = Pnf + )\PnKnyn R

while the discrete iterated collocation solution, §g , satisfies

(4.3) 1%

Now we would like to choose a suitable precision 7Y . Clearly using
a highly accurate rule may be expensive computationally, while a rule of
insufficient accuracy may not allow the full potential of the method to be
realised. In the next two theorems, we indicate the precisions of the
quédrature rule that should be used for the discrete collocation and
discrete iterated collocation methods. The precisions indicated are best
possible in the sense that increasing the precision of qudrature rule will
not, in general, improve the predicted orders of convergence given in the
theorems.

The proofs of the two theorems are not given but they may be found in
[6] and are based on (4.2) and (4.3). The results given here generalise
those of [3].
THEOREM 3. Suppose Al-A3 hold, y € wf;(J) Pk € w’f(J) with “kt"m,l,J
bounded independently of t , and take <Y = min(2-1,m-1,r-1) . Then

- o*
Ny—yn"°° =0(h ) , where 0o* = min(%,m,x) .
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REMARK. If the integrals had been done analytically then it can be shown,

using Theorem 1.ii, that “y—yn"w = O(ha) where o = min(f,r) .

- € W't € i
THEOREM 4. Suppose 41-A3 hold, y W%(J) . ke w’;(a) with "kt"m,l,J

bounded independently of t , and take Y = min(%-1,m-1,2r-1) . Then

"Y‘§;“m = O(hB*) where B* = min(%,m,2r) .

REMARK. We see from the two theorems that the predicted order of conver-
gence will depend on the smoothness of the kernel, so that the order of
convergence of the discrete methods may be less than that of the correspond-
ing methods in which the integrals are done analytically. This results from
the fact that we have opted for generality so that our approach to approxi-
mating the integrals is rather naive. For instance, if’the kernel had
singularities one would not usually use a simple gquadrature rule but would
use techniques such as a change of variable, singularity subtraction or

product integration.

5. NUMERICAL RESULTS

In this section we give some numerical results which come from use of
the iterated collocation method to solve the integralAequation which has
A=2, k(t,s) =1 and y(t) = tG where ¢ is a positive non-integer
< 2r . The inhomogeneous term f is chosen to satisfy (1.1). Appliéation
of Theorem 2, with m = r , shows that for y € Wi(J) , one would expect the

iterated collocation solution to converge with order hx . It is easy to

show that for 2-1< 8<% (0<% <2r) , y€ Wi’(J) but y & wf"l(a) .
Results (with r = 3 ) for three different values of & are given in

Tables 1, 2, 3. The order of convergence is estimated by using the ratio

of two consecutive errors. We have taken h = 1/n.
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TABLE 1

§ = 3.8 Predicted Convergence Order = n?

n lly-—yl'lll°° Order of Convergence
4 3.144 E -8 4.781
8 1.143 E -9 4.790
12 1.639 E =10 4,795
16 4,128 E -11
TABLE 2
5

§ =4.8 Predicted Convergence Order = h

n "y—yl:llloo Order of Convergence
4 1.743 E -8 5.621
8 3.541 E =10 5.654
12 3.577 E -11 5.670
16 7.000 E -12
TABLE 3

§ = 5.8 Predicted Convergence Order = h6

n Ily-yr'lﬂo° Order of Convergence
4 1.258 E =7 5.984
8 1.988 E =9 5.990
12 1.752 E -10 5.992

16 3.126 E -11




118

The results given indicate that if y € W%_l

will not be achieved. The results also suggest that for 0 < § < 2r-1 ,

(J) then O(hz) convergence

Theorem 2 gives only the integer part of the power of h correctly and in
fact it is proved in [5] that the exact order of convergence is AL
Since we are dealing with Sobolev spaces of only integral order, this result
is the best possible. To get the exact order would require the introduction
of 'fractional' derivative spaces. A few numerical tests have also been

done using the discrete collocation and discrete iterated collocation methods

and the results obtained show agreement with Theorems 3 and 4.

6. CONCLUSION

It has been shown that the iterated collocation method does have the
potential for superconvergence provided the approximating subspace and
collocation points have been chosen appropriately. However, because of the
smoothness requirementé on the kernel and especially on the solution (see
Theorem 2), it is not clear whether useful superconvergence is obtained for
integral equations that arise in practice, as typically the exact solution
to these problems has only a limited number of derivatives. Thus there is
a need for the version of the iterated collocation method described in this
paper to be tested out in the "real world".

In the practical implementation of the collocatibn scheme, it is some-
times necessary to use numerical quadrature to calculate the required
integrals and we have indicated the appropriate precision of quadrature rule
that should be used for these discrete methods. Moreover, if the kernel
is sufficiently smooth, it can be seen from Theorems 3 and 4 that it is
possible to choose a precision of quadrature rule which is consistent, that
is, the predicted order .of convergence for the discrete method is the same
as that for the method in which the integrals are calculated analytically.

Even if the kernel is not sufficiently smooth the form of the kernel may
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suggest the use of a more appropriate numerical integration technique which

would give a better order of convergence than that predicted by the theorems.
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