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MATHEMATICAL METHODS FOR THE SEISMIC INVERSION PROBLEM

S.Jd. Wright

1. INTRODUCTION

The class of problems known as geophysical inversion problems
is one in which measurements are made at points on or above the earth's
surface, and mathematical techniques are used to infer something about
the geophysical properties of the region under study from these measure-
ments. One example is the problem of simultaneous earthquake hypocentre
location and velocity structure determination. The data consists of
seismic measurements taken at an array of recording stations on the
surface. The "velocity structure® refers to the velocity of propagation
of compressional shock waves through each point of the three-dimensional
region in which the earthquakes and recording stations lie.

The problem (hereafter referred to as the seismic inversion
problem) is essentially one of fitting the data obtained from hypothetical
velocity structure and earthquake locations, to the observed data. Since
in general it is impossible to completely specify the velocity structure
using a finite number of parameters, we will always have an infinitely
underdetermined problem. One approach, then, is to apply the parameter
separation technique of Pavlis & Booker [9] to obtain a set of eguations
in which the velocity structure is the only unknown. These equations are
used to parametrize a number of three-dimensional subvolumes (or "windows")
“within the region of interest, and to estimate the average velocity
within each of these subvolumes. Parametrization of the unknown function

which describes the velocity model is not directly attempted. This
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approach is tried by Chou & Booker [4] , who base their work cn the one-
dimensional analysis of Backus & Gilbert [2,3] . While the method is
very sophisticated, we are not aware of its use on practical problems,
and we will not deal with it in this paper.

An alternative, and more widespread, approach is to
approximate the velocity structure with a model which can be described
using a finite number of parameters. The number of available data
is assumed large enough that the problem is overdetermined, so that
least squares methods can be used. Various techniques for modelling
the velocity structure are discussed in section 2.2 .

Practical considerations make the resulting least squares
problem very difficult to solve. Given a hypothetical set of earth-
quake locations and a hypothetical velocity structure, accuréte
calculation of the resultant data is very time-consuming. This is
discussed in section 2,3 . Partial derivatives of the data with respect
to locations and model parameters are also difficult to find accurately
for most models (see section 3) . The sheer size of the problem may
restrict the accuracy with which these quantities are found, and may
also lead to storage difficultiesl

The first least-squares formulation is due to Aki & Lee [1] ,
who solved a damped linear least squares problem (i.e.‘just one
iteration). Their damping matrix assumed prior knowledge of standard
errors in the data and the unknown parameters. Their approach is
easily generalised to a nonlinear least squares problem, as in‘Hawley,
Zandt, and Smith [6] , Spencer & Gubbins [12] , and Thurber [13] .
Firbas [5] and Wesson [15] use nonlinear least squares to solve the
simpler problem in which only the velocity model parameters are assumed

unknown.
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These authors obtain the step at each iteration either by
solving the normal equations, by performing a decomposition of the
Jacobian or by applying the parameter separation technique described
in section 4.2 . We examine in particular the solution technique of
Thurber's program HYPO2 in section 4.3 .

Section 4.4 describes the proposed application of a new
technique for large sparse nonlinear least squares, due to Wright &

Holt [16] to the seismic inversion problem.
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2. CALCULATING P-WAVE TRAVEL TIMES

2.1 Formulation of the Problem,

The data used in the seismic inversion problem are obtained from
a network of seismic recording stations in the region of interest.

Each earth tremor or "event" produces compressional waves and‘shear waves
(p- and s- waves) which are monitored at each station. In particular,
we are interested in the first time at which the p-wave from each event
is detected at each station.

Since the region under consideration will most likely contain
rocks of differing types, the p-waves will be travelling through an
inhomogeneous ﬁedium. Thus the "fastest" ray path will not generally be
a straight line. The problem of ray tracing is in general difficult to
solve, and would comprise a major part of the computer time in any
reasonable solution process for the seismic inversion problem. A typical
set of ray paths for a single event is shown in Fig. 1 .

The first-arrival time of the p-wave from event k at station £

can be thus written as

c _ c ; I
(2.1) teg = tg Fpr Yo Ze T M)
where
(1) (xk, Yy zk) are the coordinates of event k,

(2) tk is the time of occurrence of event k.

(3) M denotes the p-wave velocity structure of the crustal
region,

Our aim in solving the inverse problem is to choose values of

the parameters, and M , so as to minimise the sum-of-squares objective

function
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m
(2.2) ) Z (t g - t
2=1 k=1
where
m is the number of stations
n is the number of events

o . . .
tkl is the observed arrival time of the

p-wave from event k at station £ .

2.2 Parametrizing the Velocity Structure,

If we can completely specify our velocity model M with a finite
number of parameters, then our problem becomes a least-squares problem.
Many different parametrization techniques have been tried. Perhaps the
most obvious one is to split the region into a set of rectangular blocks,
and assign a single velocity parameter to each. This is the approach
used in Aki and Lee's [1l] early attempt at the problem.

This approach made ray tracing impossible, since the model must
be at least continuously differentiable for ray tracing techniques to be
applied. Ray paths were taken to be straight lines, a generally
unsatisfactory approximation.

Another approach is to consider M as a linear combination of

standard basis functions on the whole space, e.g.

nl nz ng

(2.3) vix, y, 2 =] ] 1A P.(x)Q.(y) R (2)
i=oj=ok=0 K 1 3

where Pi' Qj' and Rk could be (scaled) Legendre polynomials. The parameters

for this model are the coefficients Aijk'

This type of approach has been
tried by Firbas [5] for the simpler problem in which the hypocentres and
occurrence times are fixed. However, the model produced is strongly

dependent on the choice of basis functions, and from our limited experience,

this method is not to be recommended.
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A sort of compromise approach is to choose a regular grid of
points over the region, and let the set of parameters be the velocity
values at points of this grid. Velocities at other points in the region
are foundiby spline interpolation. This approach is used by the seismic
inversion FORTRAN program HYPO2, which will be discussed further in
later sections. The interpolation process involves forming three bicubic
splines, one each for the x -y , vy - 2z , and x - z planes. The tensor
product of these three splines gives the interpolation function. This-"
model has continuous second partial derivatives, allowing the "bending"
methods to be described in section 2.3 to be used for ray tracing.

Finélly, an approach based on prior knowledge of the region

is to model the velocity structure by some function which has a number
of unknown parameters. These parameters are to be determined in the
inversion. An example is found in Spencer & Gubbins [12] where a region
in New Zealand is modelled by an increasing-depth velocity structure
upon which a low velocity slab is superimposed. The velocity model is
characterized by

(1) parameters denoting velocity outsidg the slab.

(2) strike, dip, and width of the slab

(3) two parameters which characterize velocity within the slab.
This method is also used by Wesson [15] who uses a 12-parameter function

to characterize velocity in the Bear Valley area of California.



193

2.3 Ray Tracing.

The ray equation for a smooth (say €?) medium can be derived

from first principles (see, for example, Lee & Stewart [7]) to be

a [ a
(2.4) i Lu(g) EDJ = Vu
where
n = (x, y, z) represents the ray and u(n)

represents the reciprocal velocity of propogation (or "slowness") of the

medium. If we apply the constraint

dxy 2 dyy 2 (dzy 2
2.5 @ @ @

then s will denote arc length along the ray. The ray tracing problem
consists of solving (2.4) subject to the constraint (2.5) and the boundary
value conditions

(2.6) H(O) =P, ,Nn(s) =P

S R

where PS and PR denote the source and receiver coordinates, respectively,
S denotes the total arc length of the ¥ay - also an unknown.

Following Pereyra, Lee, and Keller [11] , and Pereyra [10] we
can reduce (2.4) to a first-order system with six dependent variables

(denoted by wl,..ws) in the standard way. To handle the unknown S,

we use a change of independent variable

and introduce the dependent variable wy, = S . If we introduce a further

dependent variable w, denoting the partial travel time, that is

€18 t,
w, (ty) = J uds =S J u dt (0 <t, £1)
0 0
then clearly , = Su = w,u , and w, (1) will be the total travel time

from PS to PR. The system can now be written as
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Wy = Wi
. W i=1,3,5
®, = 8 du pme= e
+ [CR— - e
o [ Glww, 5 + an
(2.7) W, = wgu
Wy = 0
where Gw) =uw, +uw +uw
~ x 2 y L3 z 6

with [0,1] being the interval of integration.
If there is a discontinuity across which the ray must travel,
this can be dealt with by doubling the size of the system and applying
Snell's law at the discontinuity to obtain extra boundary conditions.
However, the Pereyra ray path solver has only been applied to smooth
models in the context of the seismic inversion problem, and hence
discontinuities are not allowed for in current solution algorithms.

Pereyra uses an adaptive finite difference scheme to solve
this two-point boundary value problem. However it can be seen that in
any computation of hypothetical travel times a large number of ray paths
must be found. For practical problems, this involves substantial computer
time. It would be desirable, then, to sacrifice some accuracy in our
computed travel times, if we could gain a one-or-two-order of magnitude
saving in computer run time. To meet this requirement approximate ray
tracing algorithms have been devised by Thurber & Ellsworth [14] .

Their first algorithm, ART, (for Approximate Ray Tracing) assumes
that the grid-and-spline velocity model is used. They constrain their
approximate ray path to be within the vertical plane which includes PS

and PR' thus reducing the problem to two dimensions. They split the
model into layers (see Fig. 2b) and assign each layer a velocity value
according to its "average" value in a local rectangular volume. As in

Fig. 2b, all possible ray paths appropriate to this layered model are
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considered. Each ray path is then subdivided into N segments, each of

length As , and the travel time integral

fu(s) ds
is approximated by

(2.8) T=7) u, As
i

where u, is the slowness evaluated at the midpoint of the i-th segment.
Travel times for all possible paths are compared, and the approximate
path is chosen to be the one giving the fastest travel time.

The approximate path so derived can actually be used as the
initial path for the algorithm of Pereyra. In fact, it is much better
initial path than the usual straight-line approximation, because the
latter is more likely to lead to convergence to a local minimum. Thurber
& Ellsworth [14] give an example in which use of an initial path
generated by ART produces convergence to the correct first-arrival path,
while use of the straight line initial path produces convergence to a
local-minimum path with substantially greater travel time.

Thurber & Ellsworth found that the travel times produced by ART
were accurate to within normal reading error for p-wave arrival times.
This is enough to justify their direct use in a seismic inversion
algorithm, Thurber & Ellsworth found that there is about a 99% saving in
computer time over the Pereyra method.

The second algorithm of Thurber & Ellsworth, ART 2, is based on
the assumption that the ray path can be adequately approximated by an arc
of a circle. A number of arcs with different radii of curvature are tried,
and the dip of the plane containing the arcs is varied. The authors report
that this method gave even better results than ART on their test models.
However its appropriateness for a model with strong lateral heterogeneity

is questionable,
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3. THE JACOBIAN MATRIX

3.1 Calculation of Travel Time Derivatives,

To solve the least squares problem (2.2), we need to be able

to calculate derivatives of the computed arrival times t;z with respect

to the occurrence time, the hypocentre coordinates, and the model
parameters. It is found that the Jacobian (matrix of partial derivatives)

is sparse, with a known sparsity structure.

Since th can be written as

(e} T
beg = Bt g

where tk is the occurrence time of event k and tki is the fastest travel

time from event k to receiver % , then clearly

at ©
Ko,

(3.1) i
tk
Using an argument based on calculus of variations, it can be

shown that the partial derivatives with respect to hypocentre coordinates

are given by

c
9 ax
3%~ ~ Y as
ot
K. dy
(3-2) Ty - YdEs
c
g e
o0z ds

where all right-hand side quantities are evaluated at PS' and so

dx dy

I’ 35 ’ and dz are the direction cosines of the ray at PS. This result

ds

can also be seen intuitively. If Pereyra ray tracing is used, the partial
derivatives can be obtained directly from (3.2). However if some form

of approximate ray tracing is used, the take-off direction of the approximate

ray may be substantially different from that of the actual ray.

Thurber [13] has found that it is inappropriate to use (3.2) in this case.
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Rather, he suggests using a "variational" estimate, that is, adding a
small displacement to each coordinate in turn, calculating the new

travel time, and using derivative estimates of the form
c
(3.3) kb KL

This method requires the evaluation of three more ray paths, but remains
practical because ART is so economical.

Velocity partial derivatives are given by the formula

S
(3.4 ot _ | du
) da. J da. ds
iy 3

where S is the arc length along the path and aj is the j-th velocity
parameter. Since approximate integration is used, as in (2.8), this

becomes
(3.5) ot Z i

du,
where ggi-is evaluated at the midpoint of the i-th line segment. For

models such as that of Spencer & Gubbins [12] , gﬁ- can be calculated

analytically and so (3.5) can be used directly. For the block model,
du,
for which aj gives the slowness of block j , 53£- will be 1 if the midpoint

J
of the i-th line element lies in block j , and zero if it does not. Again,

(3.5) can be used directly.

9
While it would be possible to calculate 5% exactly for the

. J
grid-and-spline model of Thurber [13] , it would not be practical since

the slowness at any point is dependent on the slowness values of 32

surrounding grid points. Thurber finds that the "block" approach is best,
du,

that is, ggi'= 1 if node j of the grid is the closest node to the

3 du,

midpoint of the i-th line element. Otherwise —~=0. 1In testing on

da
J
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artificial data, he found that average error in derivatives calculated

by this method was 13% .

3,2 Structure of the Jacobian.

The vector of variables is generally ordered as follows :

(t,r X, ¥,0 2, t coeesr Z 5 @, @,y eeep @)

17 27 n 1 2 P

where p is the number of velocity parameters, and the residuals are

arranged thus

(r , r

1 esey T

7 eees ¥ )

1 Egpr ceer Top nm

127 im

c 0
where Tyg = tkﬂl - tkSZ, (see, for example, Lee & Stewart [7] , Spencer &

Gubbins [12] , Pavlis & Booker [9]) .
© dr or 3

or
. S 3 Y R T
Since 5, - 3%, - 9y, - 9z, = ©°
J J J J

unless k = j , the columns of the Jacobian which correspond to hypocentre
coordinates and occurrence times have a block diagonal structure
(see Fig, 3) .

The sparsity of the second part of the Jacobian will depend on
the form of the velocity modelling. If the Spencer-Gubbins technique is
used, then the number of parameters will be small and this part of the
Jacobian will be dense. However, if the more general modelling techniques
are used, p will be large, and this submatrix will be sparse. This is
because each ray path will depend on a relatively small subset of the
velocity parameters A1y 8y7 seey ap.

It can be seen immediately that it is a trivial task to perform
a QR decomposition on the "block diagonal" part of the Jacobian. This

fact is exploited in the solution techniques to be discussed in the next

section,

e
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4. SOLVING THE INVERSE PROBLEM

4,1 Introduction.

It can be seen at this stage that the seismic inversion problem
is unusual and difficult to solve. Firstly, if precise ray tracing is
used, function evaluations are almost as expensive as Jacobian evaluations
(although this is not the case when ART is used). Secondly, only
approximate derivatives are usually known. This could conceivably lead to a
situation in which the gradient is not a descent direction, although in
practice this would only be likely to occur near the solution, where the
gradient is vanishing. Thirdly, storage requirements could create
difficulties., A typical run would involve about 30 events and about 100
stations, giving a problem with thousands of equations and hundreds of

unknowns.

4.2 Parameter Separation.

The approach of parameter separation, outlined by Pavlis &

Booker [9] , is used by Thurber [13] in the program HYPO2 to solve the
linear least squares subproblem

) 2
(4.1) min |3y + 2|
which arises at each iteration of the Gauss-Newton solution method for
the nonlinear problem. The usefulness of parameter separation arises
from its taking advantage of the ease with which a QR decomposition can
be performed on the first part of the Jacobian.

If we write the Jacobian as
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A1 Ml

(4.2) Jg=1(a M = A, 0|wm
0 A | M

n n

where each Ai is m X 4 and each Mi ism X p , we can find orthogonal

matrices Ui such that
T R,
(4.3) Ui Ai = { 1]

where Ri is 4 X 4 upper triangular (and, we assume for simplicity, non-

singular) . Ui can be partitioned accorxdingly as

v

(4.4) ' u, = | v iy ©
1 1 [N

(1) (0) (o)r

where Ui is m X 4 and Ui is m X (m-4) ., Hence Ui "annuls" Ai .

We can then form an (mn) X (mn) orthogonal matrix U as follows :

(4.5) U = U 0 II

R '
1
R 0
T 2 ,
(4.6) Ua= |, e (D
0 ; M(O)
i=1 .

‘ . t
where n'© - [Ui(O)T Mi] and similarly for ey If we rewrite
(4.1) as n

i : 2
min : Sx “
8x,0a “[A : M][éa] tr 2
. 2
RIR o MEN Sx ey
(4.7) - min 2, E .
8x,8al 0 ‘R
e By (0)
0 ! M(O) Sa r
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Ugl)Tr
i

(0)

(0 =t
where r = { i] , and similarly for r .
n

The solution to (4.7) is found by solving the linear least

squares problem

. 2
(4.8) min “M(O)éa + r(O)n

Ga 2

for Sa , and then solving the upper triangular system
2
(4.9) . Sx = - r(l) - M(l)ﬁa

to obtain 8x .

4.3 Solution Technique of HYPO2,

The program HYPO2, written by Thurber, Roecker, Ellsworth,
and Comer, is a seismic inversion program in current use at the U.,S.
Geological Survey. It uses the grid-and-spline velocity model
discussed earlier, and the linear least squares subproblem is solved
using parameter separation. The actual implementation of parameter
separation in this program is not sophisticated, but geared towards
minimising storage requirements.

The subproblem (4.8) is solved by forming the normal
equations,
(4.10) M(O)TM(O)Ga = - M(O)Tr(o)

T s . . . .
and taking an LL~ decomposition of the coefficient matrix (L is lower

triangular). Since by definition,

n
(4.11) w0 T _ oy (U.(O)TM'
=1 * 7

)

T, (0)T
) (0%,

(O)TM(O) by evaluating the

(0)

Mi and Ui one at a time, rather than by forming M explicitly.

it is possible to "build up" the matrix M
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This is what in fact occurs.Only m rows of the Jacobian are evaluated
at a time (i.e. each Ai and Mi) . The Ui are formed explicitly, as
are UiTMi and UiTri . The Ri are stored, as are the elements of
r(o) and r(l) so found.
Damping is allowed for in the solution of (4.10) by adding
a user-supplied constant to the diagonal elements of M(O)TM(O) - No
damping is used in the solution of (4.9) for hypocentre adjustments.
Having obtained the steps 0a and 0x , restrictions are
applied to the magnitude of each component. No component of 8a or
0x is allowed to exceed a user-supplied constant, which is meant to
be chosen so that the new point is within a region of approximate
linearity about the old point. For the regions which he tested, Thurber
applied upper bounds of 3 km on hypocentre coorxrdinate movement and
°5 km/s on velocity parameter changes for each step.
Once the step has been made, there is no check for residual

norm decrease at the new point. It is possible that the residual

vector norm at the new point is larger than at the old point.

4.4 Proposed Improvements to HYPO2,

The approach of HYPO2 may seem ad-hoc from a mathematical
programming viewpoint, but we must remember that the apthors wanted to
minimise storage requirements, and to minimise the possibility of
taking an unsuccessful step. Also, the program users would not usually
be interested in iterating to convergence. Rather, they would take
a fixed ﬁumber of iterations and be happy if there was a substantial
decrease in residual norm,

However, it is proposed to apply a new implementation of a
large sparse nonlinear least squares solver to the seismic inversion

problem, using the framework of HYPO2. This new solver, due to Wright
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& Holt [16] uses a Levenberg-Marquardt approach, in which a linear

subproblem of the form

min J r)]?
w2 win | (3o 3]

whose soluticn is

(4.13) 6x, = - (3%3 +220) 7" 5"

is considered at each iteration. In the standard Levenberg-Marquardt
method, the exact solution (4.13) is used, and the damping parameter A

is varied until an "acceptable" step GXX (one which produces a sufficient
decrease in residual norm) is found. For small-and-medium-sized
problems, the step Sxk is computed by finding a decomposition of the
coefficient matrix in (4.12) . For large sparse problems, decomposi-
tion would not be practical, and so we could use either a direct

method or an iterative method to solve the linear least squares

problem (4.12) .

The Inexact Levenberg-Marquardt method of Wright & Holt
applies the iterative algorithm LSQR of Paige & Saunders [8] to
(4.12) . However, instead of finding Gxx accurately, we only solve
the subproblem to within a certain tolerance. In other words, if t
is defined by
(4.14) t = [JTJ + }\21) Sx + JTr
then we accept 6x as our "inexact" solution if

Il

<n <
(4.15) W;E;[ n 1

where N is a parameter which is reset at the start of each iteration.
Clearly if Ox in (4.14) is the exact solution from (4,.13) , t will

be the zero vector,
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It is shown (in Wright & Holt [16]) that a decrease in
function value can be obtained at each iteration if the condition
(4.15) is applied, and the damping parameter A is chosen sufficiently
large. Further, it is proved that the sequence of iterates will
converge to a stationary point of the sum-of-squares objective
function.

The foregoing results only require that n be less than 1
at each iteration. However, in the case where the sum-of-squares
at the optimal point is zero, superlinear convergence can be
obtained by ensuring that the sequence of values of 7N approaches
zero. In fact, if the condition
(4.16) n < 2“JTru
is enforced at each step (where (2JTr) is the gradient of the objective
function “r“i), the convergence will be guadratic. For small-residual
problems (including,hopefully, the seismic inversion problem), a good
strategy would be to apply the condition (4.16) as the optimal point
is approached, in the hope of accelerating the convergence.

The iterative method LSQR of Paige and Saunders requires
matrix-vector products of the form Jp and JTp to be calculated at each
iteration. The larger the value of N , the fewer iteration of LSQR
are required for the inexact solution 8x to satisfy (4.14) and (4.15) .
In addition, if A is sufficiently large, these conditions can be
satisfied after only one iteration of LSQR (6x will then be a negative
multiple of the gradient).

Another advantage of LSQR is that it allows (4.12) to be
solved for a number of different values of A\ simultaneously, at the

cost of very little extra computation and storage.
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Tt will be necessary to store the Jacobian J explicitly, but
this can be done economically in the seismic inversion problem, since

from (4.2) , the first submatrix A can be stored as

A1 in (mn) rows and only 4 columns. In fact, only 3
A, columns need be used since the first column of

. of each Ai (containing the derivatives with respect
A

m

to occurrence time) is the vector whose elements
are all 1 . The other submatrix M can be stored using standard sparse-
matrix storage techniques.

Our initial choice of the damping parameter A will be
important, because in practical terms, we are met with two conflicting
requirements. Firstly, if A is given too small an initial value,
function evaluations will be wasted in raising it to an appropriate
value. Secondly, if A is chosen too large, the first few steps will
be too small, and may not result in a substantial decrease in the

residual sum-of-squares.
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Figure 1 : Typical set of ray paths for a single event
and a set of four recording stations.

SR G

K
Figure 2a : ART : Velocity for Figure 2b : ART : All ray paths
each layer is averaged over a appropriate to the layered model
rectangular region between source are considered.

and receiver.
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Figure 3 : Structure of the Jacobian for standard
ordering of equations and variables. The submatrix
M is sparse ; each of the Ai's is m x 4 and dense.
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5. CONCLUSION

We have attempted to describe the current modelling and
numerical techniques used for an important geophysical inversion
problem., Insofar as éur own contribution to the least squares
minimization is concerned, this paper is clearly a progress report.
The new algorithm of Wright and Holt has been successfully run on
small, synthetic problems, but not yet on real data. In the near
future, we will have actual data available from the U.S. Geophysical
Survey's seismic network in the San Francisco Bay area, by cqurtesy
of Dr. W. Lee. A comparative study of the existing HYPO2 and a version

incorporating our least squares solver will then be undertaken.
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