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ON THE CHOICE OF COORDINATE FUNCTIONS 

R.S. Anderssen 

1. INTRODUCTION 

Numerically, there are two independent aspects to the problem of 

solving (partial) differential and integral equations computationally. On 

the one hand, it is necessary to have results concerning the convergence, 

stability and accuracy of various classes of methods such as finite 

difference methods for initial value problems, finite element methods for 

elliptic partial differential equations, shooting methods for two-point 

boundary value problems, etc. The general philosophy and expertise of 

numerical problem solving is based on such information. On the other hand, 

for a specific equation which arises in an application, it is necessary to 

distinguish between the various algorithms which can be constructed. For 

the particular equation under examination, the aim is not simply to apply 

any appropriate algorithm but to use the algorithm best suited to the task 

in hand. Thus, the requirements of the latter differ considerably from 

that of the former. 

In fact, the success of any algorithm constructed for a specific 

problem will depend heavily on the extent to which its design exploits the 

mathematical characteristics of the problem under examination. Some 

specific examples are: the use of the boundary integral method to solve 

potential problems defined on irregularly shaped regions; the use of the 

inversion formulas to solve Abel integral equations; the numerical 

stability of modified Gram-Schmidt; Fourier methods on a regular grid; 

sparse matrix computations; parallelism in algorithm construction. 

In situations where the starting point for the construction of a 
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numerical method is an approximation of the form 

u (x) 
n 

n 
~ 

j=l 
a ~n) cp ~n) (x) 

J J 

this exploitation of the structure of the specific equation under 

examination can be coupled to the choice of the basis functions cp ~n) (x) , 
J 

j = 1,2, •.. ,n . It is this aspect of computational problem solving which 

is examined in this paper. 

Any examination of the choice of the basis functions divides 

naturally into the following two cases: 

(i) the cj>~n) , j = 1,2, •.• ,n , are independent of n , which 
J 

typifies the situation in the application of the classical 

variational methodology using globally defined functions, and of 

spectral methods; 

(ii) the cp~n) , j = 1,2, •.• ,n , depend on n, which typifies the 
J 

situation in the application of finite element methods. 

Though there is an obvious overlap between these two situations, we limit 

attention to the former. A detailed discussion of the latter can be found 

in Arnold et aZ. [4]. In order to distinguish between these two situations, 

we shall refer to globally defined basis functions as coordinate functions. 

In fact, we limit attention to the following three aspects: 

1. The practical appeal of the spectral method, where the coordinate 

functions cpj , j = 1,2, •.. ,n, correspond to the first 

components of an orthonormal system. 

n 

2. The choice of the coordinate functions as the eigenfunctions of a 

related but simpler operator than that defining the equation to be 

solved. 

3. The flexibility of the Petrov-Galerkin strategy. 

Much of the discussion will be concerned with densely defined linear 

operator equations 
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(1.1) Lu f 1 u u(x) , L:D +R 

where ~ is a bounded region in , and the domain D and the range 

R are both contained in the same Hilbert space H with inner product 

"' (u,v) and norm llull = (u,u) 2 

2. THE PRACTICAL APPEAL OF THE SPECTRAL METHOD 

There is no uniform use in ·the terrninology "spectral mei:hod"'. It is 

sometimes used to describe theoretica.l s·tudies of the specl::ral properties 

of operators. It is also used loosely ·to describe any numerical method 

which exploits, in one way or another, ·the properties of known orthonormal 

systems of functions (cf. Peyret and Taylor [23] , Cha.pte:r· 3). 

The st.arting point for many spectral me·i:hods is the adop·tion of 

approxima:tions of the form 

(2.1) (x) 
n 
:E 

j=l 
(n) ¢. (x) 

J 

vlhere ·the coordina·te (basis, trial,. shape) functions ¢" (x) , j 
J 

are chosen to be the first n elemen:ts of an orthonormal sys·tem 

{¢. }~ ~ 
J J_ 

j ~ 1,2,._.} Clearly, ·the qualifier "'spectral" identifies 

this part.icular choice for ·the coordina:te functions. Such methods are 

subclassified in terms of t:he procedure used to determine ·the unknowns 

~ (n) . - , 
o.j t J - -'- r I! "' " .. l' 1'1 L e. for i:he linear operator equation (l. , the 

proced1..1.re is the n condi·tions which, in conjunction with (2 .l) , yield the 

non-singular ma·trix equation of order n 

(n) 
a 

for determining 'che 

f(n) (n) 
.e 

(n) (n) (n)] T 

A discussion of various types 

of spectral methods can be found in Gottlieb and Orszag (1977) and Fletcher 

(1984)" The problems analysed there are time dependent and therefore the 
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approximations (2.1) now take the form 

(2.3) 
n 

un(x,t) = ~ 
j=l 

a (.n) (t) "' ( ) 't'· X I 

J J 

where the unknown constants (n) 
a. , j 1,2, ••• ,n, of (2.1) have now 

J 

become unknown functions of the time t 

Two examples of popular forms of spectral methods are given by: 

EXAMPLE 2.1. Speatral Collocation. When the collocation method is used to 

construct approximations of the form (2.1) for the solution of a linear 

operator equation (1.1), the L 
n 

and f(n) of (2.2) take the form 

(2.4) L 
n 

Where the Xk En 1 k = 1,2, ••• ,n 1 define n distinct COllocation pointS. 

The difficulty with the collocation method, which limits its applicability 

and is a trade-off against its simplicity, is guaranteeing the non-

singularity of L 
n 

independence of the 

arbitrary xk k 

In fact, we know (cf. Davis [7]) that the linear 

cjl.(x) , j = 1,2, ..• ,n, does not guarantee for 
J 

1,2, ••• ,n , the non-singularity of L when either the 
n 

dimension q of IRq is greater than 1 I or n has a branch if it is an 

R1-curve in IRq with q <:: 2 . 

Though there are certain advantages associated with choosing the cpj , 

j 1,2, .•. ,n, to be the first n components of an orthonormal system 

{cjlj}~ (e.g. the discrete Fourier transform), such a choice does not remove 

the above mentioned difficulty. 

EXAMPLE 2.2. The Pseudospeatral Method. This is the name given to the 

spectral collocation method when it is applied to time dependent problems 

in conjunction with the approximation (2.3). In such situations, the 

# 
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choice of collocation points must be such as to yield a simple structure 

for the system of ordinary differential equations which must be solved for 

the aj (t:) , j 1,2, ... ,n For example, if the Chebyshev polynomials 

(x) are used, then the collocation points are chosen to be xk = cos(Tk) 

for appropriately chosen Tk so that the fact that T (cos8) = cosn8 
n 

The motivation for the use of spectral methods is two~fold: 

can 

# 

(a) The existence of extensive ma-thema-tical properties for particular 

orthonormal systems, such as the Legendre and Chebyshev polynomials, which 

can be exploited in various 11Jays to manipulate the structure of numerical 

methods based on the use of orthonormal functions. There is an extensive 

literature on this aspect. It ranges from general studies of the utility 

of specific orthonormal systems such as Legendre, Chebyshev and Jacobi 

polynimials, in the numerical solution of ordinary and partial differential 

equations as well as integral equations (cf. Delves and Freeman [8]); to 

specific studies of how one special class of orthonormal functions such as 

the Chebyshev polynomials can be used to study a varie-ty of problems 

numerically by specifically exploiting the essential properties of the 

orthonormal functions chosen (cL Elliot'c [10] and Horner [15]). 

(b) The knowledge that, in -the numerical performance of variational 

me'chods, ·the choice of the coordinate functions ¢.(x), j = l,2,. . .,n, 
J 

appears ·to play a more crucial role than the n conditions chosen to 

define (2. 2) ; and 'chereby, the heurist.ic conclusion that in some sense an 

orthonormal system must be better ·than a non-orthonormal. 

Though the success of spectral methods for ·the approximate solution of 

a wide class of practical problems (cf. Gottlieb and Orszag [14], Peyret 

and Taylor [23], Fletcher [12]) yields verification for this conclusion, it 

is well known (cf. Gottlieb and Orszag [14] and Anderssen and Omodei [3]) 
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that the choice of an orthonormal system does not guarantee unconditionally 

that a spectral method will perform well computationally. Limitations on 

the utility of taking arbitrary orthonormal systems to construct 

approximations of the form (2.1) have been examined in Anderssen [1]. 

We conclude this section with a more detailed discussion of the points 

in (a) above. In particular, our aim is to illustrate why, in some areas 

of computational mathematics and physics, spectral methods are viewed with 

considerable respect and even reverence. However, the aim is more than 

simply showing how spectral methods have been applied. The idea is to 

identify the mathematical reasons why the use of orthogonality allows some-

thing special or advantageous to be achieved numerically or pragmatically 

for the solution of some practical problem. 

In order to emphasize the mathematical aspects, the discussion is 

organized to highlight such reasons. 

2.1 D.iagonalization of Matrices Which Must be Inverted 

In most numerical procedures based on approximations of the form (2.1) 

or (2.3), it is necessary to invert at least one matrix. If the <P. (x) , 
J 

j = 1,2, ••. ,n , are chosen so that one of the matrices involved is diagonal, 

then the computational process is greatly simplified. 

2.1.1 The Rayleigh-Ritz-Galerkin Method for Eigenvalue Problems 

Consider the general eigenvalue problem 

(2. 5) 

where ~ and ~ define time independent linear operators which map a 

known Hilbert space ~,with inner product (•,•) and norm 11•11 , into 

itself. Using the approximations (2.1), the Rayleigh-Ritz-Galerkin method 

replaces (2.5) by the algebraic eigenvalue problem 



(2.6) A 
n 

(n) 
a 

where the matrices 

A (n) B a (n) 
n -

20 

(n) 
a [ (n) 

al ' 

and B take the fonn 
n 

(n) , ••• , a (n) l T 
n 

Computa'cionally, the solu'cion of ·this eigenvalue problem is greatly 

simplified if ·the coordina·te func·tions correspond t.o the orthononnal 

eigenfunctions of ~ • In the more common situation where B = I , the 

identi'cy operator, any orthogonal syst:em in H will diagonalize B 
n 

·though it: is more appropria'ce computationally to work wi'ch its orthonormal 

counterpart. 

2.1.2 The Numerical Solution of Parabolic and Hyperbolic 
Partial Differential Equations 

Consider the time dependent partial differential equa·tions which take 

the fo1.rm 

f<t u = L u + f 

where ~ is a linear time-independent operator and !;t denotes a partial 

differential operator only involving derivatives wi·th respect to t If 

it is solved using the Ritz-Galerkin method in conjunction •~Vith the 

approximation (2.1), then the sys·tem of ordinary differential equa·tions 

which determine the (t) are given by 

(2. 7) An ~t ~ (n) (t) L a. (n) + f 
n ~· 

where the matrices A and 
n 

e (n) (t) 

take 'che form 

[ (n) ( , (n) (, J (n) . ) l a 1 t) , c , .•. , an ("t 

Computationally, the problem of integrating (2.7) is greatly simplified if 
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An is diagonal, ;vhich occurs if the { rp j} ~ are orthogonal in H , though 

it is more appropriate to 1.vork with its orthonormal counterpart. 

2.2 Decoupling 

The complexity of many numerical procedures is a direc>c consequence of 

the cross-coupling ,,,hich the n conditions, which define the numerical 

process to be solved for the 
(n) 

a. , j = l,2, ... ,n , forces between the 
J 

differeRt terms which define the approxima>cion (2 .1) . This is implicit in 

the above discussion about diagonaliza·tion. Different munerical ·techniques 

have been proposed which explicitly exploit the decoupling inherent in an 

orthogonal (orthonorm;o,l) system. 

2.2.1 The Tau IVlethod 

Consider the linear operator equation (1.1); i.e. 

Lu f . 

The tau method of Lanczos [17] is essentially an analytic application of 

the backwards error analysis argtlrnen·t"' 

in·terpreted as ·the exac>c solu'cion of 

Lu 
- n 

The approxima>cion 

f 
n 

u 
n 

is 

If L has a bounded inverse, 'chen ·the difference £- f 11 yields a 

characteriza>cion of the quality of -the approximation u 
n 

Lanczos [17] 

proposed that this difference be modelled as 

f-f 
n 

and thereby reduced the problem of es·ti!Ilating f~f 
n 

to '.:he problem of 

determining -the T pararnet.ers in (2., 9)"' For general systems 1 , this 

reduces to a compl·ex problem con1putationally ~ If hO'~h1ever 1 the system 
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is orthonormal in H and its elements satisfy the boundary conditions 

associated with L , then it is a simple matter to show that 

(2.10) . 1,2, •••• 

If the elements of the system {~j}~ do not satisfy the boundary 

conditions, it is a simple matter to modify the above argument (cf. 

Gottlieb and Orszag [14], Section 2). 

2.2.2 Manipulating Non-Linearities 

In many applications, the non-linearity which makes the relevant 

equations non-linear are only quadratic. For example, the Navier-Stokes 

equations and Burger's equation in which the non-linearity takes the form 

(2.11) u u 
X 

u = u(x,t) , ux = Clu/Clx • 

Various procedures are employed which exploit orthogonality in order to 

decouple the cross-coupling inherent in the non-linearity. To a certain 

extent, the methodology used is problem dependent and complex, because the 

problems themselves are complex and the non-linear terms cannot be treated 

in isolation from the other terms in the equations being solved. Never-

theless, the essence of the mathematics behind what is being done can be 

described. We give two illustrations: 

EXAMPLE 2.3. If the Ritz-Galerkin method is applied to the non-linearity 

(2.11) using the approximations (2.1), it is necessary to construct a 

matrix Bn with elements b;~) defined by 

(2.12) 
n (n) ( d~i 
l: a. ~· dx' 

i=l l. J 

where we have assumed that the functions u = u(x) are contained in H 

The non-linearity manifests itself through the dependence of the 
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coefficients on the The manipulation of 

this non-linearity is reduced to finding an orthonormal system for ·the 

{¢j}~ (e.g. the Legendre polynomials) which allows the evaluation of the 

inner products in (2 .12) to be grea·tly simplified •. 

EXA~lPlE 2. 4. Using either a Petrov-Galerkin or method of integral 

relations framework, and aft:er appropria·te changes of variable and other 

manipulations, the approximation of the non-linearity is reduced to an 

examination of integrals of the form 

(2.13) f w (v) fk (v) dx , v(x) 

'l'lhere the resulting coordina t.e functions (v) end up being functions of 

some transformed unknown ra·ther than x • The key step is then ·to 

reverse the roles of v and x wi"ch v becoming the independen-t 

variable and x a function of v given by 

J
•V 

x(v) = niT) dT 

This has proved to be an incredibly successful vmy of coping with 

non-linearities in various situations, since the non-linear aspect is 

transferred ·to a linear. Here, (2.13) becomes 

(2.14) 

If ·the unlmol<'m n(v) 

J w(v) fk(v) n(v) dv . 

is now approximated by 

ll (v) 
n 

the task of manipulating (2. 13) is grea·tly simplified if 'che fk (v) are 

constructed to be or'chonormal '-~ith respect ·to the ·weight: func-tion '1'1 (x) 

The implemen·ta·tion of such manipulai:ions is in general quite difficul·t; 

# 

bu·t has considera.ble computa·tional advan-tages vJhen achieved as, for example, 
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the discussion of Fleet and Fletcher [11] shows. # 

Fuller details for specific examples such as the solution of Burger's 

equation can be found in Gottlieb and Orszag [14], Orszag [21] and 

Fletcher [12]. 

2.3 Transformation 

Each approximation u (x) 
n 

has two representations: Its physiaaZ or 

continuous which corresponds to u (x) 
n 

itself as a function of 

its veator or finite dimensional which corresponds to 

X ; and 

(n) (n) (n) (n) T oo 
a [a1 ,a2 , ••• ,an ] . When the system {~j}l is orthonormal, the 

latter representation is often called the speatraZ. Thus, any computation 

involving the approximation u (x) 
n 

can be performed using either the 

physical or the vector (spectral) representation. The advantages of 

computing in one rather than the other can only be exploited if the 

transformations from one to the other can be evaluated economically. This 

is only possible if the system {~j}~ is orthonormal for then the inverse 

of the forward transformation 

(2.15) 1,2, ••. ,n , 

is given by 

(2.16) k 1,2, ••• ,n • 

Ordinarily, the evaluation of either (2.15) or (2.16) will involve O(n2) 

operations. Using fast methods, this can often be reduced to O(n log n) 

operations (cf. Orszag [21]). As explained by Orszag [21], and illustrated 

convincingly for multidimensional calculations by McCrory and Orszag [18] 

the aim is. to choose the representation most appropriate for the 

computation required. 
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2.3.1 Evaluation of Non-Linear Terms 

Consider the problem of evaluating· 'che convec·tive term u u in 
X 

Burger us equa~t:ion (cf" Fletcher [12]) ~ If at ·time t i·t is knot.vn "'chat 
m 

then u 

(2.18) 

at 

[u(x,-t ) 
m 

X 

u (x,-t ) 
n rn 

(x,t ) ] :>-; 

j=l 

a (n) "' ( ) 
j ,m ,~ j x 

can be eva.luated as 

m x=xQ, 
( 

n 

j=l 

(n) J ( n a, cp, {x 0 ) ,L 
J,lll J X, J=l 

for !(, = l,2, ... ,n This clearly involves O(n2 ) operations. 

Alterna·tively, 

(2.19) 

u could be evaluated as 
X 

Clu 
n 

(n) 

Clx 
:>-; 

j=l 1m 
(x) 

If the correspond to the Fourier components, tche Legendx:e 

polynomials or the Chebyshev polynomials, the recurrence relations which 

specify the b (n) · 1 " · f 1 . v J = • L if~"'"' vn 1 1n ·terms o ·t_1.e 
J ,m 

in O(n) opera·tions are known for a variety of si·tuations ""hich include 

Burger's equa·tion. Thus, the O(n2 ) operations involved with evaluating 

u at can be reduced to O(n log n) operat:ions 

through the judicious use of (2.19) and the physical and spectral 

represen·ta·tions' 

(i) transform (using O(n log n) operations) to the physical 

represen·ta·tion 

n 
:>-; 

j=l 

(ii) evaluate (using 0 

(n) 
cp . 

,m J 

opercrtions) 

b, 
J ~m 

from 
(n) 

aj_,m 

• ... 1sing t.he recurrence rela·tions 

£ lP2f/ .. O~,,n 
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(iii) transfm."lll (using 0 (n log n) operations) to the physical 

representai:ion 

dU (x 0 , t ) 
n "' m 

ax 

(iv) evaluate (using O(n) operations) 

(v) transform (using 0 (n log n) operations) back t:o 'che spectral 

representation 

(n) 
cJL,m J "' (x,t: ) n m 

(x) dx • 

2.4 Mimicking the Eigenfunction Solution 

Again, consider ·the operator equation (Ll). If L has a discrete 

and its (nonnalizedl eigenfunctions {l/Jj are knm.;n 

and form a basis in H then the solution uf of (L 1) is automa:tically 

given by 

(2.20) 

00 

L: 
j=l 

(f,l/Jj)lpj 
--A-.-· 

J 

In many ways, the use of ·the approximat:ions u of (2.1) cah be seen as an 
n 

attemp·t 'co mimic this eigenfunc'cion representation of the solu·tion 

In addi·tion, heuristic and intuitive considera-tions lead naturally to ·the 

idea that, even if ·the (x) are not kno;.;:n exac'cly, every a·ttempt should 

be made ·to choose sys·l:ems { loo 
1jJ j J 1 in so:me 

appropriate way (which v:ill depend on the cont.ext of the problem being 

solved). 

This point has been discussed for spectral methods by Anderssen [1] 

and is mo·tiva·ted from the more general point of view of 'che numerical 

s·tability of varia·tional methods in ·the next sec·tion of ·this paper. From a 
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practical point of view, it is instrumental in the use of Legendre 

polynomials in cveather prediction (cf. Fletcher [12], §5.6.1). 

3. EIGENFUNCTIONS OF SIMILAR BUT SIMPLER OPERATORS 

For a given choice of coordinate functions ~;n) , j = l,2, ... ,n, the 

associated ma-trix equa'cion (2.2) is solved computationally for the unknown 

vector 
(n) 

a defining in (2.1). Appealing to the backvJard error 

analysis argument, -the computed solution ' (n) 
£ is interpreted as the exact 

solution of the per-turbed system 

(3 .l) (L + L'.L ) b (n) 
n n ..... 

Under the res·triction that 

(3. 2) r = II < 1 , 

a standard argument (cf. IVJikhlin [19], §9) shows that 

(3. 3) 119-(nl -p(n)ll II - 1 6. II II (n)ll/1 ' -l L'lc(nl /( ) _ _ :o: Ln L0 a · ,1-rJ + IILn II II ~ 11 1-r " 

It follo~.rs automa·tically that a sufficient condition for the error 

lie (n) -!;? (n) II to remain bounded is that II L - 1 11 remain bounded o 

n 

spectral norm of 
-1 

L 
n 

is -taken, then i:he boundedness of 

If t:he 

can be 

related 'co the behaviour of the smallest eigenvalue of -the Gram matrix 

This fact was used by Mikh1in [19] as the basis of his definition of 

L o 

n 

Because it is developed in 'cerms of cons-tructive concep-ts vJhich can be 

tested, l>1ikhlin' s stability theory for variational methods has the 

follm,;ing appealing struc·ture. 

Stabili Definition. The numerical process defined by 

(3. 4) 
~(n) 
.f n 



28 

is M-stable, if there exist constants p, q and s independent of n 

such that for llb.L II !> s and arbitrary llf(n) the perturbed system (3.1) 
n 

is solvable and the following error estimate 

(3.5) lie (n) -p (n) II !> pllb.L II+ qiiM(n)ll 
n -

holds. 

The connection between (3.4) and (3.5) is obvious. 

The Strong Minimality of the {¢j}~ in H . The coordinate functions 

{¢j}~ are said to be strongly minimal in H , if the smallest eigenvalues 

Ain) of the positive definite Gram matrices 

(3.6) G 
n [ ~:~::~~.:::.~:~::~~~] 

(¢n,¢1) • • • <¢n,¢n) 

n = 1,2, ••• , 

are bounded away from zero; i.e. 

(3.7) inf A(n) <: 
1 

n 

A necessary and Sufficient Condition for M-Stability. If L =A 
- - I 

where ~ is a positive definite operator, a necessary and sufficient 

condition for the M-stability of the numerical process (3.4) is that the 

coordinate system {¢j}~ used to generate (3.4) is strongly minimal in the 

energy space ~A with inner product [u,v] = (~u,v) and norm 

Ill ulll 
k 

[u,u] 2 

Thus, guaranteeing the M-stability of the numerical process (3.4) 

reduces to ensuring that the coordinate system {¢j}~ is strongly minimal 

in H 
=A 

There are a number of ways in which this can be done: 

(a) use the orthonormal eigenfunctions of an operator B which is 

simpler but similar to A (b) scale minimal systems 

in ~~ , which are not strongly minimal, to be strongly minimal. A system 

{¢j}~ is said to be minimal, if the span of each(and every one)of its 
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subsets is a proper subspace of the span of {~j}~ . 

In (a) (cf. Mikhlin [19], §3), two self-adjoint and positive 

definite operators ~ and ~ are said to be simiZar if ~(~) = ~(~) ; 

i.e. the domains of b and ~ are identical. Using this definition, 

Mikhlin [19) has identified a variety of circumstances which guarantee 

strong minimality in H , and used these results to propose a rational 
=~ 

basis for the choice of the {~j}~ . The orthonormal eigenfunctions of the 

more important simpler operators which arise in practical situations are 

listed. 

Anderssen [1) has discussed how these results can be used to examine 

the numerical performance of spectral methods and thereby clarify to what 

extent the choice of an arbitrary orthonormal system as the coordinate 

system {~j}~ can be justified numerically. The fact that "any ortho-

normal system which u- in H is strongly minimal in H 
=b if it is also 

contained in H 
=b 

and spans H 
=~ 

" shows that convergent and stable 

approximations of the form (2.1) can be constructed using arbitrary ortho-

normal systems in ~ , when the procedure used to construct the numerical 

processes (3.4) corresponds to one of the standard methodologies such as 

Ritz-Galerkin, Bubnov-Galerkin or least squares. 

However, the need for having an appropriate mathematical framework in 

which to formulate such results is more crucial than it might at first 

sight appear. It is not simply a matter of choosing an arbitrary ortho-

normal system in ~ , which a loose interpretation of the above comments 

might imply. As the following discussion illustrates, the interrelation-

ships between the different spaces involved impose their own restrictions 

on how the orthonormal system in H must be chosen. 

If the orthonormal system {~ }
00 in H is also a spanning set in H=A 

~j 1 

then it is also a spanning set in H It is an automatic consequence of 
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the continuous imbedding of ~~ in H • However, if the orthonormal 

system {cp }oo is contained in 
j 1 

~~ but is only chosen to be a spanning set 

in ~ , this does not guarantee that {cj>j}~ is a spanning set in ~~ • It 

is an immediate consequence of the fact that, for sequences in H , this 
=~ 

convergence in H does not imply their convergence in H 
=A 

The 

inequality defining the continuous imbedding of ~~ in H goes the wrong 

way. 

In order to obtain a strongly minimal system in ~~ , it is not 

necessary to start with an orthonormal system in H which lies in 
= 

H 
=~ 

In fact, any minimal system in H which lies in ~~ can be used. Now, 

the alternative strategy of scaling minimal systems can be used. Dovbysh 

[9] has shown that any minimal system in a Hilbert space can be rescaled 

to yield a strongly minimal system in that space (cf. Mikhlin [19], 

Theorem 2.2). Either scale the minimal system in H to be strongly 

minimal, since the resulting system will also be strongly minimal in ~~ ; 

or utilize the fact that the minimal system in H will also be minimal in 

H and therefore scale it in H to make it strongly minimal. 
=~ =~ 

The advantages of this scaling from a theoretical point of view have 

been outlined above. However, they are based on asymptotic results which 

carry little information about the practical consequences of this scaling. 

To date such consequences have not been examined in any detail. 

Since the scaling of matrix equations is known to be so mercurial, it 

is natural to ask what advantages result in scaling a minimal system to be 

strongly minimal. We know from Forsythe and Moler [13] that if two base-

scaled <S-scaled) equivalent systems are used, then applying Gaussian 

elimination with the same pivoting sequence to both will yield the same 

significands in both solutions. However, if different pivoting sequences 

are used, then different significands will result. It is therefore 
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assumed that, for the matrix equations which arise from the use of minimal 

and strongly minimal systems, different pivoting sequences will result if 

Gaussian elimination with either full or partial pivoting is applied; but 

this assumption remains to be examined in detail. 

Another important aspect of M-stability is that it is based on an 

examination of absolute not relative error. It is for this reason that the 

concept of strong minimality plays such a major role as a necessary and 

sufficient condition in guaranteeing M-stability. In fact, for the 

numerical process (3.4) and its backward error analysis counterpart (3.1), 

it can be shown (cf. Mikhlin [19], §9) that 

(3.8) 

with r = IIL-l /:,.L II 
n n 

The solvability of (3.1) requires that r < 1 

key role played by L-l when bounding 
n 

lle(n) -:g<n> II is immediately 

apparent. Even more importantly, (3.8) shows that a sharp estimate of 

lie (n) -!? (n) II must be based on the size of IIL-l /:,.L II 
n n 

and IIL-l /:,. f(n) II 
n 

and consequently, the conservative nature of the often used alternative 

bound 

(3.9) lle(n) -!?<n>u 

The 

The use of relative errors when studying the effect of rounding error 

has become popular for a number of reasons: 

(i) in situations where the size of lle(n)ll is not known a priori, 

it gives a more realistic assessment of the error than the 

absolute. 

(ii) the forward error analysis of numerical methods often yields 

estimates of the form 

llt:,.L II = c(n) cS IlL II , 
n n 

where c(n) is a constant depending on n and cS is the basic 

rounding error. 
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For such reasons, one often works with the relative error estima·te 

(3. 10) liz (n) -)? (n) 11/ll,e (n) II 
.{IIL'ILnll IIL'If(n)lll 

:.; K(L l -IlL II + r ) r/(l-r) 
n n ll('n II J 

with the condition number IC 
-1 

= IlL II IIJ~ II . However, because i·t can be 
n n 

derived from (3.9) (divide (3.9) by ll_e (n) II and use ·the inequality 

llf(nl II < ll_e (n) II ) , (3.10) carries no more informa-tion ·than (3.8). For 

this reason, ·the in·terpreta·l~ion of (3.10) canno·t be done independently of 

(3.8) which goes against the point made by Omodei [21] about M-stability. 

For example, ( 3 .10) yields the conclusion tha·t the relative error is 

bounded if K(Ln) is bounded. However, this condition allm11s the 

possibility that A(n) too at the same rate as 
n 

' (n) 1 0 h · h · · 11.1 v w.~c :LS :Ln 

· · ll~_(n) confl~ct with the requ:Lred boundedness of _ -l? (n) II for which we need 

Clearly, we require that both the. absolu'ce and relative 

errors are bounded. The mentioned pathology can occur c•lhen t.he growth of 

II~ (nl - p· (n) II · d · , "" • th d f J_jll?:- (nl II __ - __ J_s om:Lnaceu Dy -- e ecay o.- _ : This however is not 

the full picture as the role played by the condition 

not been taken'.in·l:o account. 

JIL-l /:,L II < l 
n n 

has 

p, detailed analysis of strong minirnali'cy and condi-tion nu111ber is not 

appropriate here as the above argument illusi:rates cogently the need to 

first guarantee s'crong minimality when applying variational methods. 

4. THE PETROV-GALERKIN FRAMEWORK 

We again s·tart with the opera·tor equa.tion formulation (L 1). 1i1!e 

cons'cruct the corresponding bilinear represent:a·tion 

(J;;u,v) (f ,v) , for all v E V 

which is equivalen-t to (l.l) if V defines a dense subset of H such as 
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With respect ·to appropria"cely chosen 

approximations of the form (2.1) are sought which satisfy 

(4. 2) (Lu ,v) 
"" n 

(f,v) , for all v E 

exactly wi·th v 
=n 

an appropriate fini·te dimensional subspace of v . In 

particular, if the X· , j = 1,2, ... ,n, define a basis for V , then 
J =n 

(4.2) reduces to the following algebraic system which defines the Petrov-

Galerkin method for (4.1), and hence, (1.1) 

n 

i=l 
(L¢. , X. l = ( f, X.) 

l J J 
l,2 10 .,n. (4.3) 

Thus, (4.3) defines the Petrov-Galerkin coun·terpart of (2.2) and (3.4). 

The Galerkin method corresponds to the quite special situation where the 

xj = ¢j ' j = l,2, ... ,n The advantage of ·the Petrov-Galerkin method is 

·the greater flexibility it gives to the construction of ·the algebraic 

system (4.3). Having made the choice of ·the 

reason, the choice of the Xj , j = l,2, ... ,n, can be exploited for 

ano·ther. For example, in ·the Galer kin method, the { ¢ j} ~ can either be 

chosen to optimize, wi·th respect to n , the representation used for u 
n 

or On the other hand, the Petrov-Galerkin framevJOrk allows ·the 

{¢j}~ to be chosen 'co optimize ·the representation used for un leaving 

the {xj} ~ to be chosen so as to optimize ·the representation used for 

.c(n) 

.L 

For example, if {¢j}~ were known to yield an efficient 

represen'ca·tion for u 
n 

would be J }n 
L?:;¢j 1 

then a natural choice for the representation of 

The corresponding Petrov-Galerkin method is in 

fact the method of least squares 'A'hich ensures ·that 

IIAu - fll ..... n 
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is attained. However, because we do not know u in advance, it is 

difficult to choose the {~j}~ in relation to some property of u in 

advance. Nevertheless, we do know f • It is a far simpler matter to seek 

the {xj}~ which yield an efficient representation for f(n) • It would 

then be necessary to decide what a corresponding choice of the {~j}~ 

should be. 

The obvious choice is which is clearly not available 

except under special circumstances. When it is the corresponding Petrov-

Galerkin method reduces to a pseudo-analytic method (cf. Anderssen and 

de Hoog [2]) for which the approximation u 
n 

approximation 

f 
n 

n 
~ 

j=l 

to f has been constructed; namely, 

u 
n 

-1 f 
~ n 

n 
~ 

j=l 

is known the moment the 

When applicable, pseudo-analytic methods are quite successful for properly 

posed problems in application. When the application is improperly posed, 

they are invariably unsuccessful as they contain no stabilization which 

damps out the enhancement of errors between fn and f implicit in the 

transformation from the to the 

A less obvious choice is ~. = ~* X 
J j 

The corresponding Petrov-

Galerkin method is in fact Murray's method which has been examined in some 

detail by Petryshyn [22]. In fact, using the properties of ~* , the 

algebraic equations (4.3) become 

n (n) 
(4.4) ~ <~*1jli,~*1jlj) a. = (f ,1jl.) I j 1,2, ••• ,n . 

i=l 
~ J 

There are two levels at which the Petrov-Galerkin methodology is 
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manipulated. On the one hand, it is exploited in a fairly explicit and 

practical manner to yield for specific applications numerical processes 

(3.4) with desired numerical properties. This reduces to working directly 

with the numerical properties associated with particular choices of 

coordinate functions and centers on the algebraic properties of the 

matrices Ln defining the numerical processes (3.4). Some examples are: 

spline Petrov-Galerkin methods for the Korteweg-de Vries equation where the 

are translates of the (Schoonbie [24]; subdomain methods 

Fletcher [12]); collocation methods such as spectral collocation methods 

(Voigt et al. [25]). 

On the other hand, error estimates which formalize some of the 

observations made above about the flexibility of the Petrov-Galerkin 

methodology are derived and then manipulated in both a general and specific 

manner depending on the context in which the Petrov-Galerkin method is 

being examined. For example, Canuto and Quateroni [6] derive a general 

error estimate which displays explicitly the dependence of the error 

on the form of the subspaces <I> 
n 

and X 
n 

spanned by the and 

u-u 
n 

j = 1,2, .•. ,n , respectively. They use this estimate to derive specific 

results about the numerical performance of the spectral method. 

This error estimate is a generalization of an estimate given in 

Babuska and Aziz [5] which limits attention to the situation where the 

inner products are evaluated exactly. Under appropriate coercivity 

conditions, the Babuska and Aziz estimate for Ill u- u Ill 
n 

a best approximate estimate 

Ill u- u Ill ~ K { inf 
n 

WE<l> 
n 

Ill u- wAI} , 

where Ill •Ill denotes an appropriate energy norm. 

takes the form of 

The role of the only enters through K First and foremost, the 
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error depends on the choice of ~n , and then only on X 
n 

This fits 

naturally the framework of the application in that the q). , j = 1,2, .. .,n , 
J 

determine while the choice o:c the 

algebraic system (3.4) to be solved. 

xj 'j = l,2, ... ,n 'determines the 

Thus, if u lies in ~ , even if a 
n 

poor choice is made for Xn , the error is still zero (assuming the under-

lying algebra is done exactly). Thus, the choice of X determines the 
n 

numerical properties of (3.4) (relative ·to ·the choice of <ii ) • This 
n 

confirms intui·tion. 

Clearly, the choice of Xn must not only ensure that (3.4) has 

appropriate numerical properties, but also that K is kept small. In 

achieving the la·tter, Jenkinson [16] has shown that the size of K depends 

crucially on the rela'cionship be·tween <ii and X 
n n 

The Canuto and Quarteroni [6] estimate is mos·t useful as it shows the 

effect of not being able to evalua·te i:he inner products exactly. Now the 

form of used plays a more dominant role. It confirms the above poin·t 

·tha·t the choice of is crucial in determining the numerical properties 

of ·the resulting numerical process. In fact, if the approximations used 

for ,v) and (f,v) are denoted by BN(u,v) and fN(v) , then ·their 

es'cimate ·takes the form 

Ill u - u Ill :;; inf 
N 

WE 

(n) lllu- will + 
VE 

ri(Lu,v)-B (u,v)l i(f,v)-f_(v)ll) 
- N , N 1 

' Ill v Ill T Ill v Ill ) f (n) sup 

From ·the discussion contained in Canuto and Quarteroni [6], as well as 

the comments made above, i'c is clear ·thal: the use of such error estimates 

can assis·t greatly in l:uning the choice of the ~j 

for specific applications. 

and , j = l,2, ..• ,n, 
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