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COfvJPUTA TIOi\I.AL I~lPLEMENTA TIONS OF THE DORODN ITSYN 

BOUNDARY LAYER FORMULATION 

C'. A. ,T. Fletcher 

l. INTRODUCTION 

Conventionally the boundary layer governing equations are discretised by 

treating· the velocity componen·t,s, u and v, as the dependent variables and the 

coordinates, x and y in two dimension.s, as the independent variables. However 

there are many advan·tages in adopting a Dorodni·tsyn boundary layer formulation 

which uses a non-dimensional normal velocity gradien·t as the dependen·t variable 

and x and u as ·the independent variables. 

An immediate computational advantage is that an infinite domain in the y 

direct.ion is replaced by a finite domain in u; u is scaled ·to vary between 

zero and unity in traversing the boundary layer. The scaling of u means that 

the grid automa·tically captures ·the boundar·y layer growth in the downstream 

direction. In (x,y) space periodic readjustment of the boundary layer grid at 

the downstrearn stations is computa.tionally expensive. 

In the Doroclni·tsyn formulation is is convenien·t to specify a uniform grid 

in the u direc-tion. For the finite element Dorodnitsyn formulation this permits 

a higher accuracy to be achieved. In contrast in physical space a non-uniform 

grid is invariably required which implies, for the finite difference or finite 

element method, a larger truncation error than if a uniform grid is used. The 

use of a uniform grid in u-space provides high resolution in physical space 

adjacent to the wall. This is particularly important for ·turbulent boundary 

layers. 

For two-dimensionc,l flows the Dorodnitsyn formulation offers the additional 

advantage of avoiding the explicit appearance of the norm2.l velocity component, 

vQ AlJchough it can be recovered if required. Consequently only one equation 

is so]_ved with the Dorodnitsyn formulation~ 

By choosing the non-dimensional veloci~cy gradient as ·the dependent variable 

the shear stress is compu·tecl accurately. 'This is par-ticularly importan'c in 

determining the skin friction behaviour. 
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2. DORODNITSYN BOUNDARY LAYER FORMULATION 

In this section the Dorodnitsyn formulation of the equations governing two

dimensional, turbulent boundary layer flow with blowing or suction in the normal 

direction, is described. 

For two-dimensional turbulent boundary layer flow the governing equations can 

be written in the following form, 

Clu/Clx + Clv/Cly 

uClu/Clx + v3u/Cly 

0 

= u du /dx + {1/Re}Cl [ (1 + vT/V) Clu/Cly] /Cly e e 

(1) 

(2) 

In eq. (2) the expression pvTClu/Cly has replaced the Reynolds stress, -pu'v', where \IT 

is the eddy viscosity. The equation system, (1) and (2) is parabolic in character 

and requires initial conditions 

u(x0 ,y) ui (y) and v(x0 ,y) vi (y) (3) 

and boundary conditions, 

u(x,O) 0 v(x,O) = v and u(x,oo) ue(x) 
\'1 

(4) 

where v is w the prescribed normal velocity at the wall. 

In eqs. (2) and (4), ue(x) is the known velocity distribution at the outer edge 

of the boundary layer. In eqs. (1) to (4) u, ue and v have been nondimensionalised 

with a reference velocity U00 and x and y have been nondimensionalised with a refe- , 

renee length L. Consequently the Reynolds number, Re = U00L/V. 

The following variables are introduced, 

E; r ue(x')dx' n Re;u y 
e 

0 

ul = vi = and w u/ue , Re; v/u 
e 

VI + nu I {au /Cl.E;} /U 
e e 

Then eqs. (1) and (4) take the form, 

Clu 1 Clw 
~+an 

1 Clu 1 Clu 1 

u at; + w an 

with auxiliary conditions, 

0 

1 Clue a { au I} 
-- + - (l+V /V) -
ue ClE; an T Cln 

(5) 

(6) 

u 1 = 0 w = Re; v /u at n = 0 and u 1 = 1 at n = oo • (7) w e 

Equations (5) and (6) are combined in the following way, 

fk x equation (5) + (dfk/du 1 ) x equation (6) 0 1 (8) 

where fk(u 1 ) is a general test function. Evaluation of eq. (8), after dropping the 

superscript 1 , gives 
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(9) 

l'lll in·tegra·tion ,.,id1 respect to n is made, 

drr r 0 

ldn + (10) 

The function, fk, is chosen so t::hat fk (00 ) ~ Oo The second stage of the Dorodnitsyn 

fm:nula:tion changes the variable of integration from n to u and introduces new 

dependent variabl;es, 

T 1/@ 8u/dn (ll) 

As a result eq. (10) becomes 
1 

f (l J l ) l@)du + 
d { 

a~; 
du ~ R .. F au e 

' 
du, 

(12) 

where t:he wall-blowing parame·ter, F "' 

Equation (12) is the Dorodnitsyn turbulen'c boundary layer fonnulat::ion wit:h a 

k:!1o'W-n normal velocity, 'Tw' at the r,va1L In the original Dorodnitsyn method, polyno

mial tria~l. solutions for I@ and T are utilised. The original Dorodnitsyn formula-

tion (the Me-thod of ReZa·tio.;,_s) is effective as long as the number of unknmm 

coefficien·cs· in the ·trial solution is small (say N "' 2 to ·~). The Method of Int:egral 

Relations is desc:dbed by Hol·c (1977). 

3. DORODNITSYN SPECTRiili FORl'!ULJ'tTION 

In this formulation t:he polynomial trial functions and the ·test function , in 

eq. (12) are replaced by relat:ed Ol"thonormaZ functions, gk(u). The orthonormal 

functions are constructed as follows, 

(13) 

v:here the ccefficients are evaluat:ed via the Gram-Schmidt orthonormalisat:ion 

process (Isaacson and Keller, 1966) so that; 

1 

t g. (u) gk(u) ·.r(u)du 1 if k 
J 

0 if .;. k 

(14) 

The ctppropriat·a fol.'Lla of w(u) will be indicated belo'l.v., 
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The trial solution is 

@ = (1~ ) rb + Nt b ,g. (u)J 
u ro j=l J J 

(15) 

With gk replacing fk in eq. (12) , and substitution of eq. (15) , the following is 

obtained 

~ r ~, 
0 

(16) 

where 

! 1 due 
Re Fg· (o)+ ---

k ue d!; ll dgk ll 
du (l-u 2 ) ® du + 

0 0 

(17) 

A comparison of eqs. (14) and (16) indicates that the choice, w(u) = u/(1-u), 

permits a significant simplification of eq. (16). That is eq. (16) becomes 

k = 1, •.. N - 1 

and when k 

where Vk etc. can be evaluated, once and for all, as 

l i gk(u) u/(1-u) du . 
0 

N 

(18) 

(19) 

(20) 

The spectral formulation is implemented by numerically integrating eqs. (18) and 

(19) in the !; direction. The variable-step, variable-order predictor-corrector 

method due to Gear (1971) is particularly suitable for this purpose. 

Accurate solutions using the Dorodnitsyn spectral formulation are obtained with, 

typically, N = 4 to 6 in eq. (15). The Dorodnitsyn spectral boundary layer formula

tion has been applied to incompressible (Fletcher and Holt, 1975) and compressible 

(Fletcher and Holt, 1976) laminar flows and to incompressible (Yeung and Yang, 1981; 

Fletcher and Fleet, 1984b) and compressible (Fleet and Fletcher, 1983) turbulent 

flows. 

DORODNITSYN FINITE ELEMENT FORMULATION 

Trial solutions are introduced for ® and (l+VT/V)T, in eq. (12), in the 

following way, 
M 

® I 
j=l 

N. (u)/(l-u)8. (/;) 
J J 

(21) 



and 
M 

T I 
j=l 

(1-u)N. (u) 
J 
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(l+VT/V) .T.(/;) 
J J 

(22) 

In aqs. (21) and (22) the factor (l-u) has been introduced ·to ensure that @1 and T 

have the correct behaviour a·t ·the edge of the boundary layer. The ·terms (u) are 

one-d:Lrnensional shape functions, typically linear or quadratic (Fletcher, 1984) . 

In eq. (22) ·the trial solution has been introduced for t:he group of terms, 

T. This is an exaJ.-r.ple of the (J1'0Up finite element (Fletcher, 

1983) and is partly responsible for the very economical execution of the current 

algorithm. 

The test func·tion, (u) , is given ·the following fonn, 

(u) (23) 

which ensures tha-t fk (u) = 0 at the outer edge of the boundary layer, u"'l. 

'rhe substitu"tion of eqs. (21) to (23) into eq. (12) indica-tes 'chat a modified 

Galerkin me'chod is produced. Eva.luation of tb.e various in·tegrals produces i:he fol

lo,,Iing system of ordinary differential equations for the nodal values, 8 " and T. , 
J J 

M 

2: 
j=l 

where 0lk 
l if 

0 if 

The various 

a.nd 

k l 

k ¥- 1 

{ 
1 du ! M 

' • - a uFo +---;2: e lk u di; . 1 e J= 

+ u 
a 

EF 8 
kj j 

coefficien-ts in eq. (24) are given by 

ll NkNj u du , EFkj 

0 

1 

J
r N {ell\ (l-u) - Nk} (l+u) du 

· j du 
0 

( [~i (l-u) -I du 

-[dN l duk (l-u) - du 

Jo 

(24) 

(25) 

The system of equation (24), has a very compact form due to simultaneously prescribing 

·trial solutions for 8 . and T . • However ~chis feature prevents eq. ( 11) being sa'cis-
J J 

fied except at the nodes, where 8. 
J 

1/t., or in the lL~it M + 
J 
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An efficient non-iterative, implicit marching algorithm for the system of 

equations,(25), is described by Fletcher and Fleet (1984a). This paper also provides 

numerical convergence results for the Dorodnitsyn finite element formulation. 

A comparison with finite difference solutions (STAN 5) obtained for turbulent 

boundary layers in different pressure gradients is made by Fletcher and Fleet (1984b). 

STAN5 (Reynolds, 1976) is typical of the more efficient finite difference boundary 

layers formulations. Solutions obtained with the present method, DOROD-FEM, demons

trate comparable accuracy to those produced by STAN5. However DOROD-FEM is about 

ten times more eaonomiaat than STAN5. 

The superior economy comes partly from the ability of the Dorodnitsyn formula

tion to obtain accurate solutions with fewer points across the boundary layer, and 

partly from the economical implementation of the finite element method. 
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