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ANALYSIS OF EXPLICIT FINITE DIFFERENCE METHODS USED
IN COMPUTATIONAL FLUID MECHANICS

John Noye

INTRODUCTION

It is now commonplace to simulate fluid motion by numerically
solving the governing partial differential equations on high speed
digital computers.

Finite difference techniques, because of their relative simplicity
and their long history of successful application, are the most commonly
used. They have, for example, been used in depth-averaged and three-
dimensional time dependent tidal modelling by many oceanographers and
coastal engineers : see, for example, Noye and Tronson (1978), Noye
et.al. (1982) and Noye (1984a).

However, like finite element techniques and boundary integral
methods, finite difference methods of solving the Eulerian equations of
hydrodynamics seldom model the advective terms accurately. Errors in
the phase and amplitude of waves are usual, particularly the former.

The accuracy of various explicit finite difference methods applied

to solving the advection equation, namely

(1.1) 3 + u§; =0, 0<x<1, t >0, ua positive constant,

is investigated in this work. The boundary condition to be used in
practice is that f(O,t) is defined for t > 0, with no values prescribed
at x = 1.

The von Neumann amplication factor is not only used to find the
stability criteria of the methods investigated, but also to determine
the wave deformation properties of the technique. These properties are
then linked to the "modified" equation; that is, the partial differen-
tial equation which is equivalent to the finite difference equation,
after the former has been modified so it contains only the one temporal
derivative, 9T/9t, all other derivatives being spatial.

It will be seen that successively more accurate methods can be
developed by systematic elimination of the higher order terms in the
truncation error, which is the difference between the modified equation

and the given equation (1.1).
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The approach used by Molenkamp (1968) and Crowley (1968) to assess
the accuracy of the numerical method to the advection equation is also
used to illustrate the conclusions reached from the mathematical analy-
sis; that is, the numerical method is applied to a simple problem whose
exact solution is known, and the numerical solution is compared with
the exact solution. The problem chosen is that of an infinite train of
Gaussian pulses, used as initial condition to (1l.1), for which the exact
solution at time t on the infinite domain-® < x < ® is the same train
displaced a distance ut to the right along the x-axis. The corresponding
numerical solution of this process is obtained using cyclic boundary
conditions at x = 0 and x = 1.

Higher order techniques, such as the third order upwind biassed
method and Rusanov's methods, are clearly more accurate than the
more widely used methods such as first order upwind and the Lax-Wendroff
methods. The increased accuracy justifies the increased computational
time and complications near the boundary due to extension of the compu-

tational molecule for certain higher order methods.

2. THE FIRST-ORDER UPWIND METHOD
At the gridpoint (jlx,nAt), j =1, 2, .., I3, n=1, 2, 3, ...,
Ax = 1/J, the advection equation

n n

3T

ol , BT
. x| .
J J

(2.1) ot

= 0,

becomes, on using the two-point forward time approximation and the two-

point backward space approximation,

n+l n n n
R 3”5
(2.2) A + uf = } = o.

On rearrangement, this gives the two point upwind equation, see Godunov (1959),

+
(2.3) T? b cT?_l + (l—c)T?,

where T? is an approximation to %(ij, nlAt) and ¢ = ulAt/Ax > 0 is the
Courantjnumber.

The amplification factor, G(c,NA), of the von Neumann method of
stability analysis is obtained by substituting T? = (G)nexp{i(Zﬁj/NA)},

i= /:I, into (2.3), where the parameter Ny is the number of grid-
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spacings per wavelength of a particular Fourier mode contained in the
initial conditions. For this method we obtain

W = {1 - 2c sin® (w7} - ile sin(2m/N,) ).

The stability requirement is that lGl < 1 for all NA 2 2, which is true
so long as 0 < c < 1.

The amplification factor also yields information about the differ-
ence between the numerical and exact solutions for an initial condition
consisting of an infinite sine wave of wavelength NAAX. While the ad-
vection equation (1.1). propagates this wave at speed u and unchanged
amplitude, a finite difference equation may transmit the wave at another
speed Uy and a different amplitude. These effects of the finite differ-
ence method may be described by two parameters, the relative wave speed
and the amplitude attenuation which occurs in one wave period. The

relative wave speed is denoted and defined by

(2.5) W= u/a= -Ny Arg{G(c,NA) }/2mc,

(2.6) v = |ele,np]

RELATIVE WAVE SPEED

and the amplitude attenuation per wave period is given by
NA/C'
(see Noye, 1984b, p.193).

The wave deformation parameters, U and Y, of the first order up-

wind equation (2.3) are graphed against N, for various ¢, in Figure 1.
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Fig.1 : Wave propagation parameters for first order upwind method.
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The loss of amplitude of component waves is very large; for instance,

with NX = 40 and ¢ = 0.4, the amplitude after one wave period falls to

0.7 of its original value, so that after two wave periods the amplitude

is less than half its original wvalue.

The effect of this is seen in Figure 2, in which is shown the

numerical solution after 10 periods for the following test case. The

initial conditions consist of an infinite set of Gaussian peaks (see

dashed curve), symmetrical about x = (P + %), P = 0,%1,%2,

..., SO it is
periodic in space with period 1; that is, %(x+l,t) =

= T(x,t). With
Ax = 0.025 and ¢ = 0.4, the numerical solution is obtained using cyclic

L . . n .

boundary conditions; that is with T? = Tj+J’ i=20,1,...,dJ-1. The ex-
In spite of this, "first-order upwinding
is the industry standard in chemical, civil and mechanical engineering"

(Leonard, 1981).

cessive wave damping is clear.

First-order upwinding is the basic differencing scheme

in many books including Gosman et.al. (1969) and Patankar (1980).

—— EXACT SOLUTION
-—— NUMERICAL APPROXIHATION

1.0+ -~ - 1.0

- 0.5

T(X 12.50)

DISTANCE X

Fig.2 : Gauss pulse problem solved using the first order upwind

method.

The consistency analysis of (2.3) involves Tayvlor series expansions

of each term of the finite difference equation about the gridpoint

(jAx, nAt).

This yields at this gridpoint the equivalent partial

differential equation

(2.7)

3T . 2T _ _ Ae %t ubx 9't _ (A6)? 3T u(Ax)? 3%t
3 T Mk T T 2 2T T2 T 6 9ts 6  9x’ T o

from which may be derived the "modified" eguation
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B} Ax ‘az A 2
(2.8) 9;[- + u—a—;l;— = EE_(]___C).B_X__E _ U(GX)

93T
5t (l—c)(l—20)§;§~+ ..

on successive substitution of (2.7) in itself to replace the temporal
derivatives on the right side, by spatial derivatives (see Warming and
Hyett, 1974). Clearly the finite difference equation (2.3) is consis-
tent with the partial differential equations (1.1), because the right

sides of (2.7) and (2.8) tend to zero as the grid-spacings At, Ax both

tend to zero.

Equation (2.8), which has the general form

9T 9T 921 %t 9T 9%

(2.9) 'Eﬁ:'+u${'=cz-a—x—2+ca’a—;’;+cqﬁ+cs'a‘;g‘+...

is related to the amplitude response per wave period Y by the relation

_ _ 4r? _c2 2 2 __cu
(2.10) vy = exp{ TR (NA) ThaE -1

and to the relative wave speed U by

2.11) p=1+ &gz (20u_cs
A Ny

(N w(bx)? u(Ax)* Toeee -

(see Noye, 1984b, p.242). Clearly, the coefficients of the even deri-
vatives of x, namely c,, Cy, Cg, -.., contribute to the amplitude error,
whereas the odd coefficients c3, ¢s5, ¢c7, ..., contribute to the wave
speed error. Thus, if c, is negative, Y is larger than 1, and the am-
plitude of any perturbation will grow exponentially as NA becomes very
large. In such a case, the finite difference equation is wunstable.
For the first order upwind equation (2.3) the amplitude response

per wave period is

- 2 - - 2
(2.12) Y = exp{_21r.__u‘__9.)_[l - (2_“)2(}__@21‘.62_)4. ..
NA NX 12

+ 1(=) as NA + o for fixed ¢ in 0 < ¢ < 1.

The relative wave speed is

27, 5 (1-¢) (1-2¢) 27 2 (1-12c+12¢2)
= - (= ______..__[ - (S e e .
(2.13) n=1 (NA) < 1 (NA) 30 + ]

1(~) for fixed ¢ in 0 < ¢ < %

} as NK - o0,
1(+) for fixed ¢ in % < c < 1

These asymptotic properties of Y and U for large NX are seen in Figure l.
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3. TWO OTHER FINITE DIFFERENCE METHODS
If the two-point forward time and two-point centred space approxi-
mations are substituted into Equation (2.1), the following centred space

finite difference equation is obtained:
n
(3.1 T = meTy ¢ T? - hetT, .

The corresponding modified equation is

2 2 3
%%,+ uaz-— _ubx 97T _ u(dx) (l+202)8 T

(3-2) - 2 ° 32 3 BT T e

Equation (3.2) is consistent with (1.1), but the negative coefficient
of 321/3x? indicates that perturbations will magnify exponentially so
the equation is unstable.

If the three-point backward space approximation is used with the
two-point forward time approximation, the following three-point upwind

finite difference equation is obtained:

(3.3) T?+l = -%cr? + 2c1? + %(2—3C)T?.
J -2 j-1 J

The corresponding modified equation is

9T 0T _  ulx Qil_ u(Ax)? A §j£
(3.4) EYe + Uy T T —§-CBX2 + 3 (1-c )3x3 + ...

which indicates that (3.3) is unstable because, like (3.2), the coeffic~
ient of BZT/sz is always negative.

In spite of their instability, it is seen in the next Section that
Equations (3.1) and (3.3) may be used with (2.3) to give more accurate

finite difference methods than (2.3).

4. SOME HIGHER ORDER METHODS
If the modified equations (2.8) and (3.2) are multiplied by c¢ and
(1-c) respectively, then added, the term containing BZT/BXZ in the trun-
cation error of Equation (2.9) is eliminated. Applying the same procedure
to the finite difference equations (2.3) and (3.1) yields the Lax-

Wendroff equation

+1
(4.1) T? = %c(l+c)T?_

7

1

- o, _ n
+ (1 c)(l+c)’|.'j e (1 c)Tj+l

with corresponding modified equation
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9T |, 3T _ _ u(Ax)? ¥ _u(x?® 't

o 2 o2y b
(4.2) By uax o (1-c )3x3 ——g———c(l le] )Bxk + ...

Equation (4.1) is stable for 0 < ¢ £ 1.

Graphs of the wave propagation parameters of (4.1) are shown in
Figure 3. These properties are discernable in the results of the Gauss
pulse test, Figure 4, which shows the main peak in the numerical solu-
tion (NA = 40) lagging behind the true solution. The small peak which
appears ahead of the true solution (NX = 14) is actually trailing

behind the peak at x = 1.5 in the exact solution.
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Fig.3 : Wave propagation parameters for the Lax-Wendroff method.

Alternatively, the coefficient ¢ in the modified equation may be
made zero by adding equations (2.8) and (3.4) multiplied by the same
weights as before, ¢ and (1-c) respectively. When the finite difference
eguations (2.3) and (3.3) are treated similarly, the optimal three-

point upwind equation is obtained:

+
4.3) T 2 et |+ c2-a)tt |+ B(1-c) (2-0) T,
] =2 . -1 3

which is stable for 0 < ¢ £ 2 and has the corresponding modified
equation

9T oT _ u(Ax)? 23T u(hx)®

31
— — - 2 . ———
(4.4) Y + use = 3 (l-c)(Z—C)Bx3 5 (1-c) (2 C)BX“ + ..

The results of applying (4.3) to solve the Gauss pulse problem are shown

in Figure 5. Component waves travel too fast in the numerical solution
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if 0 < ¢ < 1, which is in accord with the fact that the coefficient of

33T/8x3 (c3 of Equation (2.9)) is positive.

== EXACT SOLUTION
— NUMERICAL APPROXIMRTION

1.0+ - 1.0
g | 8 L
= o
3 0.5 3 L o.s
i . u -

T T’
Fig.4 : Gauss pulse test with Fig.5 : Gauss pulse test with
Lax~Wendroff method. optimal 3-pt. upwind

method.

We have seen that, for 0 < ¢ < 1, the finite difference equation
(4.1) propagates component waves too slowly whereas (4.3) propagates
them too quickly. Taking the arithmetic mean of these two equations
would give a wave speed which is nearer the exact value. This yields

Fromm's (1968) "zero-average" phase error method, stable for 0 < ¢ £ 1,

(4.5) L 1ot |+ b (5ot |+ (l-c) (44c) T - ke (l-c) T
] j-2 j-1 j j+l

in which the coefficient cy of the derivative 3°7T/8x° of the truncation
error in (2.9) is smaller than those in (4.2) and (4.4). However, the
coefficient of 33T/8x3 in the modified equation (2.9) can be made zero
by multiplying (4.1) by (2-c)/3 and adding (4.3) multiplied by (l+c)/3.

The result is a third-order upwind biassed equation, stable for 0 < ¢ £ 1,

1
@.6) T o - Zo(ieo) ()T + He(2-c) (L) 1T
3 6 j-2 3-1

L1 _ no_ 1 _ _ n
+ 5 (1l-c) (2 C)Tj E‘<l c) (2 c)Tj+l,

with the modified equation

3T T uldx)?® 3T
(4.7) §E'+ u§§'— - —~32r—11—c)(2-c)(1+c)§§;
L4 5
+ 91%%1—«1—c)<2-c)<1+c)(1—2c)%§%-+ ...
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Use of Fromm's equation (4.5) and the upwind biassed equation (4.6)
to solve the Gauss pulse problem (see Figures 6, 7) indicates the super-
iority of both over the Lax-Wendroff and the optimal three-point upwind
equations. The peaks in the numerical solutions are now more nearly
aligned with those of the exact solution, particularly for the third-
order upwind biassed equation. Leonard (1984) states that, in his
opinion, "third-order upwinding is the rational basis for the develop-
ment of clean and robust algorithms for computational fluid mechanics”.

However, more accurate higher order methods can be derived from (4.6).

== EXACT SOLUTION
- NUMERICAL APPROXIMATION

1.0 1.0 - 1.0
& o
= 0.5 =~ 0.5+ - 0.5
2 =3
pus E - b -
0
3 g o
DISTANCE X DISTANCE X
Fig.6 : Gauss pulse test with Pig.7 : Gauss pulse test with
Fromm's method. 3rd-order upwind biassed
method.
Replacing Ax by -Ax in (4.6) and (4.7) yields the finite difference
equations
n+l 1 n L, n
(4.8) T, —c(l+c)(2+c)T + % (1+c) (2+¢) (1-c) T, - %c(2+c) (1-c) T,
] 6 -1 3 j+1

1 n
+ =c (1+c) (1-
c (1+c) ( C)Tj+2

with corresponding modified partial differential equation

9T (Ax)®
(a.9) g+ ua—x =1 2x (1+c) (24c) (1- c)a -

Loulx)” T
o0 (l+c)(2+c)(1-c)(1+2¢)a S o
Since addition of (4.7) multiplied by (2+c)/4 and (4.9) multiplied by
(2-c) /4 eliminates the coefficient of 3"1/3x" in the modified equations,

then similar operations applied to the finite difference equations (4.6)
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and (4.8) yield the fourth-order accurate equation, see Rusanov (1970)

and Burstein and Mirin (1970):

(4.10) T?+l = - 4£c(l-c)(1+c)(2+C)T?_2 + %C(2“C)(l+c)(2+C)T?_

24 1

+ % (1-c) (2-¢) (1+c) (2+¢) T = e (1-c) (2-c) (24c) T
J 6 j+1

1 n
+ Ezc(l—c)(l+c)(2+c)1'j+

5
This is generally referred to as Rusanov's "Minimum amplitude error"
method and is stable for 0 < ¢ = 1.

Rusanov's "minimum phase error" method may be obtained in a similar
way, by eliminating the coefficients of 98°1/9x° from (4.7) and (4.9) by
multiplying by (1+2c) (2+c)/10c and (1-2c) (2-c)/10c respectively, and
subtracting. Applying this procedure to the finite difference equations

(4.6) and (4.8) yields the equation, stable for 0 < ¢ < 1:

n+1

(4.11) 7 = - o
3

(l-c)(l+c)(l+2c)(2+c)Tj_2

o
ol“

1 . n
+ 56(2—c)(1+c)(2+c)(l+4c)Tj_1

+

[

(l-C)(Z-C)(1+c)(2+c)T? + é%(l—c)(2-c)(2+c)(l—4c)T?+l

1 n
- ga(l-c)(l—2c)(2—c)(l+c)Tj+2.

Results from the use of (4.10) and (4.11) to solve the Gauss pulse
problem are seen in Figures 8 and 9. The improvement in amplitude res-
ponse of the "minimum amplitude error" method over the third order up-
winding equation (4.6) is evident, as is the improvement in wave speed
of the "minimum phase error" method. Although the Rusanov equations
appear to involve an additional spatial gridpoint compared to the third-
order upwind-biassed equation, the fact that the velocity u may be
either positive or negative in a realistic situation means that, in
practice, they all require two spatial gridpoints each side of the cen-
tral gridpoint. The problems which then remain, are that, firstly,
values of the dependent variable T at the gridpoint next to the boundary
x = 0 (i.e. j = 1) must be interpolated with an accuracy at least that
of the method being used and, secondly, in order to reach a given grid-
point (jAx, nAt) in x-t space, the initial set of values may need to
extend well beyond values at jAx because of the triangular shape of the
computational domain. However, these complications are more than com-

pensated for, by the much greater accuracy of the higher order methods.



TX, 12.50)

116

= — EXACT SOLUTION
—— NUMERICAL APPROXIMATION

1.0 1.0

0.5

1] 1] T |/ T T T TR ]
0 0.5 i.0
DISTANCE X DISTANCE X

Fig.8 : Gauss pulse test with Fig.9 : Gauss pulse test with

Rusanov's min. amp litude Rusanov's min.phase
erroyr method. error method,

SUMMARY

This article reviews in a systematic fashion some of the explicit
finite difference methods of solving the advection equation. Use of the
modified partial differential equation which is equivalent to a finite
difference equation used to solve the advection equation, contains in
the truncation error terms of the form cp apx/axp, p=2,3,4,.. The even
indexed terms contribute to the error in amplitude response, Y, and the
odd indexed terms contribute to the error in relative wave speed, U. By
successively eliminating these terms, it has been shown that methods of
increasing order of accuracy are obtained. This procedure can be con-
tinued, in order to produce even more accurate schemes 1in which the
spurious oscillations are almost eliminated. This is the subject of a

further article on this work.
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