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SOME REMARKS ON NUMERICAL METHODS FOR NONLINEAR 

HEAT EQUATIONS WITH NEAR SINGULAR SPECIFIC HEATS 

Anthony MiUer 

Consider the one-dimensional nonlinear heat conduction equation 

{1) ! 
ou o ( ouJ + q{x,t) X E {0,1) 1 > 0 c {u) - = - k {u) - , t ot ox ox 

u{O,t) u{l,t) 0 , t > 0 

u{x,O) = u0 {x) 1 X E {0,1) 1 

where c{•) and k{•) are continuous functions on lR satisfying 

* * {2a) 3c > 0 such that c{u) ~ c > 0 

{2b) k{u) > 0 

Of particular interest are cases where c(u) varies greatly over a small 

temperature range. Such behaviour can arise in simple models of phase 

changes in alloys {"near Stefan problems"). It would be desirable to have a 

numerical method for approximating the solution of {1) whose accuracy was 

in some sense independent of the behaviour of the coefficients c{•) and 

k{•) • It is however unreasonable to expect this much since the accuracy 

of any approximation will clearly be influenced by the regularity of the 

exact solution. This regularity can vary considerably, depending on the 

coefficient c{•) 1 k{•) as well as the initial temperature data u0 and 

the source data q • A more reasonable request would be that the stability 

properties of a numerical method be uniform for all c(•) and k{•) 

satisfying {2). That is, we would like to be able to assert something of 

the form: 
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lle!l 
sup iffi:iliT < M < oo , 

where II ell denotes some norm of the error e of the approximat.e solution , 

Ill u Ill is some measure of the approximabili ty (i.e. regularity) of the exact 

solution u , and t.he supremun1 is taken over all coefficients c •) and 

k(•) satisfying (2). This is the matter we \vish to discuss briefly here. 

For simplicity of exposition we shall only talk in terms of finite 

difference schemes for (l) with uniform spatial and time mesh spacings 

1 
!J.x = N , /J.t respectively. Most of what we shall say extends to mo:r:e 

general settings with minor modifications. 

Typical of the standard discretization methods for nonlinear parabolic 

equations that one may think of using is the classical (fully) implicit 

method. Applied to (1), and assuming that k(•) is a constant, it gives 

(3) 

where 

r +~J 
1 
l. 

,.2 n 
u u. 

l 

[ _n+l n) u. -u. 
k 02u1?+l + qn ~ ~ 

!J.t ~ -~ 

n n 
uo UN 0 

0 u0 [~) u. 
l 

l 

(!J.x) 2 
[ n _n nJ 

U • l - <!U . + U • l l.+ l ]_-

ri 
qli 

(i l vo • .,N-1; n 0,1,. .. ) 

(n 0,1' ... ) 

(i 1, ••• ,N-1) 
' 

(i l, ... ,N-1; n 0' 1' ... ) 

The standard stability analysis of the difference scheme (3) requires some 

assumption that controls the slope of c(•) (e.g. Lipschitz continuity) • 

Counterexa."!!ples show that in the absence of any such assumption the 

stability of the scheme can degenerate as more extreme choices for c(•) 

are made. Intuitively, at leas·t one reason for this is clear: any 

perturbation in 

consequently in 

n 
u say, may cause perturbations in the 

( n) 
clu.l , and 

l) 

n+l u , v1hich are unable to be uniformly controlled by the 



original perturbation in n 
u 
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Rather than base the discretization directly on the formulation (1), 

introduce a nevl dependent variable h ,. h (u) defined by 

h(u) J: c(s) ds • 

The problem (1) may now be reformulate.;i as 

J 

CJh Cl [ au) q(x,t) (0,1)' t 8t = Clx k(u) Clx- + ' X E > 0 

(4) u(O,t) u(l,t) = 0 t > 0 

l h(x,O) h (x) ) h 0 (xl say , X E (0' 1) ' 
where 

h(x,t) h(u(x,t)) . 

Physically h represents the specific (volumetric ) enthalpy. Notice tha·t 

by (2a) h(u) is strictly increasing, and so 

(5) (h - h 

There is no loss of generality in supposing· k (u) 1 in (Ll). For if 

not we may define the Kirchhoff temperature, 

and rewrite (4) as 

( 
(Jh 

1 
Clt = dX2 

B ( o, t) 

h(x,O) 

B(u) k{s) ds 

q(x,t) , X E (0,1), ·t > 0 

B(l,tl o , t > 0 

X E (0,1) , 

where 8 (x,t) = 8 (u (x,t)) . Moreover, since 8 (u) is strict.ly increasing 

by (2b), h regarded as a function of B is also strictly increasing. 

Thus the problem (4) with arbitrary k , if thought of in terms of h and 
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9, is of precisely the same form as (4), (5) with k 1 • We shall from 

now on only consider this case. 

We may think of applying obvious generalizations of the standard 

discretization methods to (4). Two cases will be considered: 

Fully Implicit (FI) method: 

(6) 
hn+l - h~ 

i l. 

Llt 

Crank-Nicolson (C-N) method: 

(7) 

with in both cases 

h~ 
J.. ho(~J , 

n un = 0 uo N 

h~ h(u~l l. J..J 

(i l, .•• ,N-1; n 0,1, ••• ) • 

1 ( n+l n) +"2 qi +qi , (i=l, •.• ,N-1; n=O,l, ••• ) 

(i 1, •.• ,N-1) 

(n 0,1, .•• ) 

(i 1, •.• ,N-1; n 0,1, ••• ) . 

We wish to examine the stability properties of FI and C-N. However, 

let us first mention that for both methods, various norms of the discrete 

solutions h~ 
J.. 

can be bounded independently of the discretization 

parameters Llx , Llt Using standard compactness arguments, it can then be 

shown that the discrete solutions converge in some sense (see e.g. [2], 

[3], [4]). However such arguments only establish convergence in rather 

weak norms. Moreover they do not provide any form of estimate for the error in the 

discrete solution. This makes it difficult to develop any theoretical 

understanding of the equality of the methods. 

we show that for the FI method h and u are stable in a discrete L1 
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sense. More specifically we have 

THEOREM: Let and h~ -n be two solutions of (6) corresponding ' U, 
l l 

-co initial and data h? n n? zaeBpec·tiveZy source ' qi l l 

(i O,. •. ,N; n = 0,1, ... ), then 

~ [lu~- u~l + lfl~- h~!) $ c(.~ 
i=O · 1 1 1 ·1=0 

+ /:;t 
n-1 N 
~ ~ 

m=l i=O 
n = 0,1, ••• 

where the constant c ·is independent of !sx , 6.t and can be selected 

w~ifoX'171ly for aU c ( •) satisfying (2al • 

Proof: write 

n 
H. 

l 

-.n 
h. 

l 

n u. 
l 

and 

Subtrac·ting the respective cases of (6) gives 

Multiply this equation by 

if 

sgn if 

if 

and sum over i = O, .•. ,N to obtain 

(8) 

11+1 n+1 :E H-. sgn U .-
. l l 
l 

sgn 
i 

.., 
+~ /l,t. t 

i 

Q"': 
l 

u~+1 > o 
l 

n+l 
U, 

l 

n+l 
U, < 0 

l 

sgn +~~t 
j_ 

+ 1:(2) + say . 

From (5) it follows that 

n+l n+l 
H. U. 

l l 

~n+l) - u. 2 0 
J_ 

and so the left hand side of (8) becomes 

sgn 
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On the ot.her hand 

!I:(l> I :<;; 1; 

i 

I L 13 l I /':..t 1; J nl :<;; Qi 
i 

while after a summation by parts (noting that un+l = 0) 
N 

2::(2) /J,t N~l lun+l - un+l) (sgn un+l - sgn un+l) ,.; 0 • 
~ l i+l i i+l . i 

(!J,x) ~ i=O 

Thus (8) gives 

Iterating this result back to n = 0 gives the theorem, having noted t.hat 

by (2a) 

I n+l, 
H. I • 

]. 
II 

The natural question to ask now is I!Jhet.her a similar stability resu.l·t 

holds for C-N. 'rhis question is of some practical interest since, by 

analogy with the case of the linear heat equation say, if some reasonable 

form of stabilit.y holds for C-N then C-N can be expected to be markedly 

more accurate than FI. However the follm·Iing· simple counterexample show·s 

an estima·te <malogous to that of the theorem cannot hold for C-N. 

Suppose the enthalpy-temperature relation is given by 

if u 2: 0 
h (u) 

if u :<;; 0 ' 

\vhere B > o is a constant. Take .5 (i.e. N 2) and consider 

solutions of (7) corresponding to data 

h~ -n 
0 q. 0 

]_ ]_ 
(i 0,1 1 2; 0,1, ... ) 

ho 
n 

and 
n 

0 s ' qi ]_ 



Obviously 0 (i 0,1,2; n 

is sa·tisfied, then 

Clearly a.n estimate of the form 

;1.64 

0,1, ..• ) , whereas provided 

___M__ > 1 
(/lx) 2 

cannot hold wi·th c independent: 

of a and [3 • In o·ther words, the estimate of the theorem canno'c apply 

in the C-N case with C independent of Llx , ilt and uniform for all c •) 

satisfying (2a). 

Let us remark however that if we impose the extra condition 

(9) 

then the theorem can be shown to hold for C-N. Note ·that this condition 

was specifically violated in the above counterexample. 

The above counterexample does no·t preclude the possibility of a 

slightly weaker fornl of stability than ·that of the theorem holding for C-N 

(e.g. discre-te L 1 stability for jus·t u ) . However the foLLowing 

nu._merical example suggests that this is unlikely. 

Consider -'che classical Neumann solution of ·the Stefan problern in t.he 

one-dimensional half space x > 0 (see [l]). Concentra·te on the interval 

(l, 2) , and use ·the exac·t solu·tion to obtain boundary values at the end-

points of ·this interval and the ini·tial value when the moving phase 

boundax·y passes the lef·t hand endpoint of the inteJ:vaL Transforming (1,2) 

·to a (O,l) and choosing a ne'i'l 'cime origin ;;re can ob·tain a formulation for 

t.he problem of the form of (4). More specifically the exact solution is 

given by 

u(x,t) 

erf A erf(~) 1 
1 

1 
2 - ---erfd~) 

erfc /1. 
A < ~ 
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>vhere A. = 0.05 and E;= x+l 

2(t+l00)'2 
(x E (0,1), t > 0) Erf(•) and 

erfc ( •) are the usual error and complementary error functions respec·tively. 

This solution satisfies a slightly modified form of (4) \vith k = l , q = 0 

and en·thalpy-'cemperature relation given by 

{" 
u < 1 

h(u) [l, 188.738] u 1 

188. 7 38 + (u-1) u > 1 

No·te ·that here u has non-homogeneous Dirichlet boundary conditions at 

x = 0,1 , and that. h(u) is set valued at u = 1 . These modifications 

however introduce no major nevl fea·tures to the problem and our previous 

discussion is unaffected by them. 

This problem was solved for two sets of mesh parameters, /',.x = • 05 , 

/',.t = 10 and 6x = .025 , 6t = 5 The pointwise errors in the numerical 

solu·tion at ti..mes t = 100 and ~c = 250 at selec·ted nodal points are 

shown in 'I' able I. 

A comparison of the errors for the two methods reasonably sug-ges·ts that FI is 

more reliable than C-N. While the errors in dw FI solution increase 

steadily ·towa:cds i:he phase tr·ansition (this occurs at x = • 41"1 for 

t = 100 and x = • 87 for ·t = 250 ) , ·those in the C-N solution oscilla>ce 

v1it.h relatively lacrge amplitudes. Decreasing both D:x and /',.·t does not 

seem ·to effec·'c the compara·tive behaviour of the ttJ1J'O rnethods" 

The inferi.or performance of C,-N .in -'chis example seems to sugg·est that. 

the stabili·ty proper'cies of C-N are appreciably weaker than t:hose of FI, 

since presumably there is lit·tle significan·t difference between the 

discretization errors made in the FI and C-N equatior!.s (6) and (7). Indeed, 

if anything, the expec·tc:.tion would be that the discretization error in the 

C-N equation (7) would be less than 'cha'c in the FI equation, at least in 



;166 

the limit as ~x,~t + 0 Note incidentally that the quantity ~~ 
c* (~x)2 

of (9) takes the values and for the meshes considered 

here. 

TABLE I: Errors in Numerical Solution of Test Problem • 

X 

.1 

.2 

.3 

.4 

X 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

• 05, ~t 

t = 100 

FI 

* 6 (E-4) 

14 

18 

27 

FI 

3 

7 

11 

14 

18 

22 

26 

29 

t 250 

10 

CN 

-105 

-280 

-107 

100 

CN 

86 

247 

63 

-155 

125 

-215 

48 

202 

X 

.1 

.2 

.3 

.4 

X 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.025, ~t 

t = 100 

FI 

-1 

-1 

-2 

-3 

t = 250 

FI 

-2 

-3 

-4 

-7 

-10 

-13 

-16 

-19 

5 

CN 

-57 

-36 

35 

56 

CN 

-66 

-57 

10 

34 

-8 

90 

133 

2 

[*: All quantities in the FI and CN columns should be multiplied by this 

factor.] 
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