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PHASE RETRIEVAL AS A NONLINEAR
ILL-POSED PROBLEM

G.N. Newsam

INTRODUCTION

Phase retrieval is a common problem in many branches of physics,
such as optics or crystallography, but a great deal of difficulty has
been encountered in the construction of numerical solutions to it.
This arises because the problem is ill-posed; this talk briefly
describes the two sources of ill-conditioning, nonuniqueness and
discontinuous dependence of the solution on the data, and considers

the implication for numerical algorithms for the problem's solution.

The prototypical phase retrieval problem occurs when a light
beam passes through a small aperture B and then falls on a flat
screen A. Classical optics states that the wavefront at A is the
Fourier transform of the wavefront across the aperture, so that
knowledge of the wavefront in the plane of A allows reconstructién
of it at B. Measurement of the intensity of the beam on the screen
an easy task; measurement of the phase is quite a different matter
and is usually impossible. This leads to the following mathematical

model problem of phase retrieval

Given the measured modulus m(s) of a function g(s) on a
bounded set A‘ZIQJ, where g(s) is the Fourier transform
of a function G(w) with support contained in the bounded

set BC ]RN , £ind

is
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i. the phase of g(s) on A
ii. the extension of g(s) to all of ng

iii. the function G(w) on B.

Since an arbitrary phase may be assigned to a given wavefront
without altering its modulus, it is necessary to show that the condition
that the beam has passed through a bounded aperture severely limits
the class of possible phases. Fortunately this follows from the next

theorem

PALEY-WEINER THEOREM [3]: g(s) is the Fourier transform of a function
G(w) with‘bounded support iff g(s) is an entire function of

exponential growth.

However, even with this restriction, the mathematical model is
still an ill-posed problem. Hadamard defined a problem to be ill-posed

if the solution failed to either

i. exist
ii. be unique

iii. depend continuously on the data

Phase retrieval fails all three conditions.

Nonexistence, although ominous at first sight, is, in fact, a
non-issue. Since g(s) is analytic, so is m(s) ; thus any nonanalytic
perturbation cof the modulus through measurement error produces a
mathematical model with no exact sclution. However, as the data is
collected from an actual wavefront, a real solution must exist. Thus
the mathematical model may be adjusted with confidence to produce

approximate solutions even in the presence of nonanalytic errors.
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However nonuniqueness and discontinuous dependence create real
difficulties requiring special attention. The first is due to the
nonlineaxr projectivebnature of the modq}us operator, and may be
characterized using the theory of ana1§£ic functions. The second
occurs as information on g(s) outside the bounded set A is
not available; it is manifested in the‘pfesence of a compact linear
operator, the finite Fourier transform, whose inversion requires

techniques from the theory of linear ill-posed prcoblems.

NONUNIQUENESS

Nonuniqueness in phase retrieval turns out to be an elaboration
of the following basic idea. A function g(s) is an analytic function
of the complex variable s iff the conjugate function g*(s*) is also
analytic. Thus, if g(s) may be factored into the product gl(s)gz(s)
of analytic functions, then g(s) = gl(s)g;(s*) is also analytic;

*
and for real s (i.e. s = s )

* % -
(2.1) lgs)] = lgy )| =lay0)] = lgg )] +]a, s = |5(e) ]

All solutions to phase retrieval may be related in this manner.

In one dimension a complete characeterization of the solution set
is possible. If g is any solution, then, as a consequence of the
Paley-Weiner Theorem, it has a Hadamard factorization, i.e.

o+ps m
B s

(2.2) gls) = e n (-2

k€N Sk

where 0o and B are constants , N is the set of natural numbers,
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and {sk}kE N is the set of zeroes of g..  Viewing this as a
factorization, and notinq that (1-s*/sk)* = (1—s/s;) leads to
Akutowicz's results [1,2]: all possible alternative solutions g
must have the form

i@ o+Bs m
e e ]

(2.3) (s) = m@a-29 1 (-9

kK€D Sy keEN-K k

where O 1is an arbitrary real number and A is any subset of N.
Furthermore if B 1is an interval [a,b] then any function of this
form is a solution. Since the set of all subsets A of N is

uncountable, there is a real continuum of possible solutions.

The result implies that all solutions are generated by flipping
zZeroes sk of a particular solution to their conjugates s; . An
extension of these arguments to higher dimensions [6,Appendix D] shows
that if g(sl,...,sn) and §(sl,...,sn) are both solutions to phase
retrieval, then the set Z§ of zeroes of ¢ must be contained in the
union of the sets Zg and (Zg)* , and vice versa. The zeroes of an
entire function of n variables form an analytic manifold of dimension
n=1. If n =1 then this manifold must be a collection of disjoint
points, thus it is possible to flip any part to its conjugate without
destroying the analyticity of the whole manifold. However, for n22 ,
Zg will be a collection of connected analytic components; flipping an
arbitrary subset to its conjugate will most likely create a nonanalytic
set Za which cannot be associated with an alternative analytic solution
¢ .. Furthermore, in higher dimensions almost all sets Zg will consist

of a single connected analytic component; this is analagous to the result

that almost all polynomials of two or more variables are irreducible,
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i.e. cannot be factored. No proper subset of such a manifold may be
flipped to its conjugate without destroyving analyticity; therefore

almost all solutions will be unigue.

Unfortunately the analysis used‘to resolve questions of uniqueness
has not yet produced an associated numerical algorithm for recovery
of the phase of g. Any method of generéting even an approximate
phase would be of great help, as experience has shown that any iterative
algorithm foxr recovery of G(w) usually fails to converge unless started
close to a known solution. Recently Bates, Fright and Garden [4,5]
have cbtained some promising results in this area which suggest the

following open gquestions

T
1. In one dimension, given g(0), g (0) and lgl , does
there exist a second order o.d.e. that may be integrated

up to give the phase of g on A.

2. In two dimensions, given g(0,0) and |g| , does there
exist a p.d.e. that may be integrated up to give the

phase of g on A.

DISCONTINUOUS DEPENDENCE OF THE SOLUTION ON THE DATA

The source of discontinuous dependence is best seen in a formal
description of the problem, therefore the following notation is

introduced. F denotes the Fourier transform, : Lz(mﬁ)+I?(A(B))

PA(B)

denotes the projection operator

g(s) s €A
(3.1) (P,9) (s) =
0 s ¢A

The composite operator PAFPB : LZ(A)e-LZ(B) is termed the finite

Fourier transform.
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In this notation the mathematical model of phase retrieval requires

solution of the system of equations

(3.2) (PAFPBG) (s) g(s)

(3.3) lg(s)]

m(s)

Even if the phase of g is known on A, Eg. 3.2 must still be solved

and this requires inversion of the linear operator PAFPB + Inversion

of the full Fourier transform F: LZ(Py) - LZ(IQB is well known to be

a stable procedure as F is a unitary operator. However, as information
is lost in the truncations PA and PB , inversion of the finite Fourier
transform is no longer stable. Indeed, as PAFPB is a compact linear
operator, its inversion is the prototypical linear ill-posed problem.
This problem underlies phase retrieval and is unavoidable in any

method of solution; for example consider the linear system that results

after applying Newton's method to Egs. 3.2 and 3.3.

The finite Fourier transform has been extensively studied (for
a review see [8]), the more important results are briefly reviewed here.
. s . . «© o
First, it has a singular value decomposition {¢i’ci’wi}i=1 , where {¢i}i=1
[ee]
and {wi}i=1 are analytic functions forming orthonormal bases for LZ(A)

and L2(B) (in addition, in one dimension they also form Sturm-

Liouville systems). The Gi are scalars and

(3.4) PAFPBwi = ci<1>i 0,20 g, ¥o

The crucial result is that the Gi are asymptotically distributed as
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1 i< |a
(3.5) G, ~

B|

e_OLi i> IAl'iBl e o a constant

These expressions are valid everywhere except on a narrow interval,
centered on i = |a]e|B] and of width proportional to

|aaf-|om

elog ((|oa]<|aB])/(|a]-|B])) , over which the distribution
changes smoothly from one asymptotic form to the other. Here |A|

denotes the volume of A,IBA| the area of the boundary of A.

Discontinuous dependence can now be clearly seen by considering
the effects of errors on formal expansions of g and G as series

of singular functions :

(=) oo

(3.6) g= ) a b, G= ) .Y,
i=1 i=1

Egs. 3.2 and 3.4 imply that bi = ai/Gi . If a, is perturbed to

ai+€ , this induces a perturbation of bi to bi+€/0i . As it

the perturbation in g remains bounded, but the induced perturbation

in G grows exponentially.

Thus, to avoid catastrophic amplification of errors, the expansion
of G must be truncated to those values of i for which ci“ll .

This restricts the solution space to the span of the first N singular

functions, where N~ |A

Bl. N is termed the essential dimension
of the problem; loosely speaking, it is the maximum number of coefficients
in any expansion of G that can be accurately recovered from Eg. 3.2

in the presence of noise. A precise definition is given in [6].
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IMPLICATIONS FOR NUMERICAL SOLUTIONS

The above results have important implications for the construction
and performance of numerical algorithms for phase recovery. In one
dimension, the nonuniqueness results imply the existence of uncountably
many solutions. Thus, unless the initial guess is close to a particular
solution, any iterative algorithm will dither among an infinite set
of attraction points. Extra information must be obtained, if possible,

.to reduce the size of the possible solution set.

In higher dimensions solutions are most likely unique. However
numerical algorithms used so far, such as the Gershberg and Saxton
version of the iterated projection algorithm [7], still show poor convergence.
This arises as the algorithms must still effectively invert the finite
Fourier transform, and this will only be done in a stable manner if the
solution space is restricted to the subspace spanned by the first
|A[°|B] singular functions. Thus only this smooth component of G may

be accurately determined from the model.

Moreover numerical discretizations should be approximately the
same size as the essential dimension. Much larger, and no additional
accurate information is obtained for the extra work; much smaller,
and accurate information is lost. In addition, discretizations should
be tailored to the smooth singular functions, e.g. based on expansions
in Legendre polynomials or Gaussian quadrature, and not on the fast

Fouriexr transform.

However, even with the‘above improvements, phase retrieval is still
a difficult problem to solve numerically. In particular there is still
much work to be done on optimizing algorithm design, generating good initial
guesses, and on incorporation of extra conditions that g or G may be

known to satisfy.
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