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PHASE RETRIEVAL AS A NONLINEAR 

ILL-POSED PROBLEM 

Phase retrieval is a common problem in many branches of physics, 

such as optics or m::'Js·tallo,;p:·aphy, but a grea'c deal of difficulty has 

been encountered in ·the construction of numerical solutions to it. 

'rhis arises because ·the problem is ill-posed; ·this talk briefly 

describes 'che two sources of ill-conditioning, nonuniqueness and 

discontinuous dependence of the solution on the data, and considers 

·the implication for numerical algorithms for the problem's solution. 

'rhe pro·totypical phase 1:·etrieval problem occurs when a light 

beam passes through a small aperture B and the:n falls on a flat 

screen A. Classical optics states tha·t the wavefront at A is t.he 

Fourier ·transform 6f the wavefront across "the aperture, so that. 

kno1cJledge of the 111avefront in ·the plane of A allows reconstruc·tion 

of it at B. Measurement of ·the intensity of 'che beam on ·the screen is 

an easy t.a.sk; measure\1lent of tb.e phase is quite a different wat.ter 

and is usually impossible. This leads to ·the follo1,1ing mathematical 

model problem of phase retrieval 

Given the measured modulus m(s) of a function g(s) on a 

bounded set r.,_ c JRN , where g (s) is the Fom:ier transform 

of a function G(w) with support contained in the bounded 

set B c lRN , find 
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i. the phase of g(s) on A 

ii. the extension of g(s) to all of mN 

iii. the function G(w) on B. 

Since an arbitrary phase may be assigned to a given wavefront 

without altering its modulus, it is necessary to show that the condition 

that the beam has passed through a bounded aperture severely limits 

the class of possible phases. Fortunately this follows from the next 

theorem 

PALEY-WEINER THEOREM [3]: g(s) is the Fourier transform of a function 

G(w) with'bounded support iff g(s) is an entire function of 

exponential growth. 

However, even with this restriction, the mathematical model is 

still an ill-posed problem. Hadamard defined a problem to be ill-posed 

if the solution failed to either 

i. exist 

ii. be unique 

iii. depend continuously on the data 

Phase retrieval fails all three conditions. 

Nonexistence, although ominous at first sight, is, in fact, a 

non-issue. Since g(s) is analytic, so is m(s) ; thus any nonanalytic 

perturbation of the modulus through measurement error produces a 

mathematical model with no exact solution. However, as the data is 

collected from an actual wavefront, a real solution must exist. Thus 

the mathematical model may be adjusted with confidence to produce 

approximate solutions even in the presence of nonanalytic errors. 
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However nonuniqueness and discontinuous dependence create real 

difficulties requiring special attention. The first is due to the 

nonlinear projective nature of the modulus operator, and may be 

characterized using the theory of analytic functions. The second 

occurs as information on g(s) outside the bounded set A is 

not available; it is manifested in the presence of a compact linear 

operator, the finite Fourier transform, whose inversion requires 

techniques from the theory of linear ill-posed problems. 

NONUNIQUENESS 

Nonuniqueness in phase retrieval turns out to be an elaboration 

of the following basic idea. A function g(s) is an analytic function 

* * of the complex variable s iff the conjugate function g (s ) is also 

analytic. Thus, if g(s) may be factored into the product g1 (s)g2 (s) 

* * of analytic functions, then g(s) = g1 (s)g2 (s) is also analytic; 

* and for real s (i.e. s = s ) 

(2 .1) jg(s) I 

All solutions to phase retrieval may be related in this manner. 

In one dimension a complete characeterization of the solution set 

is possible. If g is any solution, then, as a consequence of the 

Paley-Weiner Theorem, it has a Hadamard factorization, i.e. 

(2 .2) g(s) _ ea+Ss sm l1 (J. _ ~) 
kEN sk 

where a and S are constants , N is the set of natural numbers, 
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and { sk} k E N is the set of zeroes of g. . Viewing this as a 

factorization, and noting that leads to 

Akutowicz's results [1,2]: all possible alternative solutions g 

must have the form 

{2 .3) g{s) iS a+Ss 
- e e sm II {1 

kEA 
II {1 - =<ss ) 

kEN-A k 

where 8 is an arbitrary real number and A is any subset of N. 

Furthermore if B is an interval [a,b] then any function of this 

form is a solution. Since the set of all subsets A of N is 

uncountable, there is a real continuum of possible solutions. 

The result implies that all solutions are generated by flipping 

* zeroes sk of a particular solution to their conjugates sk • An 

extension of these arguments to higher dimensions [6,Appendix D] shows 

retrieval, then the set 

union of the sets z 
g 

and 

Z-g 

and 

g{sl, •.. ,sn) are 

of zeroes of g 

* {Z ) ' and vice g 

both solutions to phase 

must be contained in the 

versa. The zeroes of an 

entire function of n variables form an analytic manifold of dimension 

n-1. If n = 1 then this manifold must be a collection of disjoint 

points, thus it is possible to flip any part to its conjugate without 

destroying the analyticity of the whole manifold. However, for n <;; 2 , 

Z will be a collection of connected analytic components; flipping an 
g 

arbitrary subset to its conjugate will most likely create a nonanalytic 

set Z- which cannot be associated with an alternative analytic solution 
g 

g •. Furthermore, in higher dimensions almost all sets z will consist 
g 

of a single connected analytic component; this is analagous to the result 

that almost all polynomials of two or more variables are irreducible, 
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Le. cannot be factored, No proper subse·t of such a manifold may be 

flipped to its conjugate wi·thout destroying analytici·ty; thexefore 

almost: all solutions \•dll be unique, 

Unfortunately the analysis used to resolve questions of uniqueness 

has not; yet produced an associated numerical algori'chm for recovery 

of the phase of g. A.i'1Y method of generating even an approximate 

phase would be of g;ceat help, as experience has sho'lfm ·tha·t any iterative 

algoritl1111 for recove:~:y of G(w) usually fails to conve:cge unless s·tarted 

close to a knmm solution. :Recently Bates, FJ:·ight and Garden [4,5] 

have obtained some promising results in ·this area which suggest the 

follmving open q_uestions 

L In one dimension, given g(O), g (0) and lgl , does 

there exist a second order o,d.e. ·that may be in·tegrated 

up to give the phase of g on A. 

2. In two dimensions, given g(O,O) and \gl does there 

exist a p.d.e. that: ma.y be ilYteg·rated up to give the 

phase of g on A. 

DISCONTINUOUS DEPENDENCE OF THE SOLUTION ON THE DJUA 

The source of discontinuous dependence is best seen in a fo1.'111al 

description. of the problem, therefore the follo1,;ing nota·tion is 

introduced" F denotes ·the Fourier transform, 

denotes ·the projection opera·tor 

g (s) s E .!\ 
(3.1) 

0 

The composite operator PAFPB 

Fourier transform. 

2 N 
PA(B) : L (lR )+ (1'. (B)) 
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In this notation the mathematical model of phase retrieval requires 

solution of the system of equations 

(3 .2) g(s) 

(3.3) lg(s) I m(s) 

Even if the phase of g is known on A, Eq. 3.2 must still be solved 

and this requires inversion of the linear operator PAFPB , Inversion 

of the full Fourier transform F: L 2 (JRN) + L 2 ( JRN) is well known to be 

a stable procedure as F is a unitary operator. However, as information 

is lost in the truncations PA and PB , inversion of the finite Fourier 

transform is no longer stable. Indeed, as PAFPB is a compact linear 

operator, its inversion is the prototypical linear ill-posed problem. 

This problem underlies phase retrieval and is unavoidable in any 

method of solution; for example consider the linear system that results 

after applying Newton's method to Eqs. 3.2 and 3.3. 

The finite Fourier transform has been extensively studied (for 

a review see [8]), the more important results are briefly reviewed here. 

First, it has a singular value decomposition {~i'cri,ljJi}i:l , where 

and {'" .. } ; 00

1· are analytic functions forming orthonormal bases for 
'I'J_ l.= 

and L2 (B) (in addition, in one dimension they also form Sturm-

Liouville systems). 

(3 .4) 

The cr. are scalars and 
J_ 

cr. <:: o 
l. 

cr. -t o 
l. 

{~i}i:l 
L2 (A) 

The crucial result is that the cri are asymptotically distributed as 



(3. 5) Cf. 
J. 

e -ai i a a constant 

These expressions are valid everywhere except on a narrow interval, 

centered on i ~ IAI•IBI and of width proportional to 

I ClA I " I ClB I •log ( ( I ClA I ·I <lB I ) I ( •J B I ) ) , over which ·the distribu·tion 

changes smoothly from one asymptotic form to the other. Here jAJ 

denotes the volume of A,IClAj the area of the boundary of A. 

Discontinuous dependence can now be clearly seen by considering 

the effects of errors on formal expansions of g and G as 1!\eries 

of singular func·tions 

(3. 6) g ~ G 
i=l 

If is perturbed to 

this induces a per·turbation of As 

the perturbation in g x-emains bounded, but l:he induced perturba·tion 

in G grows exponent.ia.lly. 

Thu~to avoid catastrophic amplification of errors, the expansion 

of G must be t:L"Unca·ted to those values of i for which rv 1 " 

This restricts the solution space ·to 'che span of the firs·t N singular 

functions, where N ~ I A I • I B I . N is termed the essen·tial dimension 

of the problem, loosely speaking, it is the maximum number of coeff.icien·ts 

in any expansion of G that can be accurately recovered from Eq, 3.2 

in the presence of noise. A precise definition is given in [6]. 



175 

IMPLICATIONS FOR NUMERICAL SOLUTIONS 

The above results have important implications for the construction 

and performance of numerical algorithms for phase recovery. In one 

dimension, the nonuni<rueness results imply the existence of uncountably 

many solutions. 'I'hus, unless the ini·tial guess is close to a particular 

solution, any iterative algorithm "lvill dither among an infinite set 

of attraction points. Extra information must be obtained, if possible, 

. to reduce the size of i:he possible solution set. 

In higher dimensions solutions are most likely unique; However 

numerical algorithms used so far, such as ·the Gershbez:g and Saxton 

ver:sion of t.he iterated projection algori·thm [7], still show poor convergence. 

This arises as the algorithms must still effectively invert the finite 

Fourier transfo:tlll, and ·this ~?ill only be done in a stable manner if the 

solution space is restricted to the subspace spanned by the first 

singular functions. Thus only this smooth component of G m.ay 

be accurat.ely determined from 'the model. 

Moreover numerical discretizations should be approximately the 

same size as the essential dimension. Much larger, and no additional 

accurate information is obtained for the extra work; much smaller, 

and accurate information is lost, In addition, discretizations should 

be tailored to ·the smooth singular functions, e.g. based on expansions 

in Legendre polynomials or Gaussian quadrature, and not on the fast 

F'ourier transform. 

However, even with the above improvemerrts, phase retrieval is still 

a dif:Eicul·t problem to solve nurnerically. In particular there is still 

much work to be done on optimizing algorithm design, generating good initial 

guesses, and on incorporation of extra condi·tions that g or G may be 

knmm to satisfy. 
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