A REMARK ON FULLY NONLINEAR, CONCAVE ELLIPTIC EQUATIONS

Friedmar Schulz

O. INTRODUCTION AND STATEMENT OF THE RESULT

In this note we shall be concerned with fully nonlinear elliptic equations of second order of the form

(1)
$$F(D^2u) = g(x)$$

for solutions $u(x) \in C^4(\Omega)$, defined in an open subset Ω of \mathbb{R}^n $(n \ge 2)$. Here $F \in C^2(\mathbb{R}^{n \times n})$ and $g \in C^2(\Omega)$, with $\mathbb{R}^{n \times n}$ denoting the space of symmetric $n \times n$ matrices $r = [r_{ij}]$. We shall impose the following assumptions:

(i) F is uniformly elliptic for ~u , that is, there exist positive constants $~\lambda,\Lambda~$ such that

$$\lambda \left| \xi \right|^{2} \leq \mathbb{F}_{r_{ij}}(D^{2}u) \xi_{i} \xi_{j} \leq \Lambda \left| \xi \right|^{2}$$

for all $\xi \in \mathbb{R}^n$.

(ii) F is a concave function on some convex set containing the range of $D^2 u$, so that

$$F_{r_{ij}r_{k\ell}}$$
 $n_{ij}n_{k\ell} \leq 0$

for all $\eta = [\eta_{ij}] \in \mathbb{R}^{n \times n}$.

(iii) In addition

$$\left|g\right|_{2;\Omega} \leq \kappa$$
, $\left|u\right|_{2;\Omega} \leq M$

for some constants K,M .

We can now state the result as

THEOREM. For any $\Omega' \subset \Omega$, the Hölder estimate

$$[D^2 u]_{\alpha;\Omega'} \leq C$$

holds, where α depends only on n , λ , Λ , K , M , and C depends also on dist(Ω' , $\partial\Omega)$.

These estimates have been established by Evans [2] and Krylov [7]. They are included in Gilbarg and Trudinger [4] as Theorem 17.14 for equations of the general form

(2)
$$F(X,u,Du,D^2u) = 0$$
.

The proof has been simplified by Trudinger [8],[9]; the main ingredients here are a weak Harnack inequality for non-divergence equations essentially due to Krylov and Safonov (see [8]), and a result from matrix theory of Motzkin and Wasow.

The purpose of the present note is to illustrate a somewhat different approach. The main result is that the a priori estimates can be proved directly without invoking the non-constructive lemma of Motzkin and Wasow. At the Miniconference on Nonlinear Analysis we used Green's function techniques, developed by Hildebrandt and Widman, which incorporate a Giaquinta and Guisti-type lemma (see e.g. [3], [5], [6]). However, by employing divergence techniques, the Hölder estimates also depend on bounds for the second derivatives of F. In order to include the *Bellman equation*, we prefer to present the ideas in the context of non-divergence methods, close to Trudinger's approach. Our approach has also been inspired by Caffarelli's work [1]. We finally mention the other important example, namely the *Monge-Ampère equation*, which can be treated in a possibly more satisfactory manner via Green's function techniques. This, and also the general case (2), will be developed in a forthcoming paper. ACKNOWLEDGEMENT. I am indebted to Professor E. Heinz, the starting point of this work basically being discussions with him, and I gratefully acknowledge the support of the Department of Mathematics, IAS, at the Australian National University, Canberra, where the research was carried

out. It is a pleasure to thank Professors D. Robinson, L. Simon and N. Trudinger for their warm hospitality during my stay in Canberra.

1. PROOF OF THE THEOREM

Let $\gamma \in \, {\rm I\!R}^n$ be a directional vector. By differentiating (1) twice with respect to $\, \gamma$, we obtain

$$F_{ij}^{D}_{ij}^{D}_{\gamma}^{U} = D_{\gamma}^{q},$$

$$F_{ij}^{D}_{\gamma\gamma}^{U} + F_{ij}^{r}_{kk}^{D}_{ij}^{D}_{\gamma}^{U} = D_{kk}^{D}_{\gamma\gamma}^{U} = D_{\gamma\gamma}^{q}_{\gamma\gamma},$$

so that

$$F_{r_{ij}}^{D}_{ij}^{D}\gamma\gamma^{u} \ge D_{\gamma\gamma}g$$
,

by the concavity of F. Let $B_{2R} = B_{2R}(X_0) \subset \Omega$, $0 \leq R \leq 1$. The weak Harnack inequality [4], Theorem 9.22, will be applied to $M_{\gamma,2R} = D_{\gamma\gamma}u$, where

$$M_{\gamma,R} = \sup_{B_{R}} D_{\gamma\gamma} u ,$$

to yield

(3)
$$\left(f_{B_{R}}(M_{\gamma,2R} - D_{\gamma\gamma}u)^{p} dx \right)^{1/p} \leq C\{M_{\gamma,2R} - M_{\gamma,R} + R\|D_{\gamma\gamma}g\|_{L^{n}(B_{2R})} \},$$

where p and C are positive constants depending only on n , Λ/λ . Here

$$f_{B_{R}} v dx = \frac{1}{|B_{R}|} \int_{B_{R}} v dx .$$

Denote by e_k (k = 1,...,n) the standard unit vectors in IR and let

$$\Gamma = \{e_k, (e_k \pm e_l) / \sqrt{2} ; \quad k, l = 1, \dots, n, k \neq l\}.$$

On summing (3) over $~\gamma~ \in ~\Gamma$, we obtain the following

LEMMA 1. There exists a $Y_0\in B_R$, and there is a constant C>0 depending only on n , Λ/λ , K and M , for which the inequalities

(4)
$$\sup_{\substack{Y \in V \\ B_{2R}}} (D_{YY}u - D_{YY}u(Y_0)) \leq C\{w(2R) - w(R) + R^2\}$$
$$= Cw^*(R)$$

hold for any $\gamma \in \Gamma$. Here

$$w(R) = \sum_{\gamma \in \Gamma} \operatorname{osc} D_{\gamma \gamma} u$$

and, obviously,

$$w^{*}(R) = \{w(2R) - w(R) + R^{2}\}.$$

We proceed to derive (4) for all unit vectors $\gamma \in {\rm I\!R}^n$: First note that

(5)
$$\left(f_{B_{R}} | D_{\gamma\gamma} u - D_{\gamma\gamma} u(Y_{0}) |^{p} dx \right)^{1/p} \leq C_{w}^{*}(R)$$

for $\gamma \in \Gamma$. Hence we have, for i,j = 1,...,n ,

$$(f_{B_{R}}|D_{ij}u - D_{ij}u(y_{0})|^{p} dx)^{1/p} \leq Cw^{*}(R)$$
,

and the inequality (5) holds therefore for all unit vectors $\gamma \in \mathbb{R}^n$. The application of the local maximum principle [4], Theorem 9.20, to

 $D_{\gamma\gamma}u - D_{\gamma\gamma}u(y_0)$ yields

LEMMA 2. The inequalities

$$\sup_{\substack{B_{R/2}\\ \in C_{W}^{*}(R)}} (D_{\gamma\gamma}u - D_{\gamma\gamma}u(y_{0})) \leq C\{(f_{B_{R}}|D_{\gamma\gamma}u - D_{\gamma\gamma}u(y_{0})|^{p} dx)^{1/p} + R \|D_{\gamma\gamma}g\| \}$$

hold for all directions $\gamma \in \mathbb{R}^n$.

Now we can prove

LEMMA 3. There exist n orthogonal directions γ_1,\ldots,γ_n such that

osc
$$D_{\gamma_k \gamma_k} u \leq Cw^*(R)$$
.
 $B_{R/2}$

Proof. Using the concavity of F , we see that

$$g(x) - g(y_0) = F(D^2u(x)) - F(D^2u(y_0))$$

$$\leq F_{r_{ij}}(D^2u(y_0))(D_{ij}u(x) - D_{ij}u(y_0))$$

for x ϵ B $_{R/2}$. Hence diagonalizing $[F_{r_{ij}}(D^{2}u(y_{0}))]$, i.e., writing

$$\mathbb{F}_{r_{ij}}(D^2u(y_0)) = \sum_{k=1}^n \lambda_k \gamma_{ik} \gamma_{jk},$$

it follows that

$$g(x) - g(y_0) \leq \sum_{k=1}^{n} \lambda_k (D_{\gamma_k \gamma_k} u(x) - D_{\gamma_k \gamma_k} u(y_0)) ,$$

where γ_k = $(\gamma_{1k},\ldots,\gamma_{nk})$. Thus, for $\texttt{l}=\texttt{l},\ldots,\texttt{n}$,

$$\begin{split} \lambda_{\ell} (D_{\gamma_{\ell} \gamma_{\ell}} u(y_{0}) - D_{\gamma_{\ell} \gamma_{\ell}} u(x)) &\leq \sum_{k \neq \ell} \lambda_{k} (D_{\gamma_{k} \gamma_{k}} u(x) - D_{\gamma_{k} \gamma_{k}} u(y_{0})) + g(y_{0}) - g(x) \\ &\leq C_{W}^{*}(R) , \end{split}$$

and the statement of the lemma follows.

On combining Lemmata 2 and 3, we obtain the inequality

$$w(R/2) \leq Cw^{*}(R) = C\{W(2R) - w(R) + R^{2}\},$$

and therefore

$$w(R/2) \leq \delta w(2R) + CR^2$$
,

where $0 < \delta < 1$. The theorem can now be deduced from the calculus lemma 8.23 of [4].

REFERENCES

- [1] L.A. Caffarelli, Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math. 35, 833-838 (1982).
- [2] L.C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math. 35, 333-363 (1982).
- [3] M. Giaquinta and S. Hildebrandt, Estimation a priori des solutions faibles de certains systemes non lineaires elliptiques, Séminaire Goulaonic-Meyer-Schwartz, Exposé no. XVII, Paris (1982). Also in: Preprint no. 449, SFB72, Bonn (1981).
- [4] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 1983.
- [5] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, *Manuscripta Math.* 37, 303-342 (1982).
- [6] S. Hildebrandt, Quasilinear elliptic systems in diagonal form, Vorlesungsreike no. 4, SFB72, Bonn (1982).
- [7] N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, *Isvestija Akad. Nauk SSSR*, Ser. Mat. 46, 487-523 (1982)
 [Russian]. Engl. Transl. in *Math. USSR*, Izv. 20 (1983).
- [8] N.S. Trudinger, Elliptic equations in non-divergence form. In Miniconference on Partial Differential Equations (Canberra, July 9-10, 198]). Proceedings of the Centre for Mathematical Analysis, Australian National University, Volume I, pp.1-16, Canberra, Australia, 1982.
- [9] N.S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, *Trans. Amer. Math. Soc.* 278, 751-769 (1983).

Mathematisches Institut der Universität Bunsenstr. 3/5 D-3400 Göttingen F.R. of Germany