ISOLATED SINGULARITIES FOR EXTREMA OF GEOMETRIC VARIATIONAL PROBLEMS

Leon Simon

We here want to consider asymptotic behaviour on approach to an isolated singularity of an extremal u of a functional $\mathcal{F}(u)$ of the form

(*)
$$F(u) = \int_{B_1} F(x, u, Du) dx,$$

where F is a given function and $B_1(0)$ is the open unit ball in \mathbb{R}^n . u is allowed to be vector-valued with values $u(x) = (u^1(x), \dots, u^N(x)) \in \mathbb{R}^N$. What we have to say here has a natural generalization to the case when the domain of integration $B_1(0)$ in (*) is replaced by a conical domain C_1 of the form $\{\lambda w: 0 < \lambda < 1, w \in \Sigma\}$, where Σ is some smooth embedded submanifold of S^{n-1} , and also to the case when $u(x) = u(r\omega)$ $(r=|x|, \omega=x/|x|)$ is a section of some vector bundle over Σ for each fixed r. For these generalizations (which are important, for example, for applications to minimal submanifolds) we refer to the paper [SL1]. In any case the essential ideas are the same in this less general setting.

Our main aim is to discuss asymptotic behaviour of an extremal $u = u(r\omega)$ of (*) as $r \downarrow 0$, in case u has an isolated discontinuity at 0; notice that by an extremal of F(u) we mean a function u which satisfies the Euler-Lagrange system of (*) in $B_1(0) \sim \{0\}$; thus u satisfies

(1)
$$N_u = 0$$
 in $B_1(0) \sim \{0\}$,

where Nu is the second order quasilinear operator (with values in \mathbb{R}^N)

46

characterized by

$$(Nu, \zeta) = -\operatorname{grad} F(u)(\zeta)$$
$$= -\frac{d}{ds}F(u+s\zeta)\Big|_{\alpha=0}, \zeta \in C_{c}^{2}(B_{1}(0))$$

We want to be able to say that such a extremal u satisfies

(2)
$$\lim_{x \to 0} u(x\omega) = \phi(\omega)$$

for some smooth function ϕ on S^{n-1} where the limit is relative to the $C^2(S^{n-1})$ norm. It is largely an open question when this is true. Notice that when it *is* true, we get quite a good picture of the discontinuity at 0, because (2) says

$$u(r\omega) = \phi(\omega) + \psi(r\omega)$$

where ψ is continous at 0 with $\psi(0) = 0$.

Here we discuss some conditions which are sufficient to guarantee (2). It is first necessary to impose some restrictions on the function F in (*): Specifically we assume that we can write

(3)
$$F(x,\zeta,p) = r^{\gamma} \left[F_1(\omega,\zeta,rp) + F_2(r,\omega,\zeta,rp) \right]$$

where γ is a constant greater than -n, $F_1,~F_2$ are smooth functions on $s^{n-1} \times ~ \mathbb{R}^N \times ~ \mathbb{R}^{nN}$ and $~ \mathbb{R} \times ~ s^{n-1} \times ~ \mathbb{R}^N \times ~ \mathbb{R}^{nN}$ respectively, with

$$(4) \qquad \sum_{i,j=1}^{n} \sum_{\alpha,\beta=1}^{N} \frac{\partial^{2} F_{1}}{\partial p_{i}^{\alpha} \partial p_{j}^{\beta}} (\omega,\zeta,p) \xi^{\alpha} \xi^{\beta} \lambda_{i} \lambda_{j} > 0 , \lambda \in \mathbb{R}^{n} \sim \{0\}, \xi \in \mathbb{R}^{N} \sim \{0\},$$

$$(5) \qquad \sum_{\alpha=1}^{N} q^{\alpha} \frac{\partial F_{1}}{\partial q^{\alpha}} (\omega, \zeta, q \otimes \omega + p) > 0 , q \in \mathbb{R}^{N} \sim \{0\} , p \in \mathbb{R}^{N} \otimes T_{\omega} s^{n-1} ,$$

and

(6)
$$\sup_{0 < r < 1, \omega \in S^{n-1}} |\zeta| + |p| \le R^{-\varepsilon_0} (|F_2| + r|\overline{D}F_2| + r^2 |\overline{D}F_2|) (r, \omega, \zeta, p) < \infty$$

for each R > 0 , where $\varepsilon_0^{}$ > 0 is independent of R and where \overline{D} denotes the full gradient in (0,1) x Sⁿ⁻¹ x \mathbb{R}^N x \mathbb{R}^{nN} .

We also need to impose a *real-analyticity* hypothesis on $F_1(\omega,\zeta,p)$ with respect to the ζ,p variables; specifically we assume that for each $(\zeta_0,p_0) \in \mathbb{R}^N \times \mathbb{R}^{NN}$

(7)
$$F_{1}(\omega,\zeta,p) = \sum_{(\alpha,\beta)\in\mathbb{Z}_{+}^{N}\times\mathbb{Z}_{+}^{NN}} a_{\alpha,\beta}(\omega) (\zeta-\zeta_{0})^{\alpha} (p-p_{0})^{\beta}$$

where the series, together with the series obtained by twice differentiating the coefficients with respect to the ω variables, converge uniformly for $|\zeta-\zeta_0|$, $|p-p_0|$ sufficiently small (depending on ζ_0, p_0) and for $\omega \in s^{n-1}$. (\mathbb{Z}_+ denotes the set of non-negative integers.)

Notice that all these hypotheses are satisfied for the energy functional E(u) of maps $u: (B_1(0),g) \rightarrow (\mathbb{R}^N,\gamma)$, where g,γ are smooth metrics on $B_1(0) \subset \mathbb{R}^N$ and on \mathbb{R}^N respectively, and where γ is real-analytic and

(8)
$$g_{ij}(0) = \delta_{ij}$$
, $\partial g_{ij}(0) / \partial x^{k} = 0$, i,j,k=1,..., n,

Recall that E(u) is given by

$$E(\mathbf{u}) = \frac{1}{2} \int_{B_1(\mathbf{0})} g^{\mathbf{i}\mathbf{j}}(\mathbf{x}) \gamma_{\alpha\beta}(\mathbf{u}(\mathbf{x})) \frac{\partial \mathbf{u}^{\alpha}}{\partial \mathbf{x}^{\mathbf{i}}} \frac{\partial \mathbf{u}^{\beta}}{\partial \mathbf{x}^{\mathbf{j}}} \sqrt{g} \, d\mathbf{x} ,$$

where $g = det(g_{ij})$, $(g^{ij}) = (g_{ij})^{-1}$.

Because of (8) it is easy to check that this function can be written in the form of F(u) of (*) with (4), (5), (6), (7) all holding. For more

discussion (and also for discussion of how the area functional over a cone can be treated by using modifications of the above) we refer to [SL1, I§3].

We are now ready to state the main theorem THEOREM 1 Suppose u is a $C^{2}(\overline{B}_{1}(0) \sim \{0\})$ solution of (1) with (**) $\sup_{0 < r < 1, \omega \in S} n-1 (|u(r\omega)| + r|Du(r\omega)| + r^{2}|D^{2}u(r\omega)|) < \infty$, and suppose (4), (5), (6), (7) all hold. Then (2) holds.

Perhaps the most unsatisfactory aspect of this theorem is the assumption (**). It can be significantly relaxed in certain cases - see the discussion in [SL1, II§5]. In case n=3, in case i (u) is the energy functional E(u) described above, and in case u is actually *minimizing* E(u) relative to all $W^{1,2}(B_1(0); \mathbb{R}^N)$ maps which agree with u outside a compact subset of $B_1(0)$, then (**) holds automatically, hence (2) holds in this case. (Of course in this case (2) implies that ϕ is a *harmonic* map $S^{n-1} \rightarrow (\mathbb{R}^N, \gamma)$, where S^{n-1} is equipped with the standard metric.)

The proof of Theorem 1 is rather lengthy and we do not have space to discuss it here. Instead we refer the reader to [SL1, Part II)] (or [SL2], where there is also discussion of how the appropriately modified version of Theorem 1 gives good information about asymptotic behaviour of minimal submanifolds on approach to isolated singular points. (Notice that we need to make the change of variable t=-logr to bring F(u) into the form considered in [SL1,2]).

49

- [SL1] L. Simon, Isolated singularities of extrema of geometric variational problems, To appear in Springer Lecture Notes (C.I.M.E. subseries).
- [SL2] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Math. 118 (1983), 525-571.