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ISOLATED SINGULARITIES FOR EXTREMA
OF GEOMETRIC VARIATIONAL PROBLEMS

Leon Simon

We here want to consider asymptotic behaviour on approach to an

isolated singularity of an extremal u of a functional ,F(u) of the form

(*) F () =J F(x,u,Du)dx ,
51(0)
where F is a given function and Bl(O) is the open unit ball in IRn R
u is allowed to be vector-valued with values u(x) = (ul(x),...,uN(x)) € IRN .

What we have to say here has a natural generalization to the case when the
domain of integration Bl(O) in (*) is replaced by a conical domain

C1 of the form {Aw:0<A<l, wEE} , where 2 is some smooth embedded
submanifold of "', and also to the case when u(x) = u(rw) (r=|x| w=x/|x|)
is a section of some vector bundle over X for each fixed r . For these
generalizations (which are important, for example, for applications to

minimal submanifolds) we refer to the paper [SL1l. In any case the

essential ideas are the same in this less general setting.

Our main aim is to discuss asymptotic behaviour of an extremal

u = u(rw) of (*) as x¥0 , in case u has an isolated discontinuity

at 0 ; notice that by an extremal of F(u) we mean a function wu which
satisfies the Euler-Lagrange system of (%) in Bl(O) ~ {0} ; thus u
satisfies

(1) Na =0 in B (0) ~ {o} ,

where Nu is the second order quasilinear operator (with values in IR)
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characterized by

(Nu, ) -grad F (u) (¢)

d -, 2
- agF(u+s§) o , T € Cc(Bl(O)) .

We want to be able to say that such a extremal u satisfies

(2) ) lim u(rw) = ¢ (w)

V0
for some smooth function ¢ on Sn_1 where the limit is relative to the
2 n-1

c (s ) norm . It is largely an open question when this is true. Notice
that when it 48 true, we get quite a good picture of the discontinuity at 0 ,

because (2) says
u(rw) = ¢(w) + ¥ (rw)
where { 1is continous at O with ¢ (0) = 0 .

Here we discuss some conditions which are sufficient to guarantee (2) .
It is first necessary to impose some restrictions on the function F in (#*):
Specifically we assume that we can write

(3) : F(x,0,p) = rYl:Fl(w,C,rp) + Fz(r,w.c,rp)

where vy 1is a constant greater than -n, Fl’ F2 are smooth functions on

.':“,n-1 X ]RN x IRnN and R X Sn_l b3 ]RN X ]RnN respectively, with
2
n 3°F N
(4) ) ~ __1_3 (©,2,D) g“gsxixj 50,16 B~ {0}, €€ ® ~ {0},

i,3=1 a,B8=1 ap? Bpj

N N -1
(5) EqaaFl(w,;,q®w+p)>0,q€ = ~ {0} , p €R @Twsn ’

o=1 g™
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and

(6) r—eo(]le + r|5F2] + rziﬁzel) (Lrw,g.p) < @

supo<r<1, mGSnnl, |C|+IPI =R

for each R > 0 , where EO > 0 is independent of R and where D denotes

the full gradient in (0,1) x Sn-l x]RN xIRnN R

We also need to impose a real-analyticity hypothesis on Fl(w,c,p) with
respect to the ,p variables; specifically we assume that for each
N nN
(?;Orpo) €R xR

(D F e = ) 2, g (c-2) " -py) ®

N___nN
(oc.B)Gzz+xzz+

where the series, together with the series obtained by twice differentiating

the coefficients with respect to the w variables, converge uniformly for

1

|;-gol v ]p~pol sufficiently small (depending on ) and for w € Sn_ .

0'Po

(Zikdenotes the set of non-negative integers.)

Notice that all these hypotheses are satisfied for the emergy functional

E(u) of maps u:(Bl(O),g) -+ (ZEN,y), where g,y are smooth metrics on

Bl(o) c B and on ®' respectively, and where. y is real-analytic and

k oL
(8) glJ(O) - (Slj 7 Bgl](O)/ax =0 1 lljlk—l Feoeoy N 4

Recall that E(u) is given by

B

1 ij u® du /e
E(u) = 3 g (X)Yaﬁ(u(x)) — — = Vg &,
B, (0) ax™ 9x’
- ij, _ -1
where g =det(g; ) , (g7) = (9;,) = -

Because of (8) it is easy to check that this function can be written in

the form of F(u) of (*) with (4), (5), (6), (7) all holding. For more
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discussion (and also for discussion of how the area functional over a cone

can be treated by using modifications of the above) we refer to [SL1, I§3].
We are now ready to state the main theorem

THEOREM 1 Suppose u 1is a Cz(ﬁl(O) ~ {0}y solution of (1) with

(#%) SUP)_ o, wGSn—l (Lu(rw)l + r|Dp(rw)| + rzlnzu(rw)l) < w,

and suppose (4), (5), (6), (7) all hold. Then (2) holds.

Perhaps the most unsatisﬁactory aspect of this theorem is the
assumption (**). It can be significantly relaxed in certain cases - see
the discussion in [SL1, Ir§5]. 1In case n=3 , in case ﬁ(u) is the energy
functional E(u) described above, and in case u is actually minimizing
E(u) relative to all W1'2(B1(O) ;Ig% maps which agree with u outside
a compact subset of Bl(O) , then (*%*) holds automatically, hence (2)
holds in this case. (0f course in this case (2) implies that ¢ is a

1

harmonic map ST+ (RY,y) , where "1 s equipped with the standard

metric.)

The proof of Theorem 1 is rather lengthy and we do not have space to
discuss it here. 1Instead we refer the reader to [SL1l, Part II)] (or [SL2],
where there is also discussion of how the appropriately modified version of
Theorem 1 gives good information about asymptotic behaviour of minimal
submanifolds on approach to isolated singular points. (Notice that we need
to make the change of variable t=-logr +to bring F (u) into the form

considered in [SL1,2]).
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