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ISOlATED SINGULARITIES FOR EXTREMA 

OF GEOMETRIC VARIATIONAL PROBLEMS 

Leon Simon 

We here 'h'ant to consider asymptotic behaviour on approach ·to an 

isolated singularity of an extremal u of a functional .F(u) of the form 

F (u) 1'' (x,u,Du) dx 
(0) 

where F is a given function and (0) is the open unit ball in JRn 

u is allowed ·to be vector-·valued with values 
1 u(x) = (u (x), ... (x)) e: 

Whai: we have to say here has a n2.t1.u:al generalization 'co ·the case when the 

domain of integration (0) in (*) is replaced by a conical domain 

C1 of the form {ilvH0</\<1, wEI} , wheJ:e L is some smooth embedded 

submanifold of Sn-l , and also to the case when u(x) = u(rw) (r=\xl,tv=x:fjxj) 

\ is a section of some vector bundle over L for each fixed r . For these 

generaliza·tions (which are important, for example, for applications to 

minimal submanifolds) we :refer to the paper [SLl] • In any case the 

essential ideas are the same in this less g·eneral setting. 

Our main aim is to discuss asymptotic behaviour of an extremal 

u = u (rw) of ('') as ri-O , in case u has a.n isola·ted discontinuit:y 

at 0 ; notice that by an extremal of F (u) we mean a function u \\Thich 

satisfies t.he Euler-Lagrange system of (*) in (0) - {0} ; thus u 

satisfies 

(1) Nu 0 in B1 (0) ~ {O} , 

where Nu is the second order quasilinear operator (with values in JRN) 
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characterized by 

-grad F (u) (I;;) 

d r: (- + ., j E c2 'B ('OJ · - ds..-. u ss, , z;; c' 1 ! 
s=O 

We want to be able ·to say that such a extremal u satisfies 

(2) 

for some smooth functior;t 

lim u(rw) 
r+o 

on 

<P (w) 

where the limit is relative to the 

norm . It is largely an open question when this is true. No-tice 

that when it is true, we get quite a good picture of the discontinuity at 0 , 

because (2) says 

u(rw) cjJ (W) + ljJ (rW) 

where 1/J is continous a'c 0 -vdth ljJ (0) 0 . 

Here we discuss some conditions \vhich are sufficient to guarantee (2) ._ 

It is firs·t necessary to impose some restrictions on the function F in (*): 

Specifically we assume that vJe can write 

(3) F (x,i:;,p) 

\vhere y is a constant greater than -n, F 1 , F 2 are smoo'ch functions on 

sn- 1 x IRN x IRnN and IR x sn-1 x IRN x IRnN respectively, with 

(4) 

( 5) 

f r a. 
i,j=l a.,S=l 3pi 

N 

~ 
a.=l 

a 
q + p) > o , q E JR~J ~ {O} , p E IRN 0 T sn-l 

lll 
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and 

(6) I + I' 'j 

for each R > 0 , ltJhere > 0 is independent: of R and where D denotes 

·the full gradient in (0, 1) x 

We also need ·to impose a J'eal-ana"lytim:ty hypothesis on F 1 (uJ,i;;,p) with 

respect to the z;,p variables; specifically we assume that for each 

7) 

(a, Sl E 

I 
L 

where the series, together with the series obtained by twice differentiating 

'che coefficients with respec·t to t:he w ·v·-ariable.s,. converge uniformly for 

sufficien:tl~{ small {depe:n.ding OJ:1 and for uJ E 

denot.es ·the set of non-negative in·tegers") 

Notice ·tha·t all ·these hypothes<es are sai:isfied for the energy 

t(u) of maps u: (0) ,g) + ( JRN ,y), where g,y are srnoo·th metrics on 

B 1 (0) c IRN and on :rnN respectively, and where y is 1oeal-anaZ.ytic and 

(8) 

Recall 

where 

(0) 

that 

E(u) 

cL. 
1.] 

E (u) 

.1 f 2 

is 

(0) 

g = det(g .. ) 
l.J 

k 
ag .. (0)/ax =O, i,j,k=l , ..• , n, 

~] 

given by 

lj(x) (u (x)) /gdx 

Because of (8) it is easy to check that. this function can be "ltl"ritten in 

the form of F (u) of (*) with (4), (5), (6), (7) all holding. For more 

< 00 
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discussion (and also for discussion of how the .area fu.nct.io:r.tal over a cone 

can be ·treated by using modifications of the above) we refer to [SLl, I§3]" 

We are now ready to state the main ·theorem 

THEORElVI 1 Suppose 
2 ·-c (Bl (0) -~ {0}) soZut·Z:on of' (1) 1.vith 

(\;;t(rw) I + riDu(rtu) I + (rw) J ) < co , 

and suppose (4) J (5)' (6)' (7) an hold, Then (2) holds. 

Perhaps the most unsatisfactory aspect of this d1eorem is ·the 

assclllption (*''') , It can be significantly relaxed in ce.rtain cases - see 

the discussion in [SLl, JI§ 5] . In case n=3 , in ca.se l\ (u) is the energy 

functional E. (u) described above, and in case u is ctc·tually m-inimizing 

E (u) 
1 ? 

relative to all W~' •· (B1 (0) maps c.vhich agree with u outside 

a compe>.ct stlbset. of B 1 (0) , then (**I holds automat:ically, hence (2) 

holds in this case. (Of course in this case (2) implies that <jJ is a 

harmom:a map 
n-1 N S _,,_ ( :m ,y) , ·where is equipped wi'ch the standc;.rd 

metric,) 

'i'he proof of 'Crteorem 1 is rather lengthy and we do not have space to 

discuss it here. Instead we refer the reader to [SLl, Part II)] (or [SL2], 

vvhere ·there is also discussion of how· the appropriately modified version of 

Theorem 1 gives good information about asympto-tic behaviour of minimal 

submanifolds on approach ·to isolated singular points. (Notice that we need 

·to make the change of variable t=-logr to bring F (u) into the form 

considered in [SL1,2)). 



50 

REFERENCES 

[SLl] 

[SL2] 

Lo Simon, Isolated sintr.<Zarities of extrema of geometric 

variational problems, To appear in Springer Lecture Notes 

(C.I.M.E. subseries). 

L. Simon, Asymptotics for a class of non-linear evolution 

equations~ with applications to geometric p:r'oblems, Annals 

of Math. 118 (1983), 525-571. 


