Smooth Foliations Generated by

Functions of Least Gradient

Ъу

William P. Ziemer

The work that is outlined below has been done jointly with Harold Parks, Oregon State University.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and suppose $u \in BV(\Omega)$. The function is said to be of least gradient with respect to Ω if for each $v \in BV(\Omega)$ such that u = v outside some compact subset of Ω ,

$$\int_{\Omega} |\nabla_{\mathbf{u}}| < \int_{\Omega} |\nabla_{\mathbf{v}}| .$$

A function of least gradient need not be continuous. Indeed, for any subset $A \subset \Omega$, the portion of the reduced boundary of A which lies in Ω is area minimizing if and only if the characteristic function of A is of least gradient.

In this work we consider the question of regularity of functions of least gradient subject to boundary constraints. Thus, we consider an open, bounded set $\Omega \subset \mathbb{R}^n$ that is uniformly convex. We also assume that Ω is smoothly (\mathbb{C}^{∞}) bounded. Let ϕ :bdry $\Omega \rightarrow \mathbb{R}^1$ be smooth and consider the variational problem

(1)
$$\inf \left\{ \int_{\Omega} |\nabla u| : u = \phi \text{ on bdry } \Omega \right\}$$

where the infimum is taken over all Lipschitzian u. It was shown in [PH1], [PH2] that the variational problem (1) admits a unique extremal. The EulerLagrange equation associated with (1) is

$$\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) = 0 \quad .$$

Unfortunately, this equation is useless in investigating the regularity of u for it falls outside the scope of the usual elliptic theory. In fact, the following example shows that solutions to (1) are not smooth everywhere. Let

$$\Omega = R^2 \cap \{(x,y): x^2 + y^2 \le 1\}$$

and for $(\cos \theta, \sin \theta) \in bdry \Omega$, let

$$\phi$$
 (cos θ , sin θ) = cos (2 θ).

The function u defined by

$$u(x,y) = \begin{cases} 2x^2 - 1 & \text{if } x \ge 1/\sqrt{2}, & y \le 1/\sqrt{2} \\ 0 & \text{if } x \le 1/\sqrt{2}, & y \le 1/\sqrt{2} \\ 1 - 2y^2 & \text{if } x \le 1/2, & y \ge 1/\sqrt{2} \end{cases}$$

is easily seen to be a solution to (1). However, u is not smooth on Ω as ∇u does not exist on

$$\Omega \cap \{(x,y) : |x| = 1/\sqrt{2} \text{ or } |y| = 1/\sqrt{2} \}.$$

However, we do obtain a result concerning the partial regularity of u .

<u>Theorem 1</u>. Let $2 \le n \le 7$. If u is a solution of the variational problem (1), then u is smooth on an open dense subset of Ω .

The proof of Theorem 1 will be sketched below. The reason for the restriction $2 \le n \le 7$ is that then it is known that for all but countably many t $\Omega \wedge u^{-1}(t)$ is a smooth area-minimizing hypersurface. If n > 7, then $\Omega \wedge u^{-1}(t)$ may admit singularities. An essential fact underlying the proof of Theorem 1 is that the behavior of ∇u at one point of $\Omega \wedge u^{-1}(t)$ determines the behavior of ∇u on all of $\Omega \wedge u^{-1}(t)$. Indeed, if $\nabla u(x_0) = 0$ for some $x_0 \in \Omega \wedge u^{-1}(t)$, then $\nabla u(x) = 0$ for all $x \in \Omega \wedge u^{-1}(t)$. In this case we do not know of any method to prove smoothness of u near $\Omega \wedge u^{-1}(t)$. If, instead, $\nabla u(x_0) = 0$ is not true, i.e., if $\nabla u(x_0) \neq 0$ or $\nabla u(x_0)$ does not exist for some $x_0 \in \Omega \ u^{-1}(t)$ and hence for every $x \in \Omega \wedge u^{-1}(t)$, then it is possible to construct a solution of Jacobi's equation on $\Omega \wedge u^{-1}(t)$ which has a positive lower bound. Jacobi's equation is an elliptic equation which a flow of minimal surfaces starting at $\Omega \wedge u^{-1}(t)$ must initially satisfy. Once such a solution to Jacobi's equation is assured, then it follows that minimal surfaces near $\Omega \wedge u^{-1}(t)$ vary smoothly as a function of their boundaries, i.e., the surfaces $\Omega \wedge u^{-1}(s)$ generate a smooth foliation, for s close to t.

We now give a few details. Let Γ denote bdry Ω. Consider a value of t, say 0, such that ΩΛu⁻¹(0) satisfies the following conditions: (i) |ΩΛu⁻¹(0)| = 0, Hⁿ⁻¹[ΓΛφ⁻¹(0)] = 0; here Hⁿ⁻¹ denotes Hausdorff (n-1)-measure.

- (ii) $\nabla \phi(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in \Gamma \cap \mathbf{u}^{-1}(0)$
- (iii) $\Omega \cap u^{-1}(0)$ is connected
- (iv) there exist $x_0 \in \Omega \cap u^{-1}(0)$, a sequence $\{t_i\} \to 0$, and a sequence $\{x_i\}$ with $x_i \in \Omega \cap u^{-1}(t_i)$ and $\lim x_i = x_0$ such that

$$0 < \liminf_{i \to \infty} \frac{|u(x_i) - u(x_0)|}{|x_i - x_0|}$$

For each $x \in \Omega \wedge u^{-1}(0)$, let N(x) denote the unit normal to $\Omega \wedge u^{-1}(0)$ and

86

let $w_{(x)}$ be that number such that

$$x + w_r(x)N(x) \in \Omega \cap u^{-1}(r)$$
.

If η is a test function on $\Omega \wedge u^{-1}(0)$, then the area of the surface

(2)
$$x + (w_r(x) + t\eta(x))N(x)$$

is minimized when t = 0. A calculation of the first variation yields an equation, when written in local coordinates, of the form

(3)
$$D_{i}(a^{ij}(x,w_{r},\nabla w_{r})D_{j}w_{r}) = w_{r}B_{1}(x,w_{r},\nabla w_{r}) + B_{2}(x,\nabla w_{r}) .$$

Because of the estimates in [AW] and [SL], the terms $a^{ij}(x,w_r,\nabla w_r)$, B₁(x,w_r, ∇w_r) and B₂(x, ∇w_r) are uniformly bounded relative to r.

We now wish to investigate Jacobi's equation. By definition, it is the second variation of (2) or equivalently, the equation of variation of (3). A straightforward calculation shows that Jacobi's equation is linear. If we let

$$\omega_r = w_r/r$$
,

then Harmack's inequality applied to (3) along with (iv) above imply that on each compact subset K of $\Omega \wedge u^{-1}(0)$, ω_r is uniformly bounded above for all sufficiently small r>0. Appealing to Harmack's inequality again, we find that ω_r is Hölder continuous of order α , where α is independent of r. Therefore, it follows that, for a suitable subsequence, and for each compact subset $K \subset \Omega \wedge u^{-1}(0)$, ω_r converges uniformly to a function ζ . Because the extremal u to problem (1) is Lipschitz (with constant M) it follows that

$$\zeta(x) \geq 1/M > 0$$

for each $x \in \Omega \wedge u^{-1}(0)$. Moreover, we have already seen that ω_r , and therefore ζ , is bounded above on each compact subset of $\Omega \wedge u^{-1}(0)$.

The essential feature of ζ is that it can be shown to be a solution of Jacobi's equation. The fact that ζ is bounded above and away from 0 is critical for it implies the following

<u>Theorem 2</u>. If ζ^* is a solution of Jacobi's equation on $\Omega \Lambda u^{-1}(0)$ with $\zeta^* | \Gamma \Lambda u^{-1}(0) = 0$

then $\zeta^* \equiv 0$.

Proof. Suppose there is a point $x^1 \in \Omega \cap u^{-1}(0)$ such that $\zeta^*(x_1) > 0$. then there is $c \in \mathbb{R}^1$ and $x_2 \in \Omega \cap u^{-1}(0)$ such that

for all $x \in \Omega \cap u^{-1}(0)$ and

$$c\zeta^{*}(x_{2}) = \zeta(x_{2})$$
.

But then $\zeta - c\zeta^* \ge 0$ is a solution of Jacobi's equation that vanishes at x_2 . Hence, Harnack's inequality implies that $\zeta - c\zeta^* \equiv 0$ which is impossible since

$$\zeta \geq 1/M$$
 and $\zeta^* | \Gamma \wedge u^{-1}(0) = 0$.

This result along with assumption (ii) above now yield the following, which is our main result. The proof follows essentially from [WB, 3.1] or from an adaptation of the methods in [MC, §6.8.6]. Theorem 3. There exists an open set $W \subseteq \Omega$ with

$$\Omega \Lambda u^{-1}(0) \subset W$$

such that u W is smooth.

<u>Corollary</u>. There exists an open, dense subset $U \subset \Omega$ such that $u \mid U$ is smooth.

Proof. Let

$$N_1 = bdry \Omega \cap \{x: \nabla \phi(x) = 0\},$$

$$N_2 = \Omega \cap \{x: \nabla u(x) = 0\}.$$

It follows from Sard's theorem that $\phi(N_1)$ has Lebesgue measure 0 and because u is Lipschitz the co-area formula [FH, §3.2.12] can be applied to conclude that

$$\mathbb{H}^{n-1}[u^{-1}(t)AN_2] = 0$$
 for a.e. t.

Let $x \notin \Omega$ and let $B \subset \Omega$ be an open ball containing x. If u is constant on B, then of course u is smooth on B. If not, then u(B) is an interval. Choose $t \leq u(B)$ such that $t \geq \phi(N_1)$ and $H^{n-1}[u^{-1}(t) \land N_2] = 0$. Then it follows from Theorem 3 that there is an open set $W_t \supseteq \Omega \land u^{-1}(t)$ such that $W_t \land B \neq 0$ and $u | W_t$ is smooth. The result now follows if U is defined as the union of all such W_t and all open balls $B \subset \Omega$ such that u | B is constant. REFERENCES.

- [AW] W.K. Allard, <u>On the first variation of a varifold</u>: <u>Boundary behavior</u>, Ann. of Math. (2) <u>101</u>(1975), 418-446.
- [BDG] E. Bombieri, E. DeGiorgi, E. Giusti, <u>Minimal cones and the Bernstein</u> problem, Invent. Math. 7(1969), 243-268.
- [GH] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
- [GT] D. Gilbarg, N. Trudinger, <u>Elliptic partial differential equations of the</u> second order, Springer-Verlag, New York, 1977;
- [MC] C. B. Morrey, <u>Multiple integrals in the calculus of variations</u>, Springer-Verlag, 1966.
- [MM] M. Miranda, <u>Un teorema di esistenza e unicita per il problema dell'area</u> <u>minima in n variabili</u>, Ann. Scuola Norm. Sup. Pisa, Ser III, <u>19</u> (1965), 233-249.
- [PH1] H. Parks, <u>Explicit determination of area minimizing hypersurfaces</u>, Duke Math. J. <u>44</u>(1977), 519-534.
- [PH2] H. Parks, <u>Explicit determination of area minimizing hypersurfaces</u>, II, preprint.
- [RW] W. Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill, 1964.
- [SSY] R. Schoen, L. Simon, S.T. Yau, <u>Curvature estimates for minimal hypersurfaces</u>, Acta Math. <u>134</u>(1975), 275-288.
- [SL] L. Simon, <u>Remarks on curvature estimates for minimal hypersurfaces</u>, Duke Math. J. <u>43</u>(1976), 545-553.
- [WB] B. White, Ph.D. Thesis, Princeton University.

Department of Mathematics Indiana University Bloomington, Indiana, U.S.A.