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Smooth Foliations Generated by 

Functions of Least Gradient 

by 

William P. Ziemer 

The work that is outlined belot·J has been done jointly with Harold Parks, 

Oregon State University. 

Let Qc be a bounded open set and suppose u e.BV(SI), The function is 

said to be of least gradient 1dth respect to n if for each v~ BV(Q) such 

that u = v outside some compact subset bf n, 

J I Vu I < I Vv I . 
n n 

A function of least gradient need not be continuous. Indeed, for any subset 

AC rl , the portion of the reduced boundary of A rnhich lies in fl is area 

minimizing if and only if the characteristic function of A is of least 

gradient. 

In this work we consider the question of regularity of functions of least 

gradient subjecl~ to boundary constra:tnts. Thus, vie consider an open, bounded 

set nc that is uniformly convex. l"e also assume that Q is smoothly 

bounded, Let ¢:bdry II-+ be smooth and consider the variational 

problem 

(l) 
( "' 

inf l J I 'Vu j : u = ¢ on bdry 

iJ 

•orhere the infimum is taken over all Lipsch:Uzian u. It T<as shovm in [PHl], 

[PH2] that the variational problem (1) admits a unique extremaL The Euler-
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Lagrange equation associated with (1) is 

di 

Unfortunately, this equation is useless in investigating the regularity of 

u for it falls outside the scope of the usual elliptic theory. In fact, the 

follo\v:i.ng example shows that solutions to (1) are not smooth everywhere. 

l,et: 

{ (x ,y) + 

and for (cos e" sin 8)"" bdry n ' let 

¢ (cos e,sin 8) cos (28) ' 

The :function u defined by 

1 if X ?: 1/12, y :; 

u(x,y) if X ;;;; y :;;. 

j_f X $ 1/ 2' ?: l/12 

is easily seen to be a solution to (1)" However, u is not smooth on 11 as 

vu does not exist on 

lxl o:r 1/12} . 

However, r,Je do obtain a result concen-dng the partial regularity of u • 

Theorem L Let 2 ~ n 5 7 • If u is a solution of the variational 

proble~ (1), then u is smooth on an open dense subset of Q. 

The proof of Tneorem l will be sketched below. The reason for the restric

tion 2 :S n ::; 7 is that then it is known that for all but countably many t 
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is a smooth area-minimizing hypersurface. If -1 
n > 7. then n ll u ( t) 

may admit singularities. An essential fact underlying the proof of Theorem 1 

is that the behavior of V'u at one point of llf\u-1(t) determines the 

behavior of V'u 
-1 

on· all of Q(l u ( t). Indeed, if V'u(x0) = 0 for some 

-1 
x0" n n u < t) , 

-1 
then V'u(x) = 0 for all xE.Sl(lu (t) In this case we do 

not know of any method to prove smoothness of 
-1 

u near Ill\ u (t) If, 

instead, V'u(x0) = 0 is not true, i.e., if V'u(x0) # 0 or V'u(x0) does not 

exist for some and hence for every 
-1 

x~ Q(lu (t), then it is 

possible to construct a solution of Jacobi's equation on n f\ u -l(t) which 

has a positive lower bound. Jacobi's equation is an elliptic equation which 

a flow of minimal surfaces starting at nn u -l(t) must initially satisfy. 

Once such a solution to Jacobi's equation is assured, then it follows that 

minimal surfaces near n ll u -l( t) vary smoothly as a function of their 

boundaries, i.e., the surfaces 

s close to t. 

-1 
llf'lu (s) generate a smooth foliation, for 

We now give a few details. Let f denote bdry ll • Consider a value of 

t, say 0, such that nnu-1 (0) satisfies the following conditions: 

(i) lnl'\ u -l(O) I = 0, Hn-l[ff\ cp-1 (0)] = 0; here Hn-l denotes Hausdorff 

(ii) 

(iii) 

(iv) 

(n-1) -measure. 

V'cj>(x) # 0 for all 
-1 

X f.ffl U (0) 

no u-1 (0) is connected 

there 

{xi} 

exist 

with 

0 <lim inf 
i +oo 

, a sequence 

and lim x. 
~ 

{t.} +0 , and a sequence 
~ 

such that 

For each xE llt\u-1 (0), let N(x) denote the unit normal to llflu-1 (0) and 



let w (x) be that number such that 
t' 
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n is a test function on 
-1 

Q re u ( 0) , then the area of the surface 

(2) x + (wr(x) + tn(x))N(x) 

is minimized when t = 0 , A calculation of the first variation yields an 

equation, when written in local coordinates, of the form 

(3) + 

Because of the estima·tes in [A\>l'} and [SL], the terms ij 
a (x,wr' Vwr), 

and B2 (x,V't11J are uniformly bounded relative to r. 

tole now wish to investigate Jacobi's equation. By definition, it is the 

second variation of (2) or equivalently, the equation of variation of (3). 

A straightforward calculation shows that .Jacobi's equation is linear. If '>Ye 

let 

then Ha:rnack' s inequality applied to (3) along with (iv) above imply that on 

each compact subset K of 
-1 

Q/1 u (0), w 
r 

is uniformly bounded above for all 

sufficiently small r > 0. Appealing to Harnack's inequality again, we find 

that wr is Holder continuous of order a, where a is independent of r. 

Therefore, it follmils that, for a suitable subsequence, and for each compact 

subset 
-1 

KCQflu (0), converges uniformly t.o a function Because the 

extremal u to problem (1) is Lipschitz (with consta11t M) it follows that 

<;(x) .;o 1/M >0 
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for each 
-1 

x~nnu (0) • Moreover, we have already seen that 

therefore ~. is bounded above on each compact subset of 
-1 Qllu (0). 

The essential_feature of ~ is that it can be shown to be a solution 

of Jacobi's equation. The fact that ~ is bounded above and away from 0 

is critical for it implies the following 

Theorem 2. If 

with 

then ~* = 0 

Proof. Suppose 

then there is ce.R1 

for all 
-1 

xE.!lllu (O) 

r;* is 

there 

and 

and 

a solution of Jacobi's eguation 

~*lrf\u-:1 (0) = 0 

is a point 
1 -1 x e Qflu (0) such 

-1 
x2c:nnu (0) such that 

c~*(x) ~ r;(x) 

on !"2/l u -l(O) 

that r;*(x1) > 0 

But then ~- c~* ~ 0 is a solution of Jacobi's equation that vanishes at 

x2 • Hence, Ha_rnack' s inequality implies that ~ - c z;; * = 0 which is impossible 

since 

~ ~ 1/M and ~*I fl\ u -l(o) o • 

This result along with assumption (ii) above now yield the following, 

which is our main result. The proof follows essentially from [WB, 3.1] 

or from an adaptation of the methods in [MC, §6.8.6]. 
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Theorem 3. There exists an open set '-Jc Si with 

such that is smooth. 
~----

Corol~£:!1> ~fhere .. exists an open, dense subset U c rl such that u I U is 

Proof. Let 

bdry n Vq;(x) ~ O}, 

Q ll {x: 'Vu(x) = 0} . 

It foilovrs from Sard 's ·theorem that has Lebesgue measure 0 and because 

u is Lipschitz the co-area foxmula [F'H, §3.2.12] can be applied to conclude 

that 

0 for a.e. t. 

Let x& rl and le·t Be S1 be an open ball containing x. If u is constant 

on B, then of course u is smooth on B. If not, then u(B) is an intervaL 

Choose t<€ u(B) such that t ~ q)(N1) and Hn-l[u t) f! N2 ] = 0 Then it 

follo~1s from TI1eorem 3 that there is an open set 
-1 

Qfl u (t) such that 

Wtfi B 7! 0 and ujWt is smooth. The result now follmvs if U is defined as 

the union of all such ~J 
t 

and all open balls such that is constant. 
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