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BASIC MEASURES 

Gavin Brown 

1. INTRODUCTION 

We are all familiar with convolut,ion as a smoothing opera"tion. An 

example of this is the classical theorem of Steinhaus tha'c 

(1.1) lEI > 0 '* E + E contains an intervale 

One simple way of proving (1.1) is to consider the convoltrtion of "the 

indicator function of E with i"tself, 

Now le·t C denote Cantor's middle "third set and let 

probability measure evenly distribui:ed over c, Since lei 
obvious that 

(1.2) 11 1 A (where A deno,tes Lebesgue measure), 
c 

Less obviously 

p ''JJ 1 A 
c c ' 

be a 

0, it is 

despite the fact that C + C fills out an interval, Indeed some support 

sets of convolution powers of ]J0 must be quite small because 

(1.4) n t- ffio 
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These results (which can be found in [2]} used all of C, and make it 

surprising that in the opposite direction (see [3]} 

(1. 5} 

where a = log 3/log 4. 

In general, we say that a measure is basic if 

(1.6} ]l(E} > 0 ~ Gp(E} JR. 

Here 

Gp(E} j E JN, n. E :1Z, e. E E, i 
~ ~ 

1, o•ot j} 

is the. group generated by E. (This is a purely algebraic definition -

there is no question of topological closure.} 

Observe that Steinhaus's theorem (1.1} shows that Lebesgue measure is 

basic while (1.5} shows that ]lc is basic. 

What follows is an account of some recent results on basic measures 

obtained with a variety of co-authors. I hope to show that this is an 

interesting area of neo-classical measure theory with scope for further 

development. 

2. BANACH ALGEBRA BACKGROUND 

Bill Moran and I were led to the notion of basic measures by the 

consideration of radical objects in Banach algebras. This is not as far-

fetched as, at first, it seems! Questions like those in the introduction 

are naturally discussed within the convolution algebra, M(R}, of all 
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regular bounded Borel measures on the line which is a Banach algebra under 

the total variation norm. 

Let us ask the naive question, "Which are the nice measures in 

M(JR)?" In many situations L1 (IR) (imbedded as the collection of all 

absolutely continuous measures) constitutes an appropriate answer. 

However Hewitt and Zuckerman noted in [7] that there exist singular 

measures with absolutely continuous convolution squares, so it is natural 

to enlarge the class of non-pathological measures by passing from the ideal 

L 1 (IR) to the ideal Rad L 1 (IR) defined by 

(2.1) Rad (JR) {]J E M(JR) ¢ E !J., ¢ OR)) 0 => <jl(]l) oL 

where /.:,. is the set of all complex homomorphisms of M ( IR ) " 

We may also write 

n {ker ¢ 

where 6.1 comprises all complex homomorphisms of M(JR) which are not 

, -+ J ixy of the form ~ e d]l(x), for fiJced real y. (A simple example of 

a member of !J.1 is the map 11 -+ ]ld (lR), which sends ~ to the ·total 

mass of its discrete parto) 

Moran and I introduced a still larger radical, the 2~ ~ 

radical, S (JR), defined by 

(2 0 3) s (lR) n {ker ¢ dJ E /.:,. } 
' 2 

where ~:,2 comprises the "Raikov homomorphisms" corresponding to symmetric 

Raikov systems. The reader who is prepared to take these definitions on 
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trust can proceed to Theorem 1 without loss of continuity. 

intervening paragraphs give the details of the definition of 

A symmetric Raikov system (cf. [6]) is a family "} of 

The 

s (JR ) • 

F -subsets of 
0 

~ containing all singletons, closed under countable unions and under 

passage ·to F 0 -subse·ts, and having the fundamental property: 

E,F E;} => E - F E '!f. 

Given a symmetric Raikov system, ';} , we define 

~ = {].!EM(~) 

~ = {].! EM(~) 

]1 is concentrated on a set. of ~ } 

]1 (F) = 0 (F E~) } 

The sets in (2.4} are respectively a closed subalgebra and 

closed ideal, and 

(2. 5) M(~} 

The Raikov homomorphism associated with ~ is the map )1 _,. ]ll(IR), where 

].!} is ·the result of projection on the first s1..unmand in (2.5). For members 

of 6.2 we use only those Raikov homomorphisms corresponding to systems 1i" 
which are proper in the sense that not all F 0 -subsets are included. 

Note that a system ::f. which contains any set of positive Lebesgue measure 

cannot be proper. (Use (Ll)) Note also that our earlier example of a 

member of 6.1 is also a member of 6.2 (corresponding to 'che Raikov system 

of all countable subsets of ~). 

It turns out (see [3]) that 
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Theorem 1 A measure is basic if and only if it belongs to the syrronetric 

Raikov radical. 

What makes Theorem l interesting is the fact that measures such as 

which do not belong to Rad L1 (~) are basic and hence belong to 

s ('li' ) • Moran and I conjectured in 1974 that. 1Jc is basic but were 

unable to find a proof. The result. was demonstrated by Talagrand, [8], 

and Woodall, [9]. We subsequently exploi·ted a combinatorial inequality 

of Woodall to obtain the sharp result (L5). 

3. RIESZ PRODUCT MEASURES 

It will be convenient, in this section, ·to swi·tch from the real line, 

JR , to the circle group, 'll' • The example of Hewi'ct and Zuckerman 

mentioned in ·the last section vias, in fact, a. Riesz product on the circle, 

and in this section I would like to discuss 

THEROEr~ 2 Riesz products are bas·ic measures. 

where 

The ·typical Riesz product takes the form of a weak·* limi·t 

1J 

N 

lim IT (1 + 
N->= k=l 

cos( 

We do not know if Theorem 2 is true in full generality. Recently 

Moran, Tijdeman, and I obtained a very indirec·t proof (see [4]) under the 

stronger lacunary hypothesis 

(3 0 2) 
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It seems very likely that (3.2) is a property of our proof and that a 

clumsier but more powerful proof is required! 

We use hypothesis (3.2) in showing 

LEMMA 1 Let ~ be a Riesz product satisfying (3.2). Then there exist 

positive integers p 1 , p 2 , ••• , pr such that 

(Here p*~ is the measure defined by) 

J f(t)dp*j.l(t) f f(pt)d~{t) (f E c ('ll' )) ) • 

Any measure satisfying the conclusion of Lemma 1 must be basic. The 

proof of that fact uses what is at first sight a bizarre characterization 

of basic measures in terms of (one-dimensional) characters of the discrete 

circle group. In fact let P denote the collection of all positive 

measures ~ in M('ll' ) with the property that there exists some character 

of the discrete circle group which is ~-measurable but which is not a character 

of the circle group with its usual topology (i.e. is not of the form 

t -+ exp 27fint, for fixed n E ~ ) • It is not difficult to prove that 

the basic measures are precisely those measures singular to every measure .. 
in P. (This is consistent with the search in §2 for a class of non-

pathological measures.) 

LEMMA 2 Suppose that Pi~ * P2~ * ••• * p;~ belongs to L1 ('ll' ) then 

~ is a basic measure. 
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Proof. In view of the characterization of basic measures as 
j_ 

p ' 

will suffice to consider an arbitrary positive measure V absolutely 

continuous with respect to J1 and an arbitrary character X of the 

discrete group such that X is \!-measurable; then prove that X is 

necessarily continuous. 

continuous with respect to the corresponding measure involving J1 and 

it 

hence with respect to Haar measure. Moreover X being a \!-measurable 

character is p~V-measurable for each j. 
J 

Also a character which is 

measurable with respect ·to a finite family of measures is measurable with 

respect to their convolution product. It follows that X is 

* p;v-measurable and hence Haar measurable. We finish 

the proof by noting that every Haar measurable character is necessarily 

continuous - the Steinhaus theme again! 

Let me repeat that I would like to see a proof of Theorem 2 which does 

not proceed via Lemma 2 - and which extends to a wider class of measures 

than Riesz products. 

4. COMBINATORIAL METHODS 

The methods of §3 give no hint of how many SUllllilands are necessary to 

produce a set of positive Lebesgue measure from a set of positive ]1-measure, 

given that )l is basic. A result like (L5) does tha'c and more, so ·the 

proof requires much more in the way of technical estima:teso 

There axe two ways to proceed. On the one hand it is possible to 

concentrate on the basic property and try to handle large classes of 

measures of infini·te convolution type. This is the approach adoFted in 

[5]. On the other hand one can aim for sharp results like (1.5) and face 

up to proving the necessary combinatorial es+:imat.es. This can be 

surprisingly difficult. In particular Keane, Moran, Pearce, and I have 
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recently (see [1]) extended (1.5) to the corresponding result where the 

ratio of dissection is no longer 3 as for ~c but can be any positive 

integer m + 1 (exceeding 3) • 

THEOREM 3 Suppose that o.;;;;x .;;;;x .;;;; ••• .;;;;x .;;;;1 
m m-1 1 and Zet 

a = log(m + 1)/m log 2. Then 

xa (1 - x ) a + 
m-1 m 

+ (1- x1)a(l- x2)a ••• (1- xm)a ~1. 

Even the special case of Theorem 3 in which all X. 
~ 

at all trivial. A simple substitution reduces this to 

(4.1) For 0 .;;;;; a .;;;;; log (m + 1) /m log 2 and b ~ 0, 

are equal is not 

Inequality (4.1), which is proved in [1], looks both obvious and 

classical. To the best of my belief it is neither! 
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