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SQUARE FUNCTIONS IN BANACH SPACES 

Michael Cowling 

1. INTRODUCTION 

( JR+) Suppose that T t : t E is a bounded semigroup of operators 

on the Banach space X , of type c0 , with infinitesimal generator 

A • In the classical case, 1;rhere (Ttl is the Poisson semi group 

acting on Lp(T) or on Lp(JR) , the "g-function", developed by 

A. Zygmund and his school, is one of the important tools of Fourier 

analysis. In a more general setting, the functions g (f) 
n 

were considered by E.M. Stein [l], and used ·to shed light on heat 

diffusion semigroups, again on Lp- spaces. In particular, g-functions 

are often used to prove pointwise convergence results and multiplier 

theorems; see Stein's paper [3] for a survey of their role. Roughly 

speaking, the finiteness of llgn(f)il measures degrees of 

"orthogonality" of the functions t r->- tn Cln /Cltn Ttf , for differen'c 

t . 

In this paper, we shall present a personal approach to 

g-functions, and connect them to multiplier theorems which develop 

Stein"s work [2]. We describe the multiplier results briefly before 

returning to the g-functions. 

For in (O,TI) , we let 

r 
qJ 

{z E (I: 

We say that acts on A 

r be the following open cone: 
qJ 

Jarg(z) J < qJ} • 

if there is an extension of the 
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resolvent calculus to a Banach algebra homomorphism m 1-+ m(A) of 

under very mild restrictions on ('l't) or on X , 

this homomorphism, if it exists, is essentially unique. Since the 

spectrum of the generator of a holomorphic semigroup lies in a cone 

re . with e < rr/2 ' it is not unnatural to look for actions of 

"" H <r ) on A for all ~ in (8, rr/2] 1 such actions would 
C(i 

generalise the spectral mapping theorem. 

2. A REFORMULATION OF .G-FUNCTIONS 

We assume hereafter that the semigroup is holomorphic, so 

that 3n/6tn Tt is a bounded operator on X , which we take to be 

a function lattice. Formally, 

(tA )n e-tA 

( 21T)-. 1 f du r(n -iu)tiu Aiu 
IR 

by Mellin inversion, Of course Aiu need not make sense as a bounded 

operator on X , but in this context it is possibl'' to justify every-

thing afterwards. By the Plancherel-Parseval theorem, we obtain our 

version of g 11 (f) 

(1) (flR+ dt/t ltn Cln/()tn Ttf(X) 12 )!:1 

where 

-k f I iu 12 k = (2'1f) 2 ( JR du r(n -iu) A f(x) ) 2 

By Mellin inversion, we may also write 

m(A) "'(2'IT)·-l f du n(u) Aiu, 
TR 

denotes the Fourier transform and n = m o exp 

X, set f(•,u) = Aiuf(.). We now have the formula 

(2) (m(A)f) - (X,u) ~ (m(A) ® I)f(x,u) 

~"or f in 
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(21T) -l J lR dv S (v) A iv A illf (x) 

(21T)-l fiR dv S(~') f(x,ll-v) 

here n(v) = n(-v\ . The point of this formula is that an operator 

acting in the x-variiililes is switched into a convolution operator in 

the u-variables. If one has estimates for the g-function, then 

questions of boundedness of operators m(A) are reduced to questions 

of boundedness of convolution operators on weighted 2 
L -spaces. 

More precisely, if A* denotes the adjoint of A , then for f 

in X and h in x* 

where the g-function in x* is also denoted ga , and 

Therefore, 

(3) 

Now if n is bounded and holomorphic in the strip STI/2 , where 

s = {z € a: : IIm(z) I < cp} , rp 

then, for all sufficiently rapidly decreasing square integrable rp , 

<fiR du lr<~+iu) n •cp(u) 1 2 >~ 

~ c llnll 00 <fiR du Jr<~+iu) . 2 ~ 
cp(u) I ) ' 

and hence, from (1) and (2), with the natural definition of g~, 



(4) g1 (m(a)f) (x) , 
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J - .. 2 h 
( lR du lr<~+iu) (I® n*) f(x,u) I ) 2 

s C llnil 
co 

C llnll 
00 

f - 2 h 
( lR du !f(~+iu) f(x,u) I ) 2 

g1 (f) (x) • , 
Consequently, if we know that 

and 

llg, (fl II s c lifll , 
llg, (h) II s c llhll , 

f E X 

h E x* 

then we may deduce from (3) that, for m in H00 (f , 2) 
7f; 

i<m(A) f ,h> I s C llnll 00 II fll llhll , 

i.e. that m(A) is a bounded operator on X . (The constant C 

varies from line to line!) 

Similarly, if 
00 + 

M E: L ( lR ) , and 

J ~sA. 
m(A) = A IR+ ds e M(s) , 

then, with the obvious notation, 

n(u) = flR+ dl liu-l A fiR+ ds e-slM(s) 

f(l+iu) J + ds s-l-iuM(s) 
lR 

f(l+iu) N(u) 

Fourier analysis proves the inequali-ty 

f 2 h 
s IIMII 00 ( lR du tnz +iu) <p(u) 1 ) 2 

for suitable <p , and hence 

(5) g1 (m(A)f) (x) s IIMI\ 00 g 2 (f) (x) , 

and es·timates for in x* and in X imply that 
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llm(A)fll s c IIMII llfl\ 
00 

(cL Stein [2], pp.62-63). 

Comparison of these two results indicate that g -estimates for 
a 

higher indices a yield stronger multiplier theorems. In this vein, 

vJe have the following theorem. 

THEOREfvJ 1. Suppose -that X is an LP-space, with p ,in (l,oo) , 

Then rt'' (f ) acts on A for all qJ in (8, 'IT/2) if and only if 
qJ 

llgn (f) II s C sec(qJ)n f(n) llfll 
qJ 

-vmiformly in n (n 1,2,3, ... ) • and also 

llg (h) II 
n 

n s CQJ sec((p) f(n) llhll 

f01° all qJ in (8' 7r/2) • 

f E X 

h E 

The condition that X be an I.P-space can be relaxed; what we 

really need is the possibility of randomisa-tion in X and in x* , 

I thought originally that conditions on the operator norm iliAiulll of 

iu A , such as 

U E JR, 

for all qJ in (8, 'JT/2) , may have been equivalent to those of the 

theorem (and indeed they are if X is a Hilbert space) , but a 

coun-terexample sho~r;s ·this is not so in genera.l. However, in an 

arbitrary Banach space, we have the following result. 

THEOREM 2. If 

in (8, 'IT/2) 

ac-ts on A for some 

IIII~iu111 s C exp(qJ JuJ) 
qJ 

QJ , and if, fol" all 

U E JR, 

then H00 (f ) acts on A for all qJ in (6, 7r/2) • 
qJ 
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After this digression, we return to our g-functions. Since 

these can control multipliers pointwise (as in (4) and (5) above), 

they can control pointwise convergence, For instance, if different 

"" mj's in (4) have their H (fTI/2)-norms bounded by C, then for all j, 

g, (m. (A) f) (x) .:>: g1 (f) (x) , 
"2 J -'2 

and so we have a maximal function estimat.e 

To control m. (A) f , rather than g, (m. (A) f) , two methods are 
J "2 J 

available, one classical, and the other given some prominence by the 

author [1]. First, from (2), 

(mj (A) f) (x) = (2TI) -l I lR dV (vl f(x:,v·) , 

so 

(A) f) (x) I 

estimates on the integrals on the last line can be used to control the 

maximal function. Alternatively, one can work as foll~1s: 

I (m, (A) f) (x) I 
J 

s (2TI)-l (sup. jr(a+iv)-1 fl.(v) ll (f dv lr(a+iv) f(x,v) I> , 
v J IR 

and use estimates on the suprema to control the maximal function. 

Since, in a lattice 

r 
:>: jlR dv Jr<a+iv) I lif(•,v)ll 

s {Rdvjf(a+iv)jiiiAivllll llfll, 
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estimates for IIIAivlll instead of g-function estimates can be used. 

Although the second technique seems easier than the first, and is 

applicable when X is a lattice which does not admit randomisation, 

there are also times when the former is more appropriate. 

We conclude with an observation on orthogonal series. When 

studying the pointwise convergence of these, one sometimes considers 

their Abel summability, and this puts one naturally in a semigroup 

context. More precisely, if ~nE~ an~n(•) is an orthogonal series, 

with (an) in R-2 (~) and (~n) an orthonormal basis in some 

Lebesgpe space L2 (M) , then the Abel means may be written 

~nE~ an exp(-tn) ~n (X) 

The techniques discussed above suggest looking at 

The following theorem can be proved by starting with the Carleson-

Fefferman pointwise convergence theorem and applying randomisation 

arguments, and actually gives the deep result back by an easy trick. 

THEOREM 3. In any orthogonal system. given a non-negative increasing 

sequence (b) 
n • then the set of u in JR for which 

~nE~ a biu 
~n(x) n n 

fails to converge pointwise almost everywhere is of null Lebesgue 

measure. 

Proof. Let 

and set 

SN (x) ,u 
~ N a biu ( ) 

n=O n n ~n x ' 

# 
Su(x) = supN lsN,u(x) I . 

It suffices to prove lls!ll 2 finite for almost all u • Now 
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J · 2 .,-2 ~~ N . iul 2 ~ du ( 1 + u ) [sup ""' 0 a q> ( :!!;) b l ) 
JR N n= n n n 

dx c2 J du (l+u2)-l ~~ a q> (x)biu1 2 >~ 
JR nEJN n n n 

ccJ du (1 +u2 ) -l J dx 
JR X 

. 2 !,; 
~~ a q> (X)b~u~ ) 2 

nEJN n n n 

C TI~ (~ Ia 12>~ • 
nEJN n 
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