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RADON SINGULAR INTEGRALS 

E.M. Stein 

This report will describe some recent work done jointly with 

D.H. Phong [4], [5]. Only a sketch of the main ideas, the background, 

and the motivation will be presented here. The reader who is 

interested in further details may consult the cited literature. 

1. DEFINITIONS 

We assume we are dealing with a (compact) smooth n+l ·dimensional 

Riemannian manifold M . Suppose that for each point P in M we are 

given a co-dimension one smooth sub-manifold, Mp , so that P E Mp 

We suppose also tha'c for each P we are given a Calderon-Zygmund 

kernel K(P, •) on MP , with pole at P t'ile shall assume that the 

mappings P + MP , and P + K(P,•) are smooth. 

With these we form the "Radon singular integral", mapping (smooth) 

functions on M to functions on M , given by 

(Tf) (P) = Qc(P,•) ,fiM > = J K(P,Q) f(Q) d0p(Q) , 
p Mp 

i.e. with the restriction of f to MP integrated against the 

Calderon-Zygmund kernel K(P,•) , using the measure dcrp which is 

induced from the Riemannian volume element on M • 

Together with the singular integral T we also consider a 

corresponding maximal functiono To define it let B(P,o) denote the 

intersection of MP with the geodesic ball centred at P of radius 

6 . Then set 

M(F) (P) 
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We shall deal with the following problem: 

Question: Are T and M boQDded on LP , 1 < p < oo ? 

In retrospect one can see that this problem has in reality a long 

history as we shall explain momentarily (however ·the appelation Radon 

singular integrals, suggested by the relation with Radon transforms, 

seems to be ne\v). The initial motivation for studying this question 

came from non-isotropic singular integrals; the early results then 

lead to a host of further questions in particular in real-variable 

theory. A recent impetus has been ·the 3 -Neumann problem. 

2. FIRST EXAMPLES 

We shall give several examples of Radon singular integrals and 

their associated maximal functions. 

(1) Here M 
n+l 

1R (although M is not compact!), and for each 

n+l 
E 1R , take 

n 
IR = (x1 ,x2 , •.• ,xn,O) , i.e. MP is the affine hyperplane passing 

through P which is perpendicular to (0,0, ... ,0,1) . In this case 

both T and M are easily reducible to the sta.Ddard singular 

integrals and maximal functions on IRn 

(2) This example is already more representative of the situation 

we consider. Here we take M to be IR2 , and define 

(Tf) (x) 
00 

f dt 
P.V. -co f(x-y(t)) t 

where y(t) is the parabola y(t) = (t,'c2) . (Here M0 = (t,·t2) , 

and MP = P + M0 .) This operator is translation-invariant, and so 

its boundedness on L2 (IR2) can be proved by showing that 

m(~) = P.V. J:00eiy(t)·~ d: is a bounded function, as was done by 

Fabes in 1965 [1]. 
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(3) The theory of Hilbert transforms (and associated maximal 

functions) for curves was then greatly extended thanks to the work of 

Nagel, Riviere, and Wainger; (see [6] for a systematic account of ·the 

subject and its history). What came to light from this work was the 

impor·tan t role of curvature in these problems. 

3. ROTATIONAL CURVATURE 

The theory above used the curvature of the manifolds MP but 

these sub-manifolds were merely translations of a fixed M0 On the 

other hand itwill be important ·to consider situations where the MP 

are "flat", but as they vary with P ·they "rotate". This no·tion is 

subsumed in the following idea of "rotational curva·ture"'. Suppose 

<ll(P,Q) 0 , is a defining function of the manifolds {(P,Q) I Q E MP} 

Let us assume that dp<P(P,Q) ~ 0 and He form the 

(n+2) x (n+2) "Honge-Ampere de·terminan.-t" 

det 

and require that it be non-vanishing for p = Q 0 

This condition is closely related to a condition of Guillemin a.nd 

Sternberg [3], used in ·their generalization of the inver>cibility of 

the Radon transform. 1'. less intrinsic, but more workable version is 

as follows. One can find appropria>ce coordinate systems so ·that 

(locally) M = IRn+l = { (t,x)} wi·th t E IR, x E IRn and if we set 

P = (t,x) , then MP = {(s,y) , s t + S(t,x,y)} , where the function 

S satisfies S(t,x,x) = 0 , and 
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for x y 

Note: It is easy to see that example 2) above satisfies this 

curvature condition, but of course example 1) does not. 

4-. FURTHER EXAMPLES 

(4) Let Hm = crm x JR= { (z,t)} be the Heisenberg group, with 

multiplication formula 

(z,t) • (w,s) (z +w, t + s + 2Imz•w) 

Consider the distribution K given by K = L(z) <\ where '\ is the 

Dirac delta function in the t-variable, and L is a stan.dard 

Calder6n-Zygmund kernel (homogenous of degree -2m ) on crm The 

operator T is given by Tf = f*K , with convolution on the Heisenberg 

group. Here n =2m, M0 is the hyperplane {(z,O)} , and ~, 

P = (w,s) , is the right-translate (Heisenberg group mul·tiplication!) 

of by (w,s) . 

In ·this setting one can exploit "twisted convolution", as was 

done by Geller and the author [2]; the success of this method suggests 

that the use of the Fourier transform in only one variable might be a 

useful tool in the non-translation invariant case, an idea we shall 

adopt below. 

(5) This example is in reality a generalization of the previous 

one and is of basic importance. Let V be a smooth bounded domain in 

crm+l , and let r be a defining function for V . One then constructs 

a function wtz,w) which is (almost) analytic in z , (almost) anti-

analytic in w , and so that ~(z,z) = r(z) . We set 3V = M , and if 

p = w E bV ' we take Mp = {z E av I Im ~(z,w) = o} • Then the 

condition of non-vanishing curvature described in §3 above is 
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equivalent with the non-degeneracy of the Levi-form associated to V 

It also turns out that the Radon singular integrals in this setting 

are crucial operators if one wants to obtain sharp estimates for the 

a-Neumann problem. 

5. THE THEOREM 

Theorem. Suppose n ~ 2 and {~} has non-zero curvature as 

described in §4. Then both T and M are bounded on LP , 1 < p < oo • 

The idea of the proof (of the L2 boundedness of T l.is to write 

T as a pseudo-differential operator in one variable (hiding the other 

variables by considering functions which take their values in 

appropriate Hilbert spaces). More specifically, one can write 

where 

(that is f (A) 

(Tf) (t) foo iAt A 

-oo a(t,A) e f(A) dA 

f(A,x) = 2~ foo 
-oo 

-iAt e f(t,x) dt 

takes its values in L2 (JRn) ) • Similarly (Tf) (t) 
X 

takes its values in that space. Also a(t,A) takes its values in the 

space of operators from L2 (JRn) to itself. The definition of a(t,A) 

is 

f iAS(t X y) 
a(t,A) (f) (x) = JRn K(t,x; x-y) e ' ' f(y) dy 

K(t,x ;o) is a Calder6n-Zygmund kernel, depending smoothly on (t,x) 

and having compact support .in (t,x) • The main problem is then of 

showing that the oscillations of iAS e , as A -+ oo , and those of K 

do not interfere, and in fact work together for the good. One can 

show that 
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0 :'> k+.Q, < n 

and then apply a version of the Calderon-Vaillancourt theorem. 'I'o 

prove (*) the condition 

X= y ' 

plays a decisive role. 
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