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First, I want to present some questions on L2- harmonic forms on
non-compact Riemannian manifolds. Second, I will present an answer
to an old question of J. Dodziuk on L2- harmonic forms on manifolds
with flat ends. In fact some of the analytical tools presented here apply
in other situations (see [C4]).

1. The space of harmonic forms

Let (Mn, g) be a complete Riemannian manifold. We denote by
Hk(M, g) or Hk(M) its space of L2-harmonic k-forms, that is to say
the space of L2 k−forms which are closed and coclosed:

Hk(M) = {α ∈ L2(ΛkT ∗M), dα = δα = 0},
where

d : C∞
0 (ΛkT ∗M) −→ C∞

0 (Λk+1T ∗M)

is the exterior differentiation operator and

δ : C∞
0 (Λk+1T ∗M) −→ C∞

0 (ΛkT ∗M)

its formal adjoint. The operator d does not depend on g but δ does; δ
is defined with the formula:

∀α ∈ C∞
0 (ΛkT ∗M), ∀β ∈ C∞

0 (Λk+1T ∗M),

∫
M

〈dα, β〉 =

∫
M

〈α, δβ〉.

The operator (d + δ) is elliptic hence the elements of Hk(M) are
smooth and the L2 condition is only a decay condition at infinity.

2. If the manifold M is compact without boundary

If M is compact without boundary, then these spaces have finite
dimension, and we have the theorem of Hodge-DeRham : the spaces
Hk(M) are isomorphic to the real cohomology groups of M :

Hk(M) ' Hk(M, IR).
49
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Hence the dimension of Hk(M) is a homotopy invariant of M , i.e.
it does not depend on g. A corollary of this and of the Chern-Gauss-
Bonnet formula is :

χ(M) =
n∑

k=0

(−1)k dimHk(M) =

∫
M

Ωg ,

where Ωg is the Euler form of (Mn, g) ; for instance if dim M = 2
then Ωg = KdA

2π
, where K is the Gaussian curvature and dA the area

form.

3. What is true on a non-compact manifold

Almost nothing is true in general:
The space Hk(M, g) can have infinite dimension and the dimension,

if finite, can depend on g. For instance, if M is connected we have

H0(M) = {f ∈ L2(M, dvol g), f = constant }.

Hence H0(M) = IR if vol M < ∞,

and H0(M) = {0} if vol M = ∞.

For instance if IR2 is equipped with the euclidean metric, we have
H0(IR2, eucl) = {0}, and if IR2 is equiped with the metric g = dr2 +
r2e−2rdθ2 in polar coordinates, then H0(IR2, g) = IR. We have also that
Hk(IRn, eucl) = {0}, for any k ≤ n. But if we consider the unit disk
in IR2 equipped with the hyperbolic metric 4|dz|2/(1− |z|2)2 then it is
isometric to the metric g1 = dr2 +sinh r2dθ2 on IR2. And then we have
dimH1(IR2, g1) = ∞.

As a matter of fact if P (z) ∈ |C[z] is a polynomial, then α = P ′(z)dz
is a L2 harmonic form on the unit disk for the hyperbolic metric (this
comes from the conformal invariance, see 5.2).

So we get an injection |C[z]/ |C → H1(IR2, g1). However, the spaces
Hk(M, g) satisfy the following two properties:

• These spaces have a reduced L2 cohomology interpretation:
Let Zk

2 (M) be the kernel of the unbounded operator d acting on
L2(ΛkT ∗M), or equivalently

Zk
2 (M) = {α ∈ L2(ΛkT ∗M), dα = 0},

where the equation dα = 0 has to be understood in the distribution
sense i.e. α ∈ Zk

2 (M) if and only if
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∀β ∈ C∞
0 (Λk+1T ∗M),

∫
M

〈α, δβ〉 = 0 .

That is to say Zk
2 (M) =

(
δC∞

0 (Λk+1T ∗M)
)⊥

. The space L2(ΛkT ∗M)
has the following Hodge-DeRham-Kodaira orthogonal decomposition

L2(ΛkT ∗M) = Hk(M)⊕ dC∞
0 (Λk−1T ∗M)⊕ δC∞

0 (Λk+1T ∗M),

where the closure is taken with respect to the L2 topology. We also
have

Zk
2 (M) = Hk(M)⊕ dC∞

0 (Λk−1T ∗M),

hence we have

Hk(M) ' Zk
2 (M)/dC∞

0 (Λk−1T ∗M).

A corollary of this identification is the following:

Proposition 3.1. The space Hk(M, g) are quasi-isometric invariant
of (M, g). That is to say if g1 and g2 are two complete Riemannian
metrics such that for a C > 1 we have

C−1g1 ≤ g2 ≤ Cg1,

then Hk(M, g1) ' Hk(M, g2).

In fact, the spaces Hk(M, g) are biLipschitz-homotopy invariants of
(M, g).

• The finiteness of dimHk(M, g) depends only of the geometry of
ends :

Theorem 3.2. (J. Lott, [L]) The spaces of L2-harmonic forms of
two complete Riemannian manifolds, which are isometric outside some
compact set, have simultaneously finite or infinite dimension.

4. A general problem

In view of the Hodge-DeRham theorem and of J. Lott’s result, we
can ask the following questions :

(1) What geometrical condition on the ends of M insure the finite-
ness of the dimension of the spaces Hk(M)?

Within a class of Riemannian manifold having the same geometry at
infinity:

(2) What are the links of the spaces Hk(M) with the topology of
M and with the geometry ‘at infinity’ of (M, g) ?
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(3) And what kind of Chern-Gauss-Bonnet formula could we hope
for the L2- Euler characteristic

χL2(M) =
n∑

k=0

(−1)k dimHk(M) ?

There are many articles dealing with these questions. I mention only
three of them :

(1) In the pioneering article of Atiyah-Patodi-Singer ([A-P-S]), the
authors considered manifolds with cylindrical ends : that is to
say there is a compact subset K of M such that M \ K is
isometric to the Riemannian product ∂K×]0,∞[. Then they
show that the dimension of the space of L2-harmonic forms is
finite ; and that these spaces are isomorphic to the image of the
relative cohomology in the absolute cohomology. These results
were used by Atiyah-Patodi-Singer in order to obtain a formula
for the signature of compact manifolds with boundary.

(2) In [M, M-P], R. Mazzeo and R. Phillips give a cohomological
interpretation of the space Hk(M) for geometrically finite real
hyperbolic manifolds.

(3) The solution of the Zucker’s conjecture by Saper and Stern
([S-S]) shows that the spaces of L2 harmonic forms on hermit-
ian locally symmetric space with finite volume are isomorphic
to the middle intersection cohomology of the Borel-Serre com-
pactification of the manifold.

5. An example

I want now to discuss the L2 Gauss-Bonnet formula through one
example. The sort of L2 Gauss-Bonnet formula one might expect is a
formula of the type

χL2(M) =

∫
K

Ωg + terms depending only on (M −K, g),

where K ⊂ M is a compact subset of M ; i.e. χL2(M) is the sum of a
local term

∫
K

Ωg and of a boundary (at infinity) term. Such a result
will imply a relative index formula :

If (M1, g1) and (M2, g2) are isometric outside compact set Ki ⊂ Mi,
i = 1, 2, then

χL2(M1)− χL2(M2) =

∫
K1

Ωg1 −
∫

K2

Ωg2 .
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It had been shown by Gromov-Lawson and Donnelly that when zero
is not in the essential spectrum of the Gauss-Bonnet operator d + δ
then this relative index formula is true ([G-L, Do]). For instance, by
the work of Borel and Casselman [BC], the Gauss-Bonnet operator is a
Fredholm operator if M is an even dimensional locally symmetric space
of finite volume and negative curvature.

In fact such a relative formula is not true in general. The following
counterexample is given in [C2]:

(M1, g1) is the disjoint union of two copies of the euclidean plane
and (M2, g2) is two copies of the euclidean plane glued along a disk.
As these surface are oriented with infinite volume, we have i = 1, 2:

H0(Mi, gi) = H2(Mi, gi) = {0}.
And we also have H1(M1, g1) = {0}. Moreover

Lemma 5.1. H1(M2, g2) = {0}.
This comes from the conformal invariance of this space. Indeed, it

is a general fact:

Proposition 5.2. If (Mn, g) is a Riemannian manifold of dimension
n = 2k, and if f ∈ C∞(M) then

Hk(M, g) = Hk(M, e2fg).

Proof.– As a matter of fact the two Hilbert spaces L2(ΛkT ∗M, g) and
L2(ΛkT ∗M, e2fg) are the same: if α ∈ ΛkT ∗xM , then

‖α‖2
e2f g(x) = e−2kf(x)‖α‖2

g(x)

and dvol e2f g = e−2kfdvol g.
We have

Hk(M, e2fg) = Zk
2 (M, e2fg) ∩ dC∞

0 (Λk−1T ∗M)

and Hk(M, g) = Zk
2 (M, g) ∩ dC∞

0 (Λk−1T ∗M).

As the two Hilbert space L2(ΛkT ∗M, g) and L2(ΛkT ∗M, e2fg) are the
same, these two spaces are the same. Q.E.D

But (M2, g2) is conformally equivalent to the 2-sphere with two
points removed.

A L2 harmonic form on the 2-sphere with two points removed extends
smoothly on the sphere.

The sphere has no non trivial L2 harmonic 1-form, hence Lemma 5.1
follows.
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The surfaces (M1, g1) and (M2, g2) are isometric outside some com-
pact set but

χL2(M1)−
∫

M1

Kg1dAg1

2π
= 0− 0 = 0

whereas

χL2(M2)−
∫

M2

Kg2dAg2

2π
= −

∫
M2

Kg2dAg2

2π
= −2.

Hence the relative index formula is not true in general. A corollary
of this argument is the following

Corollary 5.3. If (S, g) is a complete surface with integrable Gaussian
curvature, according to a theorem of A. Huber [H], we know that such
a surface is conformally equivalent to a compact surface S̄ with a finite
number of points removed. Then

dimH1(S, g) = b1(S̄).

6. manifolds with flat ends

In (1982, [D]), J. Dodziuk asked the following question: according
to Vesentini ([V]) if M is flat outside a compact set, the spaces Hk(M)
are finite dimensional. Do they admit a topological interpretation ?

My aim is to present an answer to this question. For the detail, the
reader may look at [C4]:

6.1. Visentini’s finiteness result.

Theorem 6.1. Let (M, g) be a complete Riemannian manifold such
that for a compact set K0 ⊂ M , the curvature of (M, g) vanishes on
M −K0. Then for every p

dimHp(M, g) < ∞.

We give here a proof of this result; this proof will furnish some
analytical tools to answer J. Dodziuk’s question.

We begin to define a Sobolev space adapted to our situation:

Definition 6.2. Let D be a bounded open set containing K0, and let
WD(ΛT ∗M) be the completion of C∞

0 (ΛT ∗M) for the quadratic form

α 7→
∫

D

|α|2 +

∫
M

|(d + δ)α|2 = N2
D(α).
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Proposition 6.3. The space WD doesn’t depend on D, that is to say
if D and D′ are two bounded open sets containing K0, then the two
norms ND and ND′ are equivalent.

We write W for WD.

Proof.– The proof goes by contradiction. We notice that with the
Bochner-Weitzenböck formula:

∀α ∈ C∞
0 (ΛT ∗M),

∫
M

|(d + δ)α|2 =

∫
M

|∇α|2 +

∫
K0

|α|2.

Hence, by standard elliptic estimates, the norm ND is equivalent to the
norm

QD(α) =

√∫
M

|∇α|2 +

∫
D

|α|2.

If D and D′ are two connected bounded open set containing K0, such
that D ⊂ D′ then QD ≤ QD′ . Hence if QD and QD′ are not equivalent
there is a sequence (αl)l∈IN ∈ C∞

0 (ΛT ∗M), such that QD′(αl) = 1
whereas liml→∞QD(αl) = 0.

This implies that the sequence (αl)l∈IN is bounded in W 1,2(D′) and
liml→∞ ‖∇αl‖L2(M) = 0. Hence we can extract a subsequence con-

verging weakly in W 1,2(D′) and strongly in L2(ΛT ∗D′) to a α∞ ∈
W 1,2(D′). We can suppose this subsequence is (αl)l.

We must have ∇α∞ = 0 and α∞ = 0 on D and ‖α∞‖L2(D′) = 1.
This is impossible. Hence the two norms QD and QD′ are equivalent.
Q.E.D

We have the corollary

Corollary 6.4. The inclusion C∞
0 −→ W 1,2

loc extends by continuity to

a injection W −→ W 1,2
loc .

We remark that the domain of the Gauss-Bonnet operator D(d+δ) =
{α ∈ L2, (d + δ)α ∈ L2} is in W . As a matter of fact, because (M, g)
is complete D(d+δ) is the completion of C∞

0 (ΛT ∗M) equiped with the
quadratic form

α 7→
∫

M

|α|2 +

∫
M

|(d + δ)α|2.

This norm is larger that the one used for defined W . Hence D(d+δ) ⊂
W . As a corollary we get that a L2 harmonic form is in W . The
Visentini’s finiteness result will follow from:

Proposition 6.5. The operator (d+δ) : W −→ L2 is Fredholm. That
is to say its kernel and its cokernel have finite dimension and its image
is closed.
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Proof.– Let A be the operator (d + δ)2 + 1D, where

1D(α)(x) =

{
α(x) if x ∈ D

0 if x 6∈ D

We have

ND(α)2 = 〈Aα, α〉.
So the operator A−1/2 =

∫∞
0

e−tA dt√
πt

realizes an isometry between

L2 and W . It is enough to show that the operator (d + δ)A−1/2 = B is
Fredholm on L2. But

B∗B = A−1/2(d + δ)2A−1/2 = Id− A−1/21D1DA−1/2.

The operator 1DA−1/2 is the composition of the operator A−1/2 :
L2 −→ W then of the natural injection from W to W 1,2

loc and finally of

the map 1D from W 1,2
loc to L2. D being a bounded set, this operator is a

compact one by the Rellich compactness theorem. Hence 1DA−1/2 is a
compact operator. Hence, B has a closed range and a finite dimensional
kernel. So the operator (d + δ) : W −→ L2 has a closed range and a
finite kernel. But the cokernel of this operator is the orthogonal space
to (d + δ)C∞

0 (ΛT ∗M) in L2. Hence the cokernel of this operator is the
L2 kernel of the Gauss-Bonnet operator. We notice that this space is
included in the space of the W kernel of (d + δ). Hence it has finite
dimension. Q.E.D

We also get the following corollary :

Corollary 6.6. There is a Green operator G : W −→ L2, such that

on L2, (d + δ)G = Id − PL2

where PL2
is the orthogonal projection on ⊕Hk(M).

On W, G(d + δ) = Id − PW

where PW is the W orthogonal projection on kerW (d + δ).
Moreover, α ∈ Zk

2 (M) is L2 cohomologous to zero if and only if there
is a β ∈ W (Λk−1T ∗M) such that α = dβ.

6.2. A long exact sequence. In the DeRham cohomology, we have
a long exact sequence linking the cohomology with compact support
and the absolute cohomology. And this exact sequence is very useful
to compute the DeRham cohomology groups. In L2 cohomology, we
can also define this sequence but generally it is not an exact sequence.

Let O ⊂ M be a bounded open subset, we can define the sequence:
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(6.1)

−→Hk(M \ O, ∂O)
e−→ Hk(M)

j∗−→ Hk(O)
b−→ Hk+1(M \ O, ∂O)−→

Here

Hk(M \ O, ∂O) = {h ∈ L2(ΛkT ∗(M \ O), dh = δh = 0 and i∗h = 0},

where i : ∂O−→M \ O is the inclusion map, and

• e is the extension by zero map:
to h ∈ Hk(M \ O, ∂O) it associates the L2 cohomology class

of h̄, where h̄ = 0 on O and h̄ = h on M \ O. It is well defined
because of the Stokes formula:

if β ∈ C∞
0 (Λk+1T ∗M), then

〈h̄, δβ〉 = 〈dh, β〉L2(O) −
∫

∂O
i∗h ∧ i∗ ∗ β = 0

• j∗ is associated to the inclusion map j : O −→ M ; to h ∈
Hk(M) it associates [j∗h], the cohomology class of h|O in Hk(O).

• b is the coboundary operator: if [α] ∈ Hk(O), and if ᾱ is a
smooth extension of α, with compact support, then b[α] is the
orthogonal projection of dᾱ on Hk+1(M \ O, ∂O). The map b
is well defined, that is to say, it does not depend on the choice
of α nor of its extension.

It is relatively easy to check that

j∗ ◦ e = 0, b ◦ j∗ = 0 and e ◦ b = 0 ;

Hence we have the inclusion:

Im e ⊂ Ker j∗, Im j∗ ⊂ Ker b and Im b ⊂ Ker e.

In [C1], we observed that

Proposition 6.7. The equality ker b = Im j∗ always holds.

This comes from the the long exact sequence in DeRham cohomology.
Moreover, we have the following:

Proposition 6.8. On a manifold with flat ends, the equality Im b =
Ker e always holds.

Proof.– As a matter of fact, if h ∈ Ker e then by (6.6) we get a
β ∈ W , such that h = dβ on M . Hence h = b [β|O]. Q.E.D

The last fact requires more analysis:
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Theorem 6.9. If (M, g) is a complete manifold with flat ends and if
for every end E of M we have

lim
r→∞

vol E ∩Bx(r)

r2
= ∞,

then the long sequence (6.1) is exact.

6.3. Hodge theorem for manifolds with flat ends. With the help
of the geometric description of flat ends due to Eschenburg and Schroe-
der ([E-S], see also [G-P-Z]), we can compute the L2-cohomology on
flat ends. Then with the long sequence (6.1), we can give an answer
to J. Dodziuk’s question; for sake of simplicity, we give here only the
result for manifolds with one flat end.

Theorem 6.10. Let (Mn, g) be a complete Riemannian manifold with
one flat end E. Then

(1) If (Mn, g) is parabolic, that is to say if the volume growth of
geodesic ball is at most quadratic

lim
r→∞

vol Bx(r)

r2
< ∞,

then we have

Hk(M, g) ' Im
(
Hk

c (M) −→ Hk(M)
)
.

(2) If (Mn, g) is non-parabolic (i.e. if limr→∞
vol Bx(r)

r2 = ∞), then
the boundary of E has a finite covering diffeomorphic to the
product Sν−1×T where T is a flat (n−ν)-torus. Let π : T −→
∂E the induced immersion, then

Hk(M, g) ' Hk(M \ E, ker π∗),

where Hk(M \ E, ker π∗) is the cohomology associated to the
subcomplex of differential forms on M \ E : ker π∗ = {α ∈
C∞(Λ•T ∗(M \ E)), π∗α = 0}.
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