
LOW-REGULARITY GLOBAL SOLUTIONS TO
NONLINEAR DISPERSIVE EQUATIONS

TERENCE TAO

Abstract. In these notes we discuss some recent developments
in the study of global solutions to dispersive equations, especially
for low regularity data.

1. Introduction

These notes are concerned with a certain class of PDE which gen-
erally fall under the title of non-linear dispersive equations. A typical
such equation is the cubic non-linear Schrodinger equation (NLS)

iut + ∆u = |u|2u,

where u(x, t) is a complex-valued function of space x ∈ Rn and time
t ∈ R; this comes up in many physical situations such as modelling
dilute Bose-Einstein condensates. Another example is the Korteweg-de
Vries (KdV) equation

ut + uxxx = uux

where u(x, t) is now a real-valued function of one space dimension x ∈
R and one time dimension t ∈ R; this equation most famously models
shallow waves in a canal. A third example is the wave map equation
for the sphere

�u = −utt + ∆u = −u(|∇u|2 − |ut|2)

where u(x, t) is now a function of Rn × R taking values in a sphere
Sm−1 ⊂ Rm. This equation is the natural Minkowskian analogue of
the harmonic map equation, and is also related to simplified models of
Einsteinian gravity.

Although these equations are quite different, they share many fea-
tures in common:

• They are evolution equations, involving a time parameter t. Be-
cause of this, the natural PDE problem to solve is the Cauchy problem,
in which the initial position u(x, 0) is specified. For equations such as
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the wave map equation which are second order in time, the initial ve-
locity ut(x, 0) must also be specified.

• They are all Hamiltonian equations. Recall that a Hamiltonian
ODE flow on a phase space R2N is any equation of the form

u̇ = J∇H(u)

where H : R2N → R is the Hamiltonian function, and J is the matrix
of the symplectic form (so that the quadratic form 〈Jx, y〉 is anti-

symmetric and non-degenerate, e.g. J =

(
0 IN
−IN 0

)
). A Hamil-

tonian PDE is defined similarly except that the phase space is now an
infinite dimensional Hilbert space such as L2(Rn).

For NLS, the phase space is L2(Rn; C) with symplectic form

〈Ju, v〉 := Im

∫
uv dx

and Hamiltonian

H(u) :=

∫
1

2
|∇u|2 +

1

4
|u|4.

For KdV, the phase space is (formally, at least) the homogeneous
Sobolev space Ḣ−1/2(R;R) with symplectic form

〈Ju, v〉 :=

∫
u(

d

dx
)−1v dx

and Hamiltonian

H(u) :=

∫
1

2
u2

x −
1

3
u3.

For wave maps, the phase space is Ḣ1/2(Rn;Sm−1)× Ḣ−1/2(Rn;Sm−1)
(with the phase space location at time t given by (u(t), ut(t))) with
symplectic form1

〈J(u, ut), (v, vt)〉 :=

∫
uvt − vutdx

and Hamiltonian

H(u, ut) :=

∫
1

2
|∇u|2 − 1

2
|ut|2.

1This is not quite accurate because phase space is not linear here, but if one
restricts the symplectic form to the non-linear phase space then these statements
become valid.
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Hamiltonian equations have several good features. To begin with,
the Hamiltonian H(u) is (formally, at least) an invariant of the flow:

∂tH(u(t)) = 0.

In most physical situations the Hamiltonian represents energy. More
generally, any quantity which Poisson commutes with the Hamiltonian
will be an invariant of the flow; for the NLS and KdV equations the
L2 norm

∫
|u|2 is a typical example. Some equations, such as KdV (or

NLS in one dimension) are fortunate to have a maximal number of in-
dependent functions which Poisson commute with the Hamiltonian; for
finite dimensional phase space R2N the maximal number is N , but for
infinite dimensions the maximal number of such functions is of course
infinite. Such equations are known as completely integrable equations
and enjoy infinitely many conserved quantities. For instance, KdV has
the conserved quantities ∫

u∫
u2∫

u2
x −

2

3
u3∫

u2
xx −

5

3
uu2

x +
5

9
u4

etc. However, complete integrability is a very special phenomenon,
mostly restricted to one space dimension, and should not be expected
in general.

Hamiltonian equations are also time reversible (unlike dissipative
equations such as the heat equation).

• These equations are invariant under translations in both time and
space. This suggests that the Fourier transform will be a useful tool;
this is already apparent in our choice of using the Sobolev spaces Hs.
Actually there are two Fourier transforms which are useful: the spatial
Fourier transform

û(ξ, t) :=

∫
e−ix·ξu(x, t) dx

and the spacetime Fourier transform

ũ(ξ, τ) :=

∫ ∫
e−i(x·ξ+tτ)u(x, t) dxdt.

The spatial Fourier transform decomposes a function u(x) into various
plane waves eix·ξ of various frequencies ξ. It is quite profitable to think
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of the evolution of the PDE in terms of these various frequency modes.
For instance, the KdV equation

ut + uxxx = uux

becomes (on the Fourier side)

∂tû(ξ, t) = iξ3û(ξ, t) +

∫
ξ1+ξ2=ξ

iξ2û(ξ1, t)û(ξ2, t).

The first term causes û(ξ, t) to rotate in phase with angular velocity ξ3.
The second term is the non-linear frequency interaction term, causing
Fourier modes at ξ1 and ξ2 to influence the evolution of the Fourier
mode at ξ.

As we shall see, it is also profitable to group the Fourier modes into
dyadic bands |ξ| ∼ N , where N is a power of two. (In harmonic anal-
ysis this technique falls under the domain of Littlewood-Paley theory,
although usually we do not need the full power of this theory for PDE
applications).

• While these equations are non-linear, they are only quite mild
perturbations of linear equations. More precisely, they are semi-linear,
meaning that they are all of the form

Lu = F (u)

where L is a linear evolution operator and F (u) is a purely non-linear
expression (i.e. only containing quadratic or higher terms) which is
lower order than L. In the above model equations the linear part L is
very simple (either the Schrodinger operator i∂t +∆, the Airy operator
∂t +∂xxx, or the d’Alambertian (or wave operator) � = −∂2

t +∆). This
is in contrast to modern linear PDE theory, in which one does not add
a non-linearity F (u) but instead considers much more general linear
operators L. For the most part, research in these two areas have gone
in quite different directions, but perhaps they might be more strongly
unified in the future.

Because of this semilinear structure, we expect the linear component
L to be somehow “dominant”, especially if u is small. (When u is small,
Lu is also small, but F (u) is even smaller, being purely non-linear). If
u is large, we still expect L to dominate for short times (because the
non-linearity, being a forcing term, requires some time to significantly
influence the linear evolution of the initial data).

• The linear term L is dispersive, which means that different fre-
quency components of the linear evolution Lu = 0 move in different
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directions. For instance, for the free Schrödinger equation iut+∆u = 0,
a wave packet initial data of

u(x, 0) = eiξ·xa(x)

with ξ a high frequency and a a bump function, will roughly evolve like

u(x, t) ≈ eiξ·xe−i|ξ|2ta(x− 2ξt)

(at least if ∆a is negligible). Thus, apart from some phase oscillation,
a wave packet with frequency ξ will travel at velocity 2ξ, and retain
its frequency. In particular, wave packets with distinct frequencies will
ultimately disperse from each other. The situation is similar for the
Airy equation ut+uxxx = 0 except that the velocity is −3ξ2 rather than
2ξ. For the wave equation �u the velocity is ξ/|ξ|; this is not quite as
dispersive as the other two equations because the map ξ → ξ/|ξ| is not
injective, but still has a significant amount of dispersion.

These phenomena can also be seen on the Fourier level. If u(x, t) is a
global solution to the free Schrödinger equation iut + ∆u = 0, then its
spacetime Fourier transform ũ is (formally at least) supported on the
paraboloid τ = |ξ|2. Similarly solutions to the free Airy equation are
supported on the cubic τ = ξ3, while solutions to the free wave equation
are supported on the cone |τ | = |ξ|. The above wave packet analysis
can then be viewed as a stationary phase computation of the Fourier
transform of these characteristic surfaces. (The Fourier transform is
useful here because these equations are translation-invariant).

For the non-linear equation Lu = F (u) the above statements do not
hold exactly, but we still expect them to hold approximately, especially
if F is somewhat weak, the analysis is over short times only, and u is not
too wild. In particular, if the initial data has a frequency component
in the region |ξ| ∼ N , we expect this component to stay roughly in
the frequency band |ξ| ∼ N over time, although it may also create
interactions at lower frequencies |ξ| � N or higher frequencies |ξ| � N .

• All the above equations have a certain scale invariance of the form

u(x, t) 7→ λ−au(
x

λ
,
t

λd
)

for some constants a, d depending on the equation: (a, d) equals (1, 2)
for NLS, (2, 3) for KdV, and (0, 1) for wave maps. This is in contrast
to the linear counterparts Lu = 0, in which the scale invariance and
homogeneity are decoupled:

u(x, t) 7→ u(
x

λ
,
t

λd
)

u(x, t) 7→ µu(x, t)
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Alternatively, one can interpret time has having units of lengthd and
u has having units of length−a. Thus a time derivative has the same
scaling as d spatial derivatives, while u itself has the same scaling as
a spatial derivatives. (This provides a very convenient checksum in
computations, as all identities and estimates should be dimensionally
consistent).

In particular, we see that Sobolev norms ‖u‖Ḣs themselves have a
dimension, namely length−a+n/2−s. The critical regularity sc is the
value of s for which ‖u‖Ḣsc is dimensionless, i.e. −a + n/2 − sc = 0.
This quantity is then invariant under scaling. Regularities higher than
sc, s > sc are known (somewhat confusingly - it’s because derivatives
have negative dimension) as sub-critical; the Ḣs norms can then be
made small by blowing up the solution in time and space. Regularities
lower than sc are super-critical: one cannot shrink these norms by
“zooming in” in time and space.

The scaling regularity sc is n/2− 1 for NLS, −3/2 for KdV, and n/2
for wave maps.

Notice that the critical regularity sc has no obvious relation with the
phase space regularity sp (0 for NLS, −1/2 for KdV, and 1/2 for wave
maps), or the Hamiltonian regularity se (1 for NLS, KdV, and wave
maps)2. A particularly important distinction is whether the Hamilton-
ian regularity se (which controls the conserved quantity) is sub-critical,
critical, or super-critical; for instance in wave maps, this occurs when
n < 2, n = 2, and n > 2 respectively. It is fair to say that for large data
global existence problems, we know a lot when the Hamiltonian is sub-
critical, a little when the Hamiltonian is critical, and virtually nothing
(in the positive direction) when the Hamiltonian is supercritical. (The
three-dimensional Navier-Stokes and Einstein equations unfortunately
fall into this last category; for Navier-Stokes the only useful quantity
we can bound is L2 of the velocity, but scaling is Ḣ1/2. For Einstein, we
can bound the energy (Ḣ1 norm) of the metric, but scaling is Ḣ3/2.).

In these notes we discuss the problem of global well-posedness of non-
linear dispersive equations of the above type. The basic question, for a
fixed regularity Hs, is this: if the initial data is in Hs (or Hs×Hs−1 in
the case of wave equations), does there exist a unique global solution
to the Cauchy problem which remains in Hs for all time? (One may
have to specify “unique”, “exist”, and even “solution” more carefully).

2There is also sd, the least regularity required to make sense of the equation as
a distribution (often sd = 0), but this regularity is usually unimportant because
it is either much lower than what one can hope for, or there are various “local
smoothing” effects that allow one to interpret solutions below sd.
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Additional control - such as continuous dependence of the solution on
the data, or long-time asymptotics or growth bounds on the solution -
is also desirable.

The classical theory of PDE focuses on smooth solutions, when s
is extremely large. In this case it is fairly easy to obtain local well-
posedness for the above equations, but to obtain global well-posedness
it is sometimes necessary to go down to much lower regularities, such
as sc, sp, or se. The low regularity theory is also useful in obtaining
more precise control on solutions (including smooth solutions), and
more generally in deepening the intuition and set of tools for these
equations.

2. Local well-posedness

For most of this section we shall discuss NLS for sake of argument,
but the points made here are quite general.

Before we understand the global problem we must first understand
the local problem, of how to obtain existence and uniqueness even for a
short time interval [0, T ]. Generally we expect that the larger the data,
the shorter the time T for which we can obtain existence. A simple
model to keep in mind is the scalar ODE

u̇ = u2.

This has an explicit solution

u(t) =
u(0)

1− tu(0)

and so blows up at time T = u(0)−1.
In general it is not possible to obtain explicit solutions (except in

special cases such as completely integrable equations, although even
there the formulae are not so tractable). Current (deterministic) PDE
existence theory then offers two basic methods to construct solutions:
viscosity or compactness-type methods, and iteration-type methods.
There are some variant methods to these two basic ones (e.g. differ-
ence element schemes, Glimm’s method for conservation laws, etc.); it
is certainly worth exploring other methods and getting a better under-
standing as to their comparative strengths and weaknesses.

Viscosity methods are based on introducing a damping term to the
equation, for instance replacing KdV by the viscous KdV equation3

u
(ε)
t + u(ε)

xxx = εu(ε)
xx + u(ε)u(ε)

x ;

3This is not the only way, or even the best way, to add viscosity terms to the
KdV equation. See for instance [1].
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solutions to these equations can usually be constructed using parabolic
existence theory. One then tries to show that u(ε) converges to a so-
lution u of the original equation when ε → 0 (taking subsequences if
necessary).

In Fourier space, what the viscosity method is essentially doing is
truncating the frequency variable ξ to a bounded region (ξ = O(

√
T/ε)

in the above example), obtaining a frequency-truncated evolution. One
then relaxes the truncation radius to infinity. This works well as long
as there is little interaction between frequencies. It does not work well
when high frequency components often interact to create low frequency
contributions to the wave (since such interactions are not picked up by
the truncated equation) - but then again, no method seems to work
when one has a strong “high-to-low cascade”. The other problem is
the “low-to-high cascade”: it is possible for a component of the data
to escape off to high frequencies and eventually cause a singularity in
the solution. This will not cause the truncated solutions to diverge
when ε → 0 (at least if one is willing to take subsequences), but the
limiting solution will not capture this singularity properly, in that the
energy moving off to infinitely high frequencies may just disappear in
the limit. This is the problem of “ghost solutions” - solutions which do
not obey conservation of energy properly4 (although energy monotonic-
ity is usually guaranteed just from Fatou’s lemma); related problems
are that one is often unable to prove uniqueness or regularity for vis-
cosity solutions. On the other hand, the technique is extremely robust
and does not require the equation to be close to a linear equation.

Iteration methods provide much more control on the solution, but
seem to be limited to equations which are close to linear. For the types
of equations discussed here, iteration methods appear to be superior to
viscosity methods and we shall use them exclusively.

The idea (dating back to Picard) is to treat the non-linear term F (u)
of the Cauchy problem

Lu = F (u); u(0) = u0

4A typical example is the critical focussing NLS iut + uxx = −|u|4u in one di-
mension. There exists solutions which are self-similar and oscillatory and collapse
to a point singularity in finite time (after infinitely many rotations of phase). How-
ever if one adds a slight damping term then the solution behaves like the singular
solution until very close to the singularity, at which point the solution disperses
again (but with a phase which is highly dependent on the damping parameter ε).
These solutions only converge in the weak sense as ε → 0 because of the oscillation
in phase, and the weak limit is in fact zero beyond the singularity, so conservation
of energy or L2 mass fails beyond the singularity. See [6].
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as a perturbation. One starts with the linear solution

Lu(0) = 0; u(0)(0) = u0

and then constructs successive approximations u(1), u(2), . . . by solving
the inhomogeneous linear problems

Lu(n+1) = F (u(n)); u(n+1)(0) = u0.

Hopefully the iterates u(n) then converge (in a suitable normed vector
space) to a solution u of the original Cauchy problem. (This approach
is closely related to the method of power series - trying to expand u as
a power series in the initial data u0. The nth iterate u(n) is something
like the nth partial sum of that power series).

Let’s see how this works with a simple ODE, such as

u̇ = u2;u(0) = 5.

We use the Fundamental Theorem of Calculus to rewrite this differen-
tial equation as an integral equation:

u(t) = N(u(t))

where N is the non-linear operator

N(u)(t) := 5 +

∫ t

0

u2(t′) dt′.

We want a fixed point of N . We can try iteration, starting with u ≡ 0
(or u ≡ 5) and applying N repeatedly. To make the iterates converge
we need a contraction, say on the ball of radius 10 in L∞([0, T ]). Cer-
tainly N maps this ball to itself if T is sufficiently small. Now we need
a statement like

‖N(u)−N(v)‖L∞([0,T ]) ≤
1

2
‖u− v‖L∞([0,T ])

for all u, v in this ball. But this is easily accomplished if T is small
enough:

‖N(u)−N(v)‖L∞([0,T ]) ≤
∫ T

0

|u2(t′)−v2(t′)| dt′ ≤ T‖u+v‖∞‖u−v‖∞

≤ 20T‖u− v‖∞.

Thus we can obtain a unique fixed point of N in this ball for sufficiently
small times. Note that the time obtained T is inversely proportional to
the initial data 5, which agrees with what the explicit solution gives.
Also the same argument shows that solution depends continuously (and
even analytically) on the initial data 5.
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The same principle works for, say, the non-linear Schrödinger equa-
tion

iut + ∆u = |u|2u;u(0) = u0 ∈ Hs

if s is large enough. We can write this equation as an integral equation

u(t) = N(u(t))

where

N(u(t)) := eit∆u0 +

∫ t

0

ei(t−t′)∆(|u(t′)|2u(t′)) dt′.

We can again try iteration, now in a large ball in L∞([0, T ];Hs(Rn))
(the trick of using this particular space is generally referred to as the
classical energy method; as we shall see, it works providing that s is
larger than n/2). Note that eit∆ is bounded on Hs (which is why
we use L2 based Sobolev spaces to measure regularity for dispersive
equations!), so the linear part eit∆u0 of N(u(t)) is already in this ball.
To obtain the contraction we have to make an estimate such as

‖
∫ t

0

ei(t−t′)∆(|u(t′)|2u(t′)−|v(t′)|2v(t′)) dt′‖L∞([0,T ];Hs) ≤
1

2
‖u−v‖L∞([0,T ];Hs)

for all u, v in the ball. By Minkowski’s inequality and the boundedness
of eit∆ we can bound the left-hand side by∫ T

0

‖|u(t′)|2u(t′)− |v(t′)|2v(t′)‖Hs dt′.

If we had an estimate such as

‖fgh‖Hs ≤ C‖f‖Hs‖g‖Hs‖h‖Hs

then we would have

‖|u(t′)|2u(t′)− |v(t′)|2v(t′)‖Hs ≤ C‖u(t′)− v(t′)‖Hs

for u, v in the ball, so we have∫ T

0

‖|u(t′)|2u(t′)− |v(t′)|2v(t′)‖Hs dt′ ≤ CT‖u− v‖L∞t Hs .

Thus we can again obtain a contraction if T is sufficiently small. Again,
the time of existence given by this argument is like ∼ ‖u0‖−1

Hs .
It remains to prove the product estimate. The left-hand side is ba-

sically
‖Ds(fgh)‖2,

where Ds is a differentiation operator of order s. We now use the
fractional Leibnitz rule

Ds(fgh) / (Dsf)gh+ f(Dsg)h+ fg(Dsh)
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and Hölder to estimate

‖Ds(fgh)‖2 . ‖Dsf‖2‖g‖∞‖h‖∞+‖f‖∞‖Dsg‖2‖h‖∞+‖f‖2‖g‖∞‖Dsh‖2.

If we have s > n/2, then Hs controls L∞, and we are done.
The fractional Leibnitz rule can be made more rigorous by using

Plancherel’s theorem and the Fourier transform. An informal explana-
tion is as follows. Suppose that f has frequency ξ, g has frequency η,
and h has frequency ζ. Then differentiating f is like multiplying by iξ,
etc. Also fgh has frequency ξ + η + ζ. Putting all this together, the
Leibnitz rule then (informally) says that

|ξ + η + ζ|s . |ξ|s + |η|s + |ζ|s

which is certainly true. Basically, this rule states that the frequency
of fgh is not much larger than the largest frequency of f , g, and h
individually.

The above argument gave local existence if the initial data was in Hs

for s > n/2, and even keeps the solution bounded in Hs. It is tempting
to then try to iterate this argument to give global existence (using u(T )
as new initial data for another time step) but the trouble is that the
Hs norm at each step can be something like twice the Hs norm of the
previous step, so that the time of existence gained at each step is like
half the previous one, and one can still obtain blowup in finite time
(as in the ODE u̇ = u2). However if we can keep the Hs norm from
blowing up then we should be able to obtain global existence.5

To convert local existence to global existence, we can then seek ways
to control the Hs norms for which we have a local result. In the case
of NLS, the conservation of the Hamiltonian

H(u) :=

∫
1

2
|∇u|2 +

1

4
|u|4

(as well as the L2 norm) allows us to say that if the solution is inH1∩L4

initially, then it stays bounded in H1 for all time. In one dimension

5In fact, the above argument gives something more, namely persistence of reg-
ularity: if the Hs norm is bounded for some s > n/2 and a higher norm Hs′

is
finite, then the solution stays in the high regularity space Hs′

for as long as the low
regularity norm Hs is bounded. The idea is first to control the low regularity norm
Hs, and then to begin iterating in the higher norm Hs′

. Even if the Hs′
norm is

large, the fact that the Hs norm is bounded will still allow for a contraction for a
time T which depends only on the low-regularity norm Hs. Ultimately, this comes
down to the fact that the Leibnitz rule only places the big derivative Ds′

on one
of the three terms in the non-linearity. There is a general principle which roughly
states that if one has good control on low regularity norms, one automatically gets
good control on higher norms too.
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this is already enough to give global existence for this equation since
1 > n/2 in this case (note H1 controls L4 in dimensions n ≤ 3).

This still leaves open the question of what happens in higher dimen-
sions. It is clear that we might be able to answer this question better
if we could push the local well-posedness theory down below s > n/2,
and hopefully down to the energy regularity s = 1 or below. More
generally we are interested in making the regularity needed for local
existence as low as possible.

We can try an abstract iteration scheme; replacing the space L∞
t H

s
x

used before by some general Banach space X of spacetime functions
u(x, t). To obtain a contraction we thus need estimates such as

‖eit∆u0‖X . ‖u0‖Hs

(i.e. free Hs solutions must lie in X), and

(1) ‖
∫ t

0

ei(t−t′)∆|u(t′)|2u(t′) dt′‖X . Tα‖u‖3
X

for some α ≥ 0 (in order for N to map X to X; a similar estimate will
also make N a contraction on X if T is sufficiently small).

The first estimate forces X to have the same scaling as Hs, which is
length−(s−sc). Now a dimensional analysis of (1)6 gives

length−(s−sc) ≤ length2αlength−3(s−sc)

so the best value of α we can obtain is

α ≤ s− sc.

(note: for the energy method s > n/2, sc = n/2− 1, and α = 1).
In particular, we see that this type of iteration argument cannot

possibly work for supercritical regularities s < sc. (It is absurd for
the non-linear estimate (1) to have a negative value of α, since the
left-hand side will increase in T ). So iteration methods have a natural
barrier at the critical regularity sc.

A little work shows that the time of existence given by the above

arguments are something like T ∼ ‖u‖−1/α
Hs . So the lower we can push

s toward sc, the closer α gets toward zero, and the longer we can
push the existence of small data. In particular if we can obtain a
space X to iterate in which has the critical regularity, then we have
α = 0 and we can get T = +∞ if ‖u‖Hsc is sufficiently small. Thus
it is possible to obtain global well-posedness for small data without
requiring a conservation law if we can iterate at the critical regularity.

6This is a little inaccurate because the Hs norm is inhomogeneous, but the
conclusion is still essentially correct.
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It turns out that for the NLS one can in fact push the local theory
all the way down to the critical regularity sc = n/2 − 1, except in
one dimension when we hit another barrier at s = 0 (below s = 0
the non-linearity doesn’t make much sense, and more pertinently there
is an obstruction coming from Gallilean invariance rather than scale
invariance (note that the space Hs is only Gallilean invariant when
s = 0)). Roughly the idea is as follows. An inspection of the energy
method proof shows that we didn’t really need to control L∞

t H
s, we

wanted L∞
t L

∞
x . And in fact we didn’t even need that, we actually

would be happy with L1
tL

∞
x . Now normally to obtain L∞

x control on a
function, Sobolev embedding requires more than n/2 derivatives in L2.
But the averaging in time given by the L1

t term allows one to do better,
because of the dispersive nature of the equation. The point is that
Sobolev embedding is only efficient when the solution is concentrated
on a small ball, but the dispersion prevents a solution from staying like
a ball for extended periods of time.

This leads to the theory of Strichartz estimates, which seek to find
good L1

tL
∞
x (or more generally Lq

tL
r
x) estimates on a solution (to either

a free equation or an inhomogeneous equation) given that the initial
data is, say, in Hs, and there is some reasonable control on the forcing
term. Further details would take us too far afield, but let me just
say that one of the main tools is the dispersive inequality, which for
Schrödinger equations is

‖eit∆f‖∞ . t−n/2‖f‖1.

This is an immediate consequence of the kernel bounds for eit∆ and
is crucial to getting L∞

x (or Lr
x, if one interpolates with L2 estimates)

bounds on solutions.
Things get more complicated when there are derivatives in the non-

linearity (as with KdV and wave maps), and one has to make heavy
reliance on the space-time Fourier transform and the characteristic sur-
face of the free equation. Again, this would take us too far afield. Suf-
fice to say that by means of multilinear estimates using the space-time
Fourier transform, one can get local well-posedness for KdV down to
s ≥ −3/4 on the real line [17], [8], or down to s ≥ −1/2 for peri-
odic data [18]. For wave maps, one can obtain local well-posedness
for s > sc = n/2, with some recent progress at the critical regularity
s = sc = n/2 (see below).

3. Global existence

We now try to extend the above local existence methods to give
global existence. Viscosity methods can give global solutions without
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much difficulty (in fact it is no harder than to generate local solutions,
usually) but it is possible that these are “ghost” solutions, continuing
long after the solution makes any physical sense (because of energy
moving off to infinitely high frequencies, and thus leaving the viscosity
limit). One symptom of this is that these solutions usually only have
energy monotonicity rather than energy conservation, and are not time
reversible.

Iteration methods can give global solutions if the critical norm Ḣsc

of the initial data is small (by direct iteration globally in time), or if a
suitable Hs norm is controlled for all time (by iterating locally in time
and then advancing one timestep at a time). Another possibility if there
is some decay in the solution, so that some norm (e.g. the L∞ norm)
actually gets smaller with time, possibly counteracting growth in other
norms such as Hs norms. This however only seems to be possible when
one assumes the initial data is small and rapidly decreasing. There is
a large body of work pursuing this type of result (generally known as
global existence for small data) but we will not pursue it here.

For now, we focus on the problem of controlling Hs norms globally
in time. Some Hs norms are bounded directly from conservation laws.
For instance, for NLS the L2 norm is exactly conserved, while the H1

norm is closely related to the Hamiltonian and stays bounded if it is
bounded at time zero. For the KdV equation one can in fact show that
for any integer k, the Hk norm stays bounded if it is bounded at time
zero.

The question then arises as to what happens to other norms, such
as the H1/2 norm. If the initial data is in H1 then it is bounded in H1

for all time and hence the H1/2 norm is similarly bounded, but if the
initial data is only in H1/2 then the H1 norm may be infinite, and so the
conservation of the Hamiltonian appears to be useless. Conservation
of the L2 norm also appears to be unhelpful for this particular problem
(but for the opposite reason).

To understand the relationship between the Hs norms further it is
convenient to introduce the Littlewood-Paley decomposition

u =
∑
k∈Z

Pku

where

P̂ku(ξ) = η(ξ/2k)û(ξ)

and η(ξ) is a suitable bump function localized to the region |ξ| ∼ 1.
Thus Pku is the portion of u having frequencies ∼ 2k.
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A little application of Plancherel’s theorem shows that

‖∇Pku‖2 ∼ 2k‖Pku‖2

and more generally that

‖Pku‖Hs = ‖DsPku‖2 ∼ (1 + 2k)s‖Pku‖2.

Thus for each frequency piece Pku, the Hs norms are all related by a
suitable power of 2k (or (1 + 2k)). By orthogonality we have

‖u‖Hs ∼ (
∑

k

((1 + 2k)s‖Pku‖2)
2)1/2.

It is now convenient to plot the distribution of energy as a function of
k. There are several ways to do this; one nice way is to plot log ‖Pku‖Ḣ1

as a function of k.
If u is bounded in Ḣ1, so ‖u‖Ḣ1 . 1, then log ‖Pku‖Ḣ1 ≤ O(1), so

the energy distribution is essentially bounded above by the x-axis. The
converse is true up to logarithms: if u is truncated to frequenciesN−1 ≤
|ξ| ≤ N and one has log ‖Pku‖Ḣ1 ≤ O(1) for all k, then ‖u‖Ḣ1 . logN .

Conservation of energy implies that the Ḣ1 norm stays bounded,
which means that the energy distribution can move from one frequency
mode k to another as time evolves but the “sup norm” must stay
bounded.

Now what does it mean for the initial data to lie in, say, H1/2? This
implies that (1 + 2k)1/2‖Pku(0)‖2 is bounded, so that

log ‖Pku(0)‖Ḣ1 ≤ min(k, k/2) +O(1).

Thus we have very small energy at low frequencies, but potentially
infinite energy at high frequencies. If at later times all this energy
comes down to low frequencies we can have blow up (the “high to low”
cascade).

Now if we have L2 norm conservation, then we know that for all time
‖Pku‖2 is bounded, so that

log ‖Pku(t)‖Ḣ1 ≤ k +O(1).

This goes some way towards preventing a high to low cascade, but still
does not prevent the H1/2 norm from becoming infinite in finite time.

So it seems that to stop the H1/2 norm from blowing up we cannot
just use L2 andH1 conservation, but must somehow also prevent energy
from moving from high to low frequencies. Similarly for any Hs norm
with 0 < s < 1.

The major breakthrough came from Bourgain [3] in 1997, who came
up with the idea of introducing a large frequency parameter N and
dividing the solution u into the low frequency portion ulow (where
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|ξ| . N) and the high frequency portion uhigh (where |ξ| . N). The
low frequency term had finite (but large) energy (for instance, if u was
bounded in Hs for some s < 1, then the H1 norm of ulow was O(N1−s)),
while the high frequency term was still quite rough (and had infinite
energy), but was small with respect to lower regularity norms (for in-
stance, the L2 norm was N−s). The idea was then to treat the high
frequency term as a perturbation of the low frequency term (since the
low frequency term, if left by itself, would evolve globally for all time
thanks to finite energy). The strategy was to show that the non-linear
interaction terms arising from the high frequencies could be kept un-
der control for long times (of the order of T ∼ Nα for some α > 0).
The main tool in this was an extra smoothing estimate, which showed
that if the high frequencies were merely in Hs for some s < 1, then
the non-linear interactions arising from the high frequencies were sig-
nificantly smoother, in fact they were in the energy class H1. Thus
these terms could be absorbed harmlessly into the low frequency term
without destroying the finite energy property. (One can think of this as
kind of a compactness property of the non-linearity). Thus Bourgain’s
method effectively decouples the equation into a high-frequency com-
ponent evolving by the free evolution, and a low-frequency component
which evolves in a forced Hamiltonian system, but with the forcing
term controllable in energy norm for a reasonably long period of time.

Applying this strategy to the 2D NLS, Bourgain [3] was able to
obtain global well-posedness below H1, and in fact down to s > 3/5.
The reason for the limitation is that the lower s gets, the larger the
energy of ulow gets, and this eventually overwhelms the gain in the local
smoothing estimate (so the α eventually dips below zero).

The argument also shows that the Hs norm grows at most polyno-
mially in time, so is O(T β(s)) for some β(s) > 0. As one might expect,
this β becomes infinite in Bourgain’s argument as s→ 3/5.

A similar argument works for KdV, but is substantially more dif-
ficult because of the derivative in the non-linearity; one has to work
much harder to obtain extra smoothing. Ignoring some technicalities,
Colliander, Staffilani, and Takaoka [9] were able to obtain global exis-
tence down from s = 0 (which follows from L2 conservation and local
existence theory) to s > −1/24, which is some way short of the local
theory, which goes down to s > −3/4. However for wave maps there
is no extra smoothing (too many derivatives in the non-linearity), and
Bourgain’s method does not seem to work directly. (Similar results
have been achieved for a wide array of model non-linear dispersive
equations).
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However, a new approach was developed later by Colliander, Keel,
Staffilani, Takaoka, and myself - which we call the “I-method” - which
achieves similar or better results without needing an extra smoothing
estimate. To illustrate the idea, let us return to NLS and consider the
Hamiltonian

H(u) =

∫
1

2
|∇u|2 +

1

4
|u|4.

We know that the Hamiltonian is an invariant of the flow:

d

dt
H(u(t)) = 0.

Since the Hamiltonian is roughly comparable to the H1 norm, this
allows us to control the H1 norm globally in time. Let us quickly prove
this conservation law:

d

dt
H(u(t)) = Re

∫
∇u∇ut + |u|2uut

= Re〈−∆u+ |u|2u, ut〉
= Re〈−iut −∆u+ |u|2u, ut〉.

If u solves NLS then the last line is clearly zero.
Could we use the Hamiltonian to control, say the H2 norm? The

obvious thing to do is to look at the expression H(Du), where D is a
differentiation operator of order 1. By the above computation we have

d

dt
H(Du(t)) = Re〈−iDut −D∆u+ |Du|2Du,Dut〉.

On the other hand, if we apply D to the NLS equation we have

−iDut −D∆u+D(|u|2u) = 0.

Thus the only thing left is a “commutator” term:

d

dt
H(Du(t)) = Re〈|Du|2Du−D(|u|2u), Dut〉.

Using the NLS equation to expand out Dut, then some integration
by parts followed by Hölder and Sobolev, one can eventually get the
estimate

| d
dt
H(Du(t))| . H(Du(t))2 + l.o.t.

which allows one to control H(Du(t)) for short times only.
A similar thing happens if we try to control the evolution of the

Hs norm for any s (either s > 1 or s < 1; the difference being that
D is replaced by an integration operator when s < 1). In all these
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cases it appears that one only obtains control for short times. How-
ever, inspired by Bourgain’s method, we again introduce a frequency
parameter N .

Suppose we wish to control the Hs norm for some s < 1. We intro-
duce the operator I defined by

Îu(ξ) = m(ξ)û(ξ)

where m(ξ) equals 1 for |ξ| ≤ N , equals (|ξ|/N)s−1 for |ξ| ≥ 2N ,
and is a smooth interpolant in between. Thus I is the Identity for
frequencies less than N , and an Integration operator for frequencies
greater than N . Using the logarithmic energy distribution picture, I
does nothing when k < log(N) but brings down the logarithmic energy
by (1 − s)(k − logN) for k > logN . From this we see that ‖Iu‖H1 is
somewhat comparable with ‖u‖Hs :

‖Iu‖H1 . ‖u‖Hs . N1−s‖Iu‖H1

Now look at how the Hamiltonian H(Iu) evolves. By the same calcu-
lation as before we have

d

dt
H(Iu(t)) = Re〈|Iu|2Iu− I(|u|2u), Iut〉.

Now we begin to see I work its magic. If I were the identity, then
the above expression vanishes. In particular, if u consisted only of low
frequencies (< N/3) then there is no variation in the above expression.
Thus if we split u = ulow + uhigh as before then the only terms which
are non-zero are the terms with at least one high frequency, e.g.

Re〈|Iulow|2Iuhigh − I(|ulow|2uhigh), Iut〉.

The point is now to exploit the fact that the high frequency is small,
at least when measured in rough norms.

The terms which are quadratic or better in the high frequencies (the
“high-high” interactions) tend to be quite small, so let us concentrate
on the terms which are linear in the high frequencies (the “low-high” in-
teractions). These are the interactions which cause the most trouble in
Bourgain’s method, as a low-high interaction is again a high frequency
and so they prevent the high frequency term from being approximated
by a the linear evolution. Here however the I-method has an advantage,
in that it can exploit some cancellation in the commutator expression

|Iulow|2Iuhigh − I(|ulow|2uhigh).

Indeed, since I is the identity in ulow, this is

[|ulow|2, I]uhigh.
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If ulow was 0 frequency (i.e. constant) then the commutator vanishes.
Thus we expect the commutator to be quite small for low frequen-
cies. To make this more precise, if the low frequency object |ulow|2 had
frequency η and uhigh had frequency ξ (so |ξ| & N & |η|), then the
commutator behaves like |ulow|2(m(ξ) − m(ξ + η)). We thus expect
cancellation between the two m’s thanks to the smoothness of m (in
practice we obtain this using the mean value theorem).

Using this method we were able to push GWP for 2D NLS down to
s > 4/7, a slight improvement over Bourgain’s results, and similarly
for KdV down to s > −3/10 and for 1D wave maps down to s > 3/4.
There is still a barrier to going all the way down to match the local
theory because the smaller s gets, the larger H(Iu) gets and the more
difficult it is to control d

dt
H(Iu(t)).

In terms of the frequency distribution, the I-method asserts that for
times up to some time T = Nα, the high frequencies do not move much
in energy (so that one can damp them with the I without affecting
conservation of energy much), while the low frequencies stay low but
can slosh around between low modes. As time increases, more and
more of the frequencies are free to move around, causing a possible
polynomial growth in the energy.

The above strategy can be viewed as an attempt to construct an
almost conserved quantity, namely H(Iu). This quantity is not exactly
conserved, but varies slowly in time. To improve the above results we
had to refine the almost conserved quantity somewhat.

To illustrate the procedure let us consider the KdV equation again.
Instead of the Hamiltonian, let us consider the simpler conserved quan-
tity

L(u) =

∫
u2.

Let us give a Fourier proof why this quantity is conserved. We can
write this quantity in Fourier space as

L(u) =

∫
ξ1+ξ2=0

û(ξ1)û(ξ2).

But û obeys the equation

ût(ξ) = iξ3û(ξ) +

∫
ξ1+ξ2=ξ

iξ2û(ξ1)û(ξ2).

If we differentiate L(u) using this equation, we obtain

d

dt
L(u) =

∫
ξ1+ξ2=0

(iξ3
1+iξ

3
2)û(ξ1)û(ξ2) +

∫
ξ1+ξ2+ξ3=0

(iξ2+iξ3)û(ξ1)û(ξ2)û(ξ3).
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The first integral is zero because ξ3
1 + ξ3

2 vanishes on ξ1 + xi2. The
second integral can be symmetrized, replacing ξ2 + ξ3 by 2

3
(ξ1 + ξ2 + ξ3)

which also vanishes.
If this was the only conserved quantity we knew, and we wanted

to construct an almost conserved quantity with the scaling of H1, we
would try

L(ux) =

∫
u2

x.

In Fourier space this is

L(ux) =

∫
ξ1+ξ2=0

(iξ1)(iξ2)û(ξ1)û(ξ2).

Differentiating this again

d

dt
L(ux) =

∫
ξ1+ξ2=0

(iξ3
1 + iξ3

2)(iξ1)(iξ2)û(ξ1)û(ξ2)

+

∫
ξ1+ξ2+ξ3=0

(iξ2i(ξ1 + ξ2)iξ3 + iξ3iξ1i(ξ2 + ξ3))û(ξ1)û(ξ2)û(ξ3).

The first integral vanishes as before, but the second integral does not,
even after symmetrization. Instead, it eventually simplifies to 2i

3
(ξ3

1 +
ξ3
2 + ξ3

3).
This looks bad, but we can fix the problem by adding a correction

term to L(ux), namely

L(ux)−
2

3

∫
u3.

In Fourier space the correction term is

−2

3

∫
ξ1+ξ2+ξ3=0

û(ξ1)û(ξ2)û(ξ3).

If one differentiates this, one obtains a trilinear term

−2

3

∫
ξ1+ξ2+ξ3=0

(iξ3
1 + ixi32 + iξ3

3)û(ξ1)û(ξ2)û(ξ3)

which happily cancels the term coming from L(ux), together with a
quadrilinear term

−2

3

∫
ξ1+ξ2+ξ3+ξ4=0

(iξ2 + iξ3 + iξ4)û(ξ1)û(ξ2)û(ξ3)

which vanishes after symmetrization. Thus the above expression is
perfectly conserved (though this is not so surprising since it is just
twice the Hamiltonian).
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Now the same strategy can be applied to the expression
∫
u2

xx, and
this will eventually generate the second KdV conserved quantity, and
so forth. But we can also apply it to the expression

L(Iu) =

∫
(Iu)2

which is the KdV analogue of H(Iu). In Fourier this is

L(ux) =

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)û(ξ1)û(ξ2).

If we differentiate this, we get a bilinear term (which again vanishes)
and a trilinear term∫

ξ1+ξ2+ξ3=0

(iξ2m(ξ1 + ξ2)m(ξ3) + iξ3m(ξ1)m(ξ2 + ξ3))û(ξ1)û(ξ2)û(ξ3),

which symmetrizes to

−2i

3

∫
ξ1+ξ2+ξ3=0

(ξ1m
2(ξ1) + ξ2m

2(ξ2) + ξ3m
2(ξ3))û(ξ1)û(ξ2)û(ξ3).

Thus if we add the correction term

2i

3

∫
ξ1+ξ2+ξ3=0

ξ1m
2(ξ1) + ξ2m

2(ξ2) + ξ3m
2(ξ3)

iξ3
1 + iξ3

2 + iξ3
3

û(ξ1)û(ξ2)û(ξ3)

to L(Iu), we now get something which when differentiated, has no
more trilinear term (thanks to cancellation), but instead picks up a
quadrilinear term. At first glance things look bad because we have
something in the denominator, but the magic of KdV intervenes at
this point: if the denominator vanishes, then one of ξ1, ξ2, or ξ3 must
be zero, which then forces the numerator to also vanish! In fact the
multiplier is smooth.

The quadrilinear term turns out to be better than the trilinear term
to estimate (it is “lower order” in that there are more powers of ξ in
the denominator). This is ultimately due to the subcritical regularities
we are dealing with: each u has more regularity than scaling would
suggest and so every u we add to the multilinear expression should
make things better.

By adding this term we can already improve KdV from s > −3/10
to s > −1/2. We can go further and add a second correction term to
go all the way down to s > −3/4, which is essentially the best possible
from the local theory. (Remember, it is not just enough to have Hs

control: we also need a local theory which can use this Hs control).
For periodic data, things are a little more difficult (we do not get as
much dispersion), but we can get global existence down to s ≥ −1/2,
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which is best possible for the local theory. In particular we have a
global continuous flow in the symplectic phase space Ḣ−1/2(T), which
allows one to use infinite dimensional symplectic geometry machinery
(e.g. symplectic capacity [25], [5]). A similar scheme for 2D NLS has
managed to push regularity down to s > 1/2 and perhaps a little below,
but there is much difficulty in going down to the optimal s ≥ 0 because
this equation is not completely integrable and we do not enjoy as much
cancellation as before. This is still a work in progress.

4. Critical regularity global existence for wave maps

Let R1+n be n + 1 dimensional Minkowski space with flat metric
η := diag(−1, 1, . . . , 1), and let Sm−1 ⊂ Rm denote the unit sphere in
the Euclidean space Rm. Elements φ of Rm will be viewed as column
vectors, while their adjoints φ† are row vectors. We let ∂α and ∂α for
α = 0, . . . , n be the usual derivatives with respect to the Minkowski
metric η. We let � := ∂α∂

α = ∆ − ∂2
t denote the D’Lambertian. We

shall also use φ̇ for ∂tφ.
Define a wave map to be any function φ defined on an open set in

R1+n taking values on the sphere Sm−1 which obeys the equation

(2) ∂α∂
αφ = −φ∂αφ

†∂αφ.

For any time t, we use φ[t] := (φ(t), φ̇(t)) to denote the position and
velocity of φ at time t. We refer to φ[0] as the initial data of φ. We

shall always assume that the initial data φ[0] = (φ(0), φ̇(0)) satisfies
the consistency conditions

(3) φ†(0)φ(0) = 1; φ†(0)φ̇(0) = 0

(i.e. φ[0] lies on the sphere). It is easy to show (e.g. by Gronwall’s
inequality) that this consistency condition is maintained in time, for
smooth solutions at least.

Let Hs := (1+
√
−∆)−sL2(Rn) denote the usual7 L2 Sobolev spaces.

Since the equation (2) is invariant under the scaling φ 7→ φλ defined by

φλ(t, x) := φ(t/λ, x/λ)

we see that the critical regularity is s = n/2.
The Cauchy problem for wave maps has been extensively studied;

we refer the interested reader to the surveys in [19], [24], [29], [31].

7Strictly speaking, one cannot use Hs spaces for functions on the sphere, since
they cannot globally be in L2. To get around this we shall abuse notation and
allow constant functions to lie in Hs with zero norm whenever the context is for
functions on the sphere. Thus when we say that φ(t) is in Hs, we really mean that
φ(t)− c is in Hs for some constant c.
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For sub-critical regularities s > n/2 it is known (see [21], [23], [16] for
the n ≥ 4, n = 2, 3, and n = 1 cases respectively) that the Cauchy
problem for (2) is locally well-posed for initial data φ[0] in Hs×Hs−1,
and the solution can be continued (without losing regularity) as long
as the Hs norm remains bounded. The critical result however is more
subtle. Well-posedness and regularity was demonstrated in the critical

Besov space Ḃ
n/2
1 in [35] in the high-dimensional case n ≥ 4 and in

[36] for n = 2, 3; in the one-dimensional case n = 1, a logarithmic
cascade from high frequencies to low frequencies causes ill-posedness
in the critical Besov and Sobolev spaces [32], although global smooth
solutions can still be constructed thanks to the sub-critical nature of
the energy norm (see e.g. [28]). As is to be expected at the critical
regularity, these results give a global well-posedness (and regularity
and scattering) when the norm of the initial data is small.

The question still remains as to whether the wave map equation (2)

is well-posed in the critical Sobolev space Ḣn/2 :=
√
−∆

−n/2
L2 in two

and higher dimensions, with global well-posedness and regularity ex-
pected for small data. This question is especially interesting in the two
dimensional case, since the critical Sobolev space is then the energy
norm H1, and one also expects to exploit conservation of energy (and
some sort of energy non-concentration result) to obtain global well-
posedness and regularity for data with large energy. (In dimensions
three and higher one does not have large data global well-posedness for
the sphere, even for smooth symmetric data; see [30]). However the
Sobolev space Ḣn/2 is significantly less tractable than its Besov coun-

terpart Ḃ
n/2
1 ; for instance, Ḣn/2 norm fails to control the L∞ norm due

to a logarithmic pile-up of frequencies. This logarithmic divergence
is responsible for failure of any strengthened version of well-posedness
(uniform, Lipschitz, or analytic) for wave maps at this regularity, as
well as ill-posedness in very similar equations, and is a serious obsta-
cle to any iteration-based argument. See [23], [16], [26] for further
discussion.

In [33], [34] it was shown

Theorem 4.1. Suppose that the initial data φ[0] is smooth and has
sufficiently small Ḣn/2×Ḣn/2−1 norm. Then the solution to the Cauchy
problem for (2) with initial data φ[0] stays smooth globally in time.

Our arguments are heavily based on the geometric structure of the
equation (2); in particular, they do not directly apply to the associated
difference equation. As a consequence we have not been able to obtain
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a well-posedness8 result at the critical regularity Ḣn/2 × Ḣn/2−1, even
for small data.

The main novel ingredient is the use of adapted co-ordinate frames
constructed by approximate parallel transport along (Littlewood-Paley
regularizations of) φ. The construction presented here is heavily de-
pendent of the geometry of the sphere, although this has recently been
extended to general manifolds in spatial dimensions n ≥ 4 by the work
of Klainerman-Rodnianski [22], Uhlenbeck-Nahmod-Stefanov, Krieger,
and Shatah-Struwe.

Without the use of these frames, the usual iteration approach for (2)
fails at the critical regularity because of a logarithmic pile-up of high-
low frequency interactions. The effect of the adapted co-ordinate frame
is to transform the high-low frequency interaction into other terms
which are more tractable, such as high-high frequency interactions,
or high-low interactions in which a derivative has been moved from a
high-frequency term to a low-frequency one.

In the remainder of this section we shall informally motivate the key
ideas in the argument. In doing so we shall make frequent use of the
following heuristic: if φ, ψ are two functions, and ψ is much rougher
(i.e. higher frequency) than φ, then (∇φ)ψ is very small compared to
φ∇ψ. In other words, we should be able to neglect terms in which
derivatives fail to fall on rough functions, and land instead on smooth
ones. (Indeed, these terms can usually be treated just by Strichartz
estimates). In particular, we expect to have ∇(φψ) ≈ φ∇ψ (which
can be viewed as a statement that φ is approximately constant when
compared against ψ).

Let us suppose that our wave map φ has the form φ = φ̃+εψ, where
φ̃ is a smooth wave map, 0 < ε� 1 and ψ is a Hn/2 function which is
much rougher than φ̃. (In other words, φ is a small rough perturbation
of a smooth wave map). If we ignore terms which are quadratic or
better in ε, or which fail to differentiate the rough function ψ, we
obtain the linearized equation

(4) ∂α∂
αψ = −2φ̃∂αφ̃

†∂αψ

8We should remark at this point that strong versions of well-posedness, such
as uniform, Lipschitz, or analytic well-posedness, are known to fail at the critical
Sobolev regularity, mainly because the critical norm does not control L∞. It is
similar to the fact that the non-linear map u 7→ eiu is bounded and even continuous
on the critical Ḣ1(R2), but the power series 1 + iu + (iu)2/2! + . . . is divergent in
Ḣ1(R2) and hence the map is not analytic.
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for ψ. Also, since φ̃ and φ̃+ εψ both take values on the sphere we see
that

(5) φ̃†ψ = 0; φ̃†∂αψ = 0

(again ignoring terms quadratic in ε, and terms where the derivative
fails to land on ψ).

In order to keep the Hs norm of φ̃ + εψ from blowing up, we need
to prevent the Ḣn/2 norm from being transferred from φ̃ to εψ. In

particular, we need L∞
t Ḣ

n/2
x bounds on ψ which are independent of

ε. We would also like the corresponding Strichartz estimates for ψ,
in order to control the error terms that we have been ignoring. (This
scheme is not restricted to rough perturbations of smooth wave maps,
and will be adapted to general wave maps by use of Littlewood-Paley
projections).

Despite being linear, the equation (4) is not very well-behaved, hav-
ing no obvious cancellation structure (beyond the null form, which
is not particularly useful in the high-dimensional setting). In order
to iterate away the first-order terms on the right-hand side of (4) we

would like φ̃∂αφ̃
† to be in L1

tL
∞
x . In principle this might be feasible

if we had the Strichartz estimate ∇1/2φ̃ ∈ L2
tL

∞
x , but this estimate

just barely fails to hold because of a logarithmic divergence in the fre-
quencies. However, if we could somehow ensure that the derivative
in φ̃∂αφ̃

† always fell on a low-frequency component of φ̃ and not on a
high-frequency component then one would have a chance of iterating
away the non-linearity. This will be accomplished by a renormalization
using a co-ordinate frame adapted to φ.

We begin by taking advantage of (5) to rewrite (4) in a form remi-
niscent of parallel transport:

(6) ∂α∂
αψ = 2Aα∂

αψ

where Aα is the matrix

Aα := ∂αφ̃φ̃
† − φ̃∂αφ̃

†.

Note that (6) exhibits more cancellation than (4), as Aα is now anti-
symmetric. This type of trick is standard in the study of wave and
harmonic maps, see e.g. [16], [13], [7], etc.

To solve (6), let us first consider the ODE analogue

(7) ψ̈ = 2A0ψ̇.

The matrix A0 is anti-symmetric. Thus if we let U(t) be the matrix-
valued function solving the ODE

U̇(t) = A0U(t)
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with U(0) initialized to the identity matrix (say), then we see that
d
dt

(UU †) = 0 and thus that U remains orthogonal for all time. Indeed,
one can view U as the parallel transport of the identity matrix along
the trajectory of φ̃. Furthermore, since φ̃ is smooth, we see that U is
also smooth, and in particular is much smoother than ψ. One can then
use the linear change of variables ψ = Uw, and ignore terms which
fail to differentiate the rough function w, to rewrite (7) as the trivial
equation ẅ = 0.

The ODE example of (7) suggests that (6) might be simplified by
applying some orthogonal matrix U to the wave ψ, or in other words by
viewing ψ in a carefully chosen co-ordinate frame. (This fits well with
the corresponding experience of harmonic maps in [13]). Ideally, we

would like U to be carried by parallel transport by φ̃ in all directions.
More precisely, we would like U to solve the PDE

(8) ∂αU = AαU

for each α. If we make the improbable assumption that U obeyed (8)
exactly for all α, we can then substitute ψ = Uw as before and ignore
all terms which fail to differentiate the rough function w to transform
(6) to the free wave equation

∂α∂
αw = 0

which we of course know how to solve.
Unfortunately, the system (8) of PDE is overdetermined, and in gen-

eral has no solution (since the parallel transport connection induced by

φ̃ will have a small9 but non-zero curvature). Nevertheless, it is possible
to use Littlewood-Paley theory to construct a satisfactory approximate
solution U to (8). Specifically, we perform the Littlewood-Paley de-

composition φ̃ = φ−M +
∑

−M<k φk, where M is a large number, φ−M

is the portion of φ on frequencies |ξ| . 2−M , and φk is the portion on
frequencies |ξ| ∼ 2k. We then define U = U−M +

∑
−M<k Uk, where

U−M is the identity matrix, and the Uk are defined recursively by the
formula

(9) Uk := (φkφ
†
<k − φ<kφ

†
k)U<k

9More precisely, the curvature only contains terms which are quadratic in the
first derivatives of φ̃, as opposed to being linear in the second derivatives of φ̃. This
phenomenon seems specific to the wave maps equation; if one tries to apply the
techniques here to (for instance) the Maxwell-Klein-Gordon or Yang-Mills equations
at the critical Sobolev regularity, an obstruction arises because the connection A
has no reason to have a good curvature, regardless of the choice of gauge. At best
one can place these equations in the Coulomb gauge, which was already known to
be the most useful gauge to study these equations.
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where φ<k, U<k are the functions

φ<k := φ−M +
∑

−M<k′<k

φk, U<k := U−M +
∑

−M<k′<k

Uk.

It then transpires that the matrix U is approximately orthogonal and
approximately satisfies (8), provided that the Ḣn/2 norm of U is suf-
ficiently small and M is sufficiently large. The point is that φk is a
rougher function than φ<k, and so one can (heuristically) neglect terms
where the derivative falls on φ<k instead of φk. Similarly for Uk and
U<k. Thus we can morally differentiate (9) to obtain

(10) ∂αUk ≈ (∂αφkφ
†
<k − φ<k∂αφ

†
k)U<k

and (8) follows by summing the telescoping series (and continuing to
neglect the same type of terms as before). The approximate orthogonal-

ity of U is based on the observation (from (9)) that U †
kU<k+U †

<kUk = 0.
Summing this in k and telescoping, we obtain

U †U = I +
∑

k>−M

U †
kUk.

The summation on the right-hand side then turns out to be negligible
if we assume φ̃ is small in Ḣn/2, since this implies from Sobolev embed-
ding that the L∞ norms of the φk (and hence the Uk) are small in l2.
(A similar argument can be used to dispose of the error terms which
were neglected in (10)). If one then transforms (6) using ψ = Uw as
before, we obtain a non-linear wave equation for w, but all the terms
in the non-linearity either contain expressions such as

∑
k UkU

†
k which

are quadratic10 in the frequency parameter k, or have all derivatives
falling on smooth functions rather than rough ones. Both types of
terms turn out to be easily controlled by Strichartz estimates in higher
dimensions n ≥ 5. For n < 5 one has to use more sophisticated spaces
(introduced by Tataru [36]) involving both Fourier space and physical
space decompositions.

Klainerman and Rodnianski[22] have reinterpreted the above trans-
form in the following appealing way. We wish to solve the equation
(8). We can roughly telescope

Aα ≈
∑

k

∂αφkφ
†
<k − φ<k∂αφ

†
k ≈

∑
k

∂αVk

10Basically, such quadratic expressions effectively improve the Sobolev space
Ḣn/2 to the Besov space Ḃ

n/2
1 , which in principle can be treated by the arguments

in [35].
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where the potential Vk is given by

Vk := φkφ
†
<k − φ<kφ

†
k.

So we now want to solve

∂αU ≈
∑

k

∂αVkU.

If everything commuted, this would be solved by

U = exp(
∑

k

Vk).

However this doesn’t quite work. If instead we use the variant

U =
∏

k

exp(Vk)

where the lower frequencies are on the left and the higher ones on the
right, then it does work. This heavily exploits the fact that deriva-
tives falling on low frequencies have small product (and hence mostly
commute with) high frequency terms.
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