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Abstract. Suppose that M is a compact Riemannian manifold
with boundary and u is an L2-normalized Dirichlet eigenfunction
with eigenvalue λ. Let ψ be its normal derivative at the boundary.
Scaling considerations lead one to expect that the L2 norm of ψ
will grow as λ1/2 as λ→∞. We sketch proofs of an upper bound
of the form ‖ψ‖22 ≤ Cλ for any Riemannian manifold, and a lower
bound cλ ≤ ‖ψ‖22 provided that M has no trapped geodesics (see
the main Theorem for a precise statement). Here c and C are
positive constants that depend on M , but not on λ. Full details
will appear in [3].

1. Introduction

Let M be a smooth compact Riemannian manifold with smooth
boundary ∂M = Y (for example, the closure of a smooth bounded
domain in Euclidean space). Let H = −∆M be minus the Dirichlet
Laplacian on M . As is well known, H has discrete spectrum 0 < λ1 <
λ2 ≤ λ3 · · · → ∞.

Let uj be an L2-normalized eigenfunction corresponding to λj, and
let ψj be the normal derivative of uj at the boundary. In this paper
we consider the following question: do there exist constants c and C,
depending on M but not on j, such that

cλj ≤ ‖ψj‖2
L2(Y ) ≤ Cλj ?

This question was posed by Ozawa in [6]; he showed that a weaker
version of this statement, obtained by summing over all eigenvalues in
[0, λ], is true.
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In this paper, we sketch proofs that the upper bound is always true
on Riemannian manifolds, while the lower bound holds provided a con-
dition of ‘no trapped geodesics’ holds. In addition, we give several ex-
amples to illustrate the link between failure of the geodesic condition
and failure of the lower bound. Full details of proofs are given in [3].

We acknowledge helpful conversations with Alan McIntosh, Steve
Zelditch and Johannes Sjöstrand.

2. Examples

We begin by considering several examples. These examples show in
particular that the lower bound does not always hold.

Example 1 — the disc. Let M = {x ∈ R2 | |x| < a} for some a > 0.
In this case we have an equality∫

S1

ψ2
j (θ) dθ =

2λj

a
.

This follows easily from an identity for eigenfunctions due to Rellich,
which we discuss below.

Example 2 — the rectangle. LetM = [0, a]×[0, b], where a ≤ b. Then
it is a simple matter to write down the eigenfunctions, by separating
variables. A computation gives

4

b
λ ≤ ‖ψ‖2

2 ≤
4

a
λ,

and these bounds are the best possible.

Example 3 — the cylinder. Let M = [0, π] × S1
2π, the product of

an interval of length π with a circle of length 2π. Then eigenfunctions
take the form sin(mx)einθ. The upper bound

‖ψ‖2
2 ≤

4

π
λ

holds, but by holding m fixed and sending n to infinity, we see that the
best lower bound is O(1).

Example 4 — the hemisphere. Let M be the hemisphere

M = {x ∈ R3 | |x| = 1, x · (0, 0, 1) ≥ 0}.

In this case, the eigenfunctions are given by those spherical harmonics
which are odd under reflection in the (x1, x2) plane, namely, spherical
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harmonics

u = clmYlm = clme
imφPlm(cos θ), λ = l(l + 1),

where −l ≤ m ≤ l and l−m is odd. (Here, we are using spherical polar
coordinates where (x1, x2, x3) = (r sin θ cosφ, r sin θ sinφ, r cos θ).) Let
us consider the case when m = l − 1. Then the eigenfunction in this
case is ul = cei(l−1)θ cos θ(sin θ)l−1. A short computation gives

‖ψ‖2
2 ∼ l3/2 ∼ λ3/4, l→∞,

for this class of eigenfunctions. Hence there is no nontrivial lower bound
for the hemisphere.

3. Main theorem

The upper bound holds in all the examples in the previous section,
but the lower bound fails for the last two. To see more heuristically
why the lower bound fails, it helps to consider a more dynamic picture,
by considering the wave equation

∂2v(x, t)

∂t2
= −Hv

on the cylinder (Example 3). If u is an eigenfunction with eigenvalue

λ, then v = ei
√

λtu is a solution to the wave equation. Thus in the case
of the cylinder, a particular solution to the wave equation is

2i sin(mx)einθei
√

m2+n2t = eimxeinθei
√

m2+n2t − e−imxeinθei
√

m2+n2t.

The wavefronts are at ±mx+ nθ = constant, and energy moves ‘nor-
mal’ to the wavefronts. When we hold m fixed and send n to infinity,
the energy is moving more and more along lines (that is, geodesics)
where x is constant, and so does not ‘reach’ the boundary. Thus, the
failure seems to be related to the existence of a family of ‘trapped’
geodesics in the interior of the manifold, which never reach the bound-
ary.

In the case of the hemisphere, there is no geodesic trapped in the
interior, but any Riemannian extension N of M would have a trapped
geodesic, namely the boundary of M . Note that the lower bound is
not violated as severely for the hemisphere, which is consistent with it
being a borderline case.

Our main result is that the heuristic above is correct:

Theorem 3.1. Let M be a smooth compact Riemannian manifold with
boundary. Then the upper bound holds for some C independent of j.



60 ANDREW HASSELL AND TERENCE TAO

The lower bound holds provided that M can be embedded in the inte-
rior of a compact manifold with boundary, N , of the same dimension,
such that every geodesic in M eventually meets the boundary of N . In
particular, the lower bound holds if M is a subdomain of Euclidean
space.

In Section 7, we give some further examples which show that the
degree of failure of the bounds is related to the extent to which geodesics
are trapped.

4. Upper bound

Our proof is based on the following Lemma which we call a Rellich-
type estimate.

Lemma 4.1. Let u be a Dirichlet eigenfunction of H. Then for any
differential operator A,

(4.1)

∫
M

〈u, [H,A]u〉 dg =

∫
Y

∂u

∂ν
Au dσ.

Proof. Let λ be the eigenvalue corresponding to u. We write [H,A] =
[H−λ,A] and use the fact that (H−λ)u = 0 to write the integral over
M as ∫

M

〈(H − λ)u,Au〉 − 〈u, (H − λ)Au〉 dg.

Then we use Green’s formula, and the fact that u vanishes at the
boundary, to deduce (4.1). �

The upper bound is now easily deduced. Let us choose coordinates
(r, y) near the boundary of M , where r is distance to the boundary
(which is a smooth function for r < δ, for some sufficiently small δ > 0)
and y are local coordinates on Y = ∂M , extended to be constant
along geodesics perpendicular to the boundary. Let χ(r) be a smooth
function which is supported in [0, δ/2] and with χ(0) = 1, and let

A = χ(r)∂r.

Then the right hand side of (4.1) becomes ‖ψ‖2
2, while the left hand

side is bounded by

C

∫
M

(
|∇u|2 + 1) = C(λ+ 1),

proving the upper bound.
Remark. Notice that this argument actually gives a bound of

Cε‖Hu‖L2({r≤ε}) = Cελ‖u‖L2({r≤ε})
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for any ε > 0.

5. Lower bound for Euclidean domains

In the case of subdomains of Euclidean space, there is a very simple
proof of the lower bound based on Lemma 4.1. We set

A =
n∑

i=1

xi
∂

∂xi

.

Then [H,A] = 2H, so now the left hand side is 2λ, and we obtain the
identity

2λ =

∫
Y

∂u

∂ν
Au dσ =

∫
Y

ν · x
(∂u
∂ν

)2
dσ

which immediately implies the lower bound. (Rellich published this
identity in 1940 [7].)

6. The lower bound in general

It is considerably harder to prove the lower bound for general man-
ifolds satisfying the ‘no trapped geodesic’ condition of Theorem 3.1.
We use the method for Euclidean domains as a guide, and seek a first
order operator A having a positive commutator with H. It is impossi-
ble to find a vector field A with this property, in general (we will show
this later), so we look for a first order pseudodifferential operator. A is
essentially determined by its principal symbol, a, a function on S∗M ,
the cosphere bundle of M .

The principal symbol of i[H,A] is given by Vh(a), where Vh is the
Hamilton vector field of the symbol of H. Recall that H is minus the
Laplacian. It is well known that Vh is the generator of geodesic flow on
S∗M . We want i[H,A] positive, which amounts to finding a smooth
function a on S∗M which is increasing along all geodesics. Note that
this is clearly impossible if trapped/periodic geodesics are present.

Given the ‘no trapped geodesics’ condition on M in the theorem,
such an A can easily be constructed. To show this, we first observe
that, given a geodesic γ on M , one can construct an A on the larger
manifold N ⊃ M , properly supported in the interior of N , such that
the principal symbol of i[H,A] is everywhere nonnegative, and strictly
positive in a neighbourhood of γ (at least that part of it lying over
M). To do this we simply define the symbol a of A to be linearly
increasing along γ, extend it in a natural way, and then cut off. Finally,
a compactness argument shows that one can add together finitely many
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such operators to produce one where the principal symbol of i[H,A] is
strictly positive on S∗M . We note that it is easy to arrange that, in
addition, A satisfies the transmission condition (see [5], section 18.2));
for the principal symbol a of A, this condition is simply that a is odd:
a(x,−ξ) = −a(x, ξ).

We then follow the strategy of the previous proof. First, we need a
version of Lemma 4.1 which is valid for pseudodifferential operators.
For first order pseudodifferential operators A satisfying the transmis-
sion condition, with symbol a, we have the following

Lemma 6.1. Let u be a Dirichlet eigenfunction for H. Then

(6.1)

∫
M

〈u, [H,A]u〉 dg = 2 Im

∫
Y

∂u

∂ν
Au dσ −

∫
Y

(∂u
∂ν

)2
c dσ,

where c(y) = limρ→∞ ρ−1a(0, y, ρ, 0).

This is just as good as (4.1) for our purposes. We then follow the
strategy of the previous proof. The left hand side causes few problems;
it is rather easy to show that the left hand side is at least as big as a
constant times λ. The right hand side, though, is more difficult. It is
sufficient to show that

(6.2) ‖Au‖L2(Y ) ≤ C
√
λ,

since then we can estimate the first term on the right hand side of (6.1)
by

(6.3)

∫
Y

〈ψ,Au〉dσ ≤ C(ε)‖ψ‖2
2 + ελ,

and the ελ term may then be taken to the left hand side. The estimate
(6.2) is nontrivial, since A is a nonlocal operator; the restriction of Au
to the boundary depends on values of u in the interior of M .

Our proof of (6.2) uses ideas from both harmonic analysis and mi-
crolocal analysis. There are two main ingredients. One is a uniform
estimate for u near the boundary:

(6.4)

∫
Yr

u2
j dσ(y) ≤ Cλjr

2 for all r ∈ [0, δ]

where Yr is the set of points at distance r from the boundary, and both
C and δ are independent of j. We prove this by looking at the quantity

L(r) =

∫
Yr

u2dσr.
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Here dσr is the measure on Yr induced by the Riemannian measure on
M . The eigenfunction equation for u leads to the differential inequality

(6.5) L′′ ≥ (L′)2

L
− Cλ,

for L(r), for some constant C depending only on the manifold M .
This differential inequality implies exponential increase of L(r) if it
ever happens that L′(r)2 ≥ 2CλL(r). However, this would contradict
the bound ∫ δ

0

L(r)dr ≤ 1

which follows from the L2 normalization of u. Hence L′(r)2 ≤ 2CλL(r),
and from this we deduce (6.4).

The second ingredient is expressing Au|Y as an integral of kernels Ar

acting on the functions u|Yr . Here, As has kernel As(y, y
′) which is the

restriction of the kernel of A to (r = 0, y, r′ = s, y′). Then results of
Boutet de Monvel [1] and Vǐsik and Eškin [8] give bounds on the L2

operator norm of Ar, acting from L2(Yr) to L2(Y ). Their result is if Br

is an operator of order −1 + k, satisfying the transmission condition,
where k = 0, 1, 2, . . . , then there is a bound on the operator norm of
Br of the form Cr−k, where C is independent of r. In particular, for
k = 0, the Br are uniformly bounded as r → 0.

Unfortunately, this result does not quite give the result directly, since
if we combine the operator bound Cr−2 for Ar and (6.4) for u and
integrate in r, we encounter a logarithmic divergence. However, a small
modification of this approach does the trick. If we let H−1 denote the
inverse of the operator H on N , with Dirichlet boundary conditions,
then H−1 is a pseudodifferential operator of order −2 when localized
away from the boundary of N . Moreover, it satisfies the transmission
condition. Since Hu = ψδY + λu, we may write

Au|Y = AH−1
(
ψδY + λu

)
.

The first term is given by (AH−1)0ψ which is a L2-bounded operator
applied to ψ. By the upper bound for ψ, we see that this term satisfies
(6.2). For the second term, we write u as the sum of a ‘close’ part and
a ‘far’ part with respect to the boundary, relative to the length scale
λ−1/2. We can integrate in r as described above to get the bound for
the close part, while a similar argument works for the far part. This
completes the proof of the lower bound.
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7. Periodic geodesics

In this section, we explore the relationship between trapped geodesics
and the failure of the lower bound by considering two examples. The
first is a hyperbolic cylinder, that is, the manifold M = [−a, a] × S1

θ ,
with metric

g = dx2 + (coshx)2dθ2.

This has a single periodic geodesic, at x = 0, which is unstable (geodesics
are always unstable in manfolds with negative curvature). Let ε > 0
be given, and let F be the set {|x| ≥ ε}; thus F excludes a neigh-
bourhood of the trapped geodesic. Then Colin de Verdière and Parisse
showed that there is a sequence of normalized Dirichlet eigenfunctions
ukj

, kj →∞ as j →∞, such that∫
F

|ukj
|2dg ∼ 1

log λkj

, j →∞.

Then, applying our upper bound argument, which only uses the norm
of eigenfunctions in a neighbourhood of the boundary (see the remark
at the end of Section 4), we see that for some C

‖ψkj
‖2

2 ≤ C
λkj

log λkj

.

This shows that the lower bound is violated. However, we can actually
show that this is the true order of growth of ‖ψkj

‖2
2. Indeed, we shall

show that for every normalized eigenfunction u,

(7.1) ‖ψ‖2
2 ≥ c

λ

log λ
.

To show (7.1), we first observe that for every eigenfunction u, we
have

(7.2)

∫
F

|u|2dg ≥ C

log λ
.

This follows by looking at a basis of eigenfunctions ul,λ of the form

ul,λ = eilθ(coshx)−1/2vl,λ.

Then vl,λ satisfies(
D2

x +
1

2
− 1

4
(tanh x)2 + l2(sechx)2

)
vl,λ = λvl,λ,

which we rewrite in the form

(7.3)
(
h2D2

x + V
)
vl,λ = Evl,λ,
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with

h−2 = l2 +
1

4
, V (x) = (sechx)2 − 1, E =

λ− l2 − 1/2

l2 + 1/4
.

Then Theorem 20 of [2] shows that for |E| < C, (7.2) holds. For
E > C, direct analysis of equation (7.3) shows that vl,λ has a uniform
L∞ bound, independent of h and E. Thus, in this case (7.2) holds
a fortiori. In the remaining case, E < −C < 0, the origin is in the
classically forbidden region and the result follows immediately from
Agmon-type exponential decay estimates.

To complete the proof of (7.1), we construct an operator A which
has a nonnegative commutator with H, and which is strictly positive
in a neighbourhood of F . We are able to do this because of the special
properties of geodesic flow on the hyperbolic cylinder. Letting G be the
complement of F , and writing F = F+ ∪F− for the two components of
F , labelled according to the sign of x, a geodesic that passes from F+,
say, to G either stays over G for all subsequent time, or emerges into the
region F− and eventually reaches the boundary of M ; it cannot happen
that a geodesic starts in G, then moves into the set F , and returns to
G. Thus, given a geodesic γ we can define an operator A with a symbol
which is linearly increasing when γ is above the set F , and vanishing
in some neighbourhood U ⊂⊂ G of the periodic geodesic. As before,
we can (by compactness) find a finite number of such operators whose
sum has the desired property.

Thus, for a given eigenfunction u, let M(u) denote the quantity on
the left hand side of (7.2). If we go back to (6.1), then we find that
the left hand side is at least as big as

cλM(u)− Cλ1/2 ≥ c′λM(u).

On the other hand, the argument above applied to Au shows that the
right hand side is no bigger than

C‖ψ‖2λ
1/2M(u)1/2.

We get the normalization factor M(u)1/2 (instead of 1) since all argu-
ments are localized near the boundary of M . The combination of these
two estimates yields (7.1).

The second example we analyze is the spherical cylinder, that is,
M = (−a, a)× S1, for 0 < a < 1, with metric

g = dx2 + (cos x)2dθ2.

This has a periodic geodesic at x = 0. However, in this case, the ge-
odesic is stable, and indeed every nearby geodesic is periodic. Thus,
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this case is the opposite extreme where there is an open set of peri-
odic geodesics. We shall see that, correspondingly, the lower bound is
violated in an extreme fashion.

This example may be analyzed in a similar way to the hyperbolic
cylinder. We may separate variables, so there is a basis of eigenfunc-
tions ul,λ of the form

eilθ(cosx)−1/2vl,λ.

Then vl,λ satisfies the equation

(7.4)
(
h2D2

x + V
)
vl,λ = Evl,λ,

where now

h−2 = l2 − 1

4
, V (x) = (sec x)2 − 1, E =

λ− l2 + 1/2

l2 − 1/4
.

Here, V has a nondegenerate global mininum at x = 0. Let us consider
a sequence of eigenfunctions ukj

with lkj
→ ∞ and E(λkj

, lkj
) ≤ E1,

where 0 < E1 < V (a), so that the boundary, |x| = a, is in the classically
forbidden region. Then Agmon-type exponential decay estimates (see
[4], chapter 3) hold, giving for some ε > 0

|ukj
(x, θ)| ≤ Ce

−ελ
1/2
kj , |x| ≥ δ > 0, for some ε > 0.

The upper bound argument then gives

‖ψkj
‖2 ≤ Ce

−ε′λ
1/2
kj , for some ε′ > 0,

so we actually have exponential decrease, rather than O(λ1/2) increase,
in the L2 norm of the normal derivative for any such sequence of eigen-
functions.

8. Vector fields are not enough

Finally, we remark that the following example shows that one can-
not expect to find a first order differential operator A having positive
commutator with H.

First we analyze what it means for a vector field to have a positive
commutator with H. Let the symbol of A be ai(x)ξi. The Hamilton
vector field of H is ξi∂xi

, so having a positive commutator requires that

(8.1) ξiξj
∂aj

∂xi

> 0 for |ξ| 6= 0.

Thus, the matrix ∂xi
aj must be positive definite, or in other words a1

is increasing in direction e1, etc.
Now consider the manifold with boundary shown in the figure (the

corners should be assumed to have been smoothed out so that it has
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smooth boundary). In the figure, the topmost and bottom horizontal
dotted lines, and the leftmost and rightmost dotted lines, are identified.

This manifold has no trapped geodesics.
Suppose that there is a vector field A whose commutator with H has

a positive symbol. Notice that the two points p and q are such that
there are three geodesics from p to q: one in the direction e1+e2, one in
the direction −e1 and one in the direction −e2. Write A = a1e1 + a2e2.
Then a1 is increasing in direction e1, and a2 is increasing in direction e2.
Hence a1(p) > a1(q), and a2(p) > a2(q). On the other hand, a1 + a2 is
increasing in direction e1+e2, so this yields a1(p)+a2(p) < a1(q)+a2(q),
which is a contradiction.
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