
DERIVATION OF MONOGENIC FUNCTIONS AND
APPLICATIONS

T. QIAN

Abstract. The paper studies two types of results on inducing
monogenic functions in Rn

1 . One is based on McIntosh’s formula
and the other is along the line of Fueter’s Theorem. Applications
are summarized and a new application on monogenic sinc function
interpolation is introduced.

1. Background

Denote by e1, e2, . . . , en the basic elements that satisfy

e2
i = −1, eiej = −ejei, i, j = 1, 2, . . . , n, i < j.

We will work on the following spaces:

Rn = {x = x1e1 + · · ·xnen : xi ∈ R, i = 1, . . . , n},

Rn
1 = {x = x0 + x : x0 ∈ R, x ∈ Rn},

R(n) is the Clifford algebra generated by e1, e2, . . . , en over the real
number field R;

C(n) is the Clifford algebra generated by e1, e2, . . . , en over the complex
number field C.

We adopt the notation x ∈ R(n)(or C(n)) implies x =
∑

s xses, where
xs ∈ R (or C), and s runs over all the possible ordered sets

s = {0 ≤ j1 < · · · < jk ≤ n}, or s = ∅, and

es = ej1 · · · ejk, e0 = e∅ = 1.

The functions we will study will be defined in subsets of Rn
1 , and

take their values in R(n) or C(n).
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The Dirac operator D for functions in Rn
1 is defined by

D = D0 + D, D0 =
∂

∂x0

, D =
∂

∂x1

e1 + · · ·+ ∂

∂xn

en.

It applies from the left- and right- hand sides to the function, in the
manners

Df =
n∑

i=0

∑
s

∂fs

∂xi

eies and fD =
n∑

i=0

∑
s

∂fs

∂xi

esei,

respectively. If Df = 0, then f is said to be left-monogenic; and, if
fD = 0, then right-monogenic. If f is both left- and right- monogenic,
then it is said to be monogenic.

Examples:
(1) The case n = 1 corresponds to the complex number field: e1 = i,

D = ∂
∂x

+ i ∂
∂y

, f(z) = u(x, y) + iv(x, y) and Df = 0 if and only if the

Cauchy-Riemann equations hold:
∂u

∂x
=

∂v

∂y
∂v

∂x
= −∂u

∂y
.

(2) The case n = 2 corresponds to the space of Hamilton quaternions:

~i = e1,~j = e2, ~k = e1e2,

q = q0 + q1
~i + q2

~j + q3
~k, qk ∈ R.

Profound studies on Clifford analysis have been conducted since Fueter’s
school in the 1930’s till the present time (see, for instance, [Ma], [CS]
and [Q1] and their references).

(3) Let uj(x), j = 0, 1, . . . , n, be defined in Rn
1 with values in C. Set

U = −u0 + u1e1 + · · ·+ unen

Then
DU = 0

if and only if these functions form a conjugate harmonic system (or
satisfy the generalized Cauchy-Riemann equations, see [St] and [KQ1]):

n∑
j=0

∂uj

∂xj

= 0

∂uk

∂xj

=
∂uj

∂xk

, 0 ≤ k < j ≤ n.
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For monogenic functions there hold Cauchy’s Theorem and Cauchy’s
formula. The Cauchy kernel in the context is E(x) = x

|x|n+1 , where for

x = x0 + x, we denote x = x0 − x .. It is observed that the Clifford
structure of Rn

1 is the “true” analogue of the one complex variable
structure of R1

1.

2. C-K Extension and McIntosh’s Formula

It can be proved that if we have a real analytic function defined in
an open set O of Rn, then we can always monogenically extend it to an
open set Q of Rn

1 where O = Rn ∩Q (C-K extension, see, for instance
[BDS]). The extension can be realized by the operation e−x0Df(x),
understood in the symbolic way. In fact, formally we have

D(e−x0Df(x)) = (D0 + D)(e−x0Df(x))

= (−D)e−x0Df(x) + De−x0Df(x) = 0.

Examples:
(1) If f(x) = xj, then

e−x0D(xj) = (1 + (−x0D) +
1

2!
(−x0D)2 + · · · )xj = xje0 − x0ej

4
= zj.

(2) The extension of xixj, i 6= j, is

1

2
(zizj + zjzi),

etc.
In practice the C-K extension and the related forms are, in general,

complicated and not easy to use. On the contrary, McIntosh’s for-
mula, somehow plays the role of Fourier-Laplace transform in Rn

1 , has
been playing a crucial role in a number of questions in function theory
([LMcQ], [PQ], [Q4], [KQ1], [KQ2]). The formula first appeared in late
1980’s ([Mc1]) and formally published in [Mc2] and [LMcQ] in 1994.
The formula involves a set of notations: If f is defined in Rn with
Fourier transform, then the possible monogenic extension of f is given
by

f(x) =
1

(2π)2

∫
Rn

e(x, ξ)
∧
f (ξ)dξ, (McIntosh’s formula),

provided that the integral on the right-hand-side is properly defined,
where

e(x, ξ) = eix·ξ{e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ)},

χ±(ξ) =
1

2
(1 + i

ξ

|ξ|
), x = x0 + x, x, ξ ∈ Rn.
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In [BDS] a wide range of similar notions are introduced. It is exactly
McIntosh’s form, however, that has been effectively used, especially in
problems related to Fourier transformation.

In the formulas for the projections χ±, if we take n = 1 and e1 = −i,
then we have

χ±(ξ) = ±sgnξ,

where ξ = iξ.
This indicates that the formula provides a decomposition of a func-

tion into functions similar to those in the Hardy spaces. Indeed, we
have,

f(x) = f+(x) + f−(x),

where

f±(x)
4
=

1

(2π)n

∫
Rn

e±(x, ξ)
∧
f (ξ)dξ,

e±(x, ξ) = eix·ξe∓x0|ξ|χ±(ξ).

We can further show that for x0 > 0,

f+(x) =
1

wn

∫
Rn

E(x− y) · f(y)dy;

while f−(x), x0 > 0, is the monogenic extension of f−(x) for x0 < 0,
where the latter is also of the Cauchy’s integral form of f . For x0 < 0
we have the analogous notation.

Under the context of the classical Paley-Wiener Theorem in the case
n = 1, viz. f ∈ L2(R) and

supp
∧
f (ξ) ⊂ [−δ, δ], δ > 0,

there follows
f(z) = f+(z) + f−(z).

For z = x + iy, y > 0, we have

e−y|ξ|χ[0,δ](ξ) = e−yξχ[0,δ](ξ), ey|ξ|χ[−δ,0](ξ) = e−yξχ[−δ,0](ξ),

and so

f+(z) =
1

2π

∫ δ

0

eixξe−yξ
∧
f (ξ)dξ =

1

2πi

∫ ∞

−∞

f(t)

t− z
dt,

and

f−(z) =
1

2π

∫ 0

−δ

eixξe−yξ
∧
f (ξ)dξ,

where f−(z) is well defined, but not be expressible by a Cauchy integral.
In fact, since y = Im z > 0, f−(z) is the holomorphic extension to the
upper-half complex plane of the Cauchy integral of f in the lower-half
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complex plane. By virtue of McIntosh’s formula we have exactly the
same notion in Rn

1 .
We will mention two applications of McIntosh’s formula.
(1) Paley-Wiener Theorem in Rn

1

In a recent paper we proved the following theorem ([KQ1]).

Theorem. Let f ∈ L2(Rn). Then f can be monogenically extended to
Rn

1 with the estimate
|f(x)| ≤ ceR|x|

if and only if

supp
∧
f⊂ B(0, R),

where
B(0, R) = {x ∈ Rn : |x| < R}.

In the case we have

f(x) =
1

(2π)n

∫
Rn

e(x, ξ)f̂(ξ)dξ, x ∈ Rn
1 .

In the literature higher dimensional versions of the Paley-Wiener the-
orem have been sought (see the references of [KQ1]). We wish to make
the point that the version with the Clifford algebra setting provides
the precise analogue. The commonly adopted proofs of the classical
Paley-Wiener Theorem are not readily applicable to the Clifford set-
ting owing to the defect that products of monogenic functions are no
longer again monogenic in general. However, a particular proof for the
one complex variable case can be closely followed through a non-trivial
computation based on McIntosh’s formula([KQ1]).

(2) Monogenic sinc function with Shannon sampling for functions in
the Paley-Wiener classes

Define the class of functions

PW (R) =
{

f : Rn
1 → C(n) : f is monogenic in the whole Rn

1

and satisfies |f(x)| ≤ CeR|x| } .

The monogenic sinc function is defined to be

sinc(x) =
1

(2π)n

∫
[−π,π]n

e(x, ξ)dξ.

The following exact interpolation of functions in the PW (R) classes is
proved in ([KQ2]).

Theorem. If f ∈ PW (π
h
) , then

f(x) =
∑
k∈Zn

f(hk) sinc

(
x− hk

h

)
,
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where the convergence is in the pointwise sense independent of the order
of summation.

The proof is based on estimates of the monogenic sinc function de-
rived from McIntosh’s formula.

3. Fueter’s Theorem and Generalizations

This addresses the problem of deriving monogenic and harmonic
functions from those of the same kind but in lower dimensional spaces.

Let f 0(z) be a function of one complex variable analytic in an open
set O of the upper-half complex plane C+. If f(z) = u(x, y) + iv(x, y),
z = x + iy, we introduce

~f 0(x) = u(x0, |x|) +
x

|x|
v(x0, |x|).

and set
τ(f 0)(x) = ∆

n−1
2 ~f 0(x), x ∈ Rn

1 .

Theorem of Fueter (1935). When n = 3, interpreted as the quater-
nionic space, the mapping τ maps an analytic function f 0(z) in O to
a quaternionic monogenic function in

~O = {q = q0 + q : q0 + i|q| ∈ O}.

Theorem of Sce (1957). For n being an odd integer the mapping τ
maps f 0(z) to a monogenic function in

~O = {x = x0 + x : x0 + i|x| ∈ O}.

These results were extended in [Q2] in 1997 to the cases n being

an integer and the operator ∆
n−1

2 interpreted as the Fourier multiplier
operator with symbol |ξ|n−1. We note that

τ(
1

z
)(x) = E(x) =

1

|x|n+1
.

In [Q2-3] for any integer n ≥ 2 a corresponding relationship between
the functions f 0(z) = zk and certain monogenic functions P (k)(x) of
homogeneity of degree k is established:

τ(
1

zk
)(x) = P (−k)(x), k = 1, 2, . . . ,

and
P (k−1) = I(P (−k)), k = 1, 2, . . . ,

where I is the Kelvin inversion defined by

If(x) = E(x)f(x−1).
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It is noted that if n is an odd integer, then

P (k−1) = τ(zn+k−2).

The sequence P (k), k ∈ Z, is used to establish the bounded holomor-
phic functional calculus of the Dirac operator on Lipschitz perturba-
tions,denoted by DΣ, of the unit sphere in Rn

1 (and similarly on Rn).
We now describe the result. Set

Sw = {0 6= z ∈ C : z = x + iy,
|y|
|x|

< tan w}, 0 < w <
π

2
,

tan w > the Lipschitz constant of Σ,

H∞(Sw) = {b : Sw → C : f o is bounded and analytic in Sw}.
Given b ∈ H∞(Sw), and set, formally,

b(DΣ)f =
1

2πi

∫
γ

b(ξ)(I −DΣ)−1dξf,

where γ is a certain curve in Sw surrounding the spectrum of DΣ.
The operators b(DΣ) are proved to be equal to the Fourier multiplier
operators

Mbf(x) =
∞∑

k=1

b(k)Pkf(x) +
∞∑

k=1

b(−k)Qkf(x),

where Pkf and Qkf are projections of f onto the spaces of monogenic
functions of homogeneity degree k and −k , respectively. They are also
equal to the singular integral operators

SΦf(x) = lim
n→∞

{
1

wn

∫
|x−y|>ε

Φ(y−1x)E(y)n(y)f(y)dσ(y) + Φ1(ε, x)f(x)

}
,

where in a certain sense Φ =
∨
b (the inverse Fourier transform of b) and

Φ1(ε, x) = the average of Φ on the sphere centered at x of radius ε.
That is

b(D∑) = Mb = Sφ.

The boundedness of the operators b(DΣ), b ∈ H∞(Sw), is proved
through their singular integral expressions SΦ based on the estimates
of the kernels Φ and Φ1. The derivation of the estimates are reduced
to the similar estimates in the one complex variable case via the cor-
respondence between the functions zk and P (k) ([Q5]).

On Lipschitz perturbations of higher dimensional spheres the theory
cannot be done through the Poisson Summation method based on the
graph case as in the unit circle case ([Q5]). It encountered some dif-
ficulties and hence was first achieved in the quaternionic space ([Q1]),
and then in general Euclidean spaces ([Q3]).
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Further generalizations of Fueter’s Theorem include the following.

(i) In a recent paper F.Sommen proved that if n is an odd positive
integer and x ∈ Rn

1 , then for f 0(z) = u(s, t)+ iv(s, t), z = s+it,

analytic in an open set O ⊂ C+, then for x ∈ ~O

D∆k+n−1
2 ((u(x0, |x|) +

x

|x|
v(x0, |x|))Pk(x)) = 0,

where Pk is any polynomial in x of homogeneity k, left-monogenic
with respect to the Dirac operator D ([So]).

(ii) K.I.Kou and T.Qian extended Sommen’s result to the cases
when n is an even positive integer and Sommen extended his
result to the cases k+n−1

2
being non-negative integers, no matter

whether k is an integer ([KQS]).
(iii) The derivation of monogenic functions can be reduced to that

of harmonic functions, based on the following observations.
A. If h is harmonic in x0, x1, . . . , xn, then Dh is monogenic,

where D = D0 −D.
B. If f is monogenic, then there exists a harmonic function

h such that f = Dh.
The following result for harmonic functions is obtained in a

recent paper of T.Qian and F.Sommen ([QS]).
Denote

x(r) = x
(r)
1 e

(r)
1 + · · ·+ x(r)

pr
e(r)

pr
∈ Rpr ,

where r = 1, . . . , d,
∑d

r=1 pr = m, and

e
(r)
i e

(r′)
i′ = −e

(r′)
i′ e

(r)
i ,wherever (r, i) 6= (r′, i′).

Let h(s1, . . . , sd) be a harmonic function in the d variables

s1, . . . , sd. Them, if pr, r = 1, . . . , d, are odd and m =
∑d

r=1 pr

is even, then

∆
m
2 h(|x(1)|, . . . , |x(d)|) = 0,

where ∆ is the Laplacian for all the m variables xr
i , r = 1, . . . , d,

i = 1, . . . , pr.
(iv) The latest result along this line is by K.I.Kou and T.Qian

([KQ3]), as follows.
In the above notation we have

∆(k1+...+kd)+m
2 [h(|x(1)|, . . . , |x(d)|)P (1)

k1
· · ·P (d)

kd
(x(d))] = 0,

where for any r = 1, 2, . . . , d, P
(r)
kr

(x(r)) is a left-monogenic func-

tions with respect to D(r), homogeneous of degree kr, where kr

is any non-negative integer.
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