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Abstract. This article combines three components corresponding to real anal-
ysis, algebra and operator theory. A simple and universal way of finding a

Hermite interpolation (quasi)polynomial and Gel’fond’s formula covering both
real and complex cases and based on the study of the sufficient conditions

for the continuity of divided differences with respect to two types of the si-

multaneous convergence of nodes is presented. Relying on it, we establish
both algebraic and topological Jordan decomposition for algebraic operators

and algebraic and topological properties of their calculus, such as a construc-

tive algebraic characterization of the solvability and an explicit estimate of
the related a priori constant and a new characterization of bounded algebraic

operators in terms of orbits. Further applications include explicit relations

between the barycentric or uniform distributions on convex polyhedra and,
correspondingly, B-splines or Steklov splines and short analytic proofs of some

classical results from the polynomial arithmetics, wavelet theory and discrete

Fourier transform. We also provide correct definitions, typical properties and
representations for the holomorphic calculus of the closed operators with mixed

spectra including both (double)sectorial and bounded components.

1. Introduction.

The topic of this work is quite classical and situated on the junction of real
analysis, operator theory and algebra. The article is devoted to the development
and application of explicit algebraic relations based on our approach to the Her-
mite interpolation problem and divided differences (§3) in the theories of algebraic
operators (§4), holomorphic functional calculus (§5), geometric probability (§3.5),
polynomial rings (Remark 3.1, §3.4 and §4) and wavelets (§3.4). Since the topic
has very deep classical roots, historical remarks accompany most of the results.

Section 3 contains the description of our approach to the Hermite interpolation
problem and its generalizations. To deduce Gel’fond’s formulas in both real and
complex settings simultaneously, paying attention to the smoothness requirements
in the real setting, we study the continuity of divided differences with respect to
the merging and non-merging convergences showing that the former requires less
smoothness and using only elementary methods of the classical calculus. Some
ring structures on the classes of quasi-polynomials related to our generalizations
are discussed. In §3.4, we demonstrate applications to the polynomial arithmetics,
showing close ties with the discrete Fourier transform and an algebraic result used in
wavelet theory, while the Steklov and B-splines appear as the density functions for
the projections of the uniform and barycentric distributions on convex polyhedra in
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linear spaces in §3.5, along with various representations for the divided and classical
differences.

The entire §4 deals with algebraic operators containing both purely algebraic
results for abstract linear spaces and for Banach (or complete linear metric) spaces.
Jordan decomposition and the criteria for the solvability and openness of the opera-
tors f(A) with an algebraic operator A are established there in constructive manner
in terms of explicit relations. We also provide a criterion for a closed operator to
be bounded and algebraic.

Starting with A. Taylor’s setting, we discuss approaches to introducing a holo-
morphic calculus of a closed operator with non-empty resolvent set paying attention
to the mixed setting of an operator with both sectorial and bounded spectral com-
ponents in §5. We check the correctness, uniqueness, continuity and other standard
properties of a functional calculus and provide a representation based on results
from previous sections.

The formulas are numbered independently in every logical unit of the text, such
as a definition, remark, theorem, lemma, corollary and their proofs.

The author is a recipient of an Australian Research Council Fellowship (project
DP0881037) and thanks the School of Mathematics and Statistics of the University
of New South Wales and ARC. He is also grateful to the (anonymous) referee for
very helpful remarks that improved the presentation.

2. Definitions.

Let C∞ = C∪ {∞} be extended complex plane with the base of the vicinities of
∞ consisting of the exteriors of the circles in C. Assume also that N0 = N ∪ {0}.
For a sequence of sets {Ak}k∈N, let us recall that

lim inf
k→∞

Ak =
⋃
n∈N

⋂
k≥n

Ak.

Definition 2.1 (Cauchy domain, contour). An open G ⊂ C∞ is a Cauchy domain
if G has a finite number of components (maximal connected subsets) {Gi}mi=1 with
disjoint closures Ḡi ∩ Ḡj = ∅ for i 6= j, such that the boundary ∂G = ∪mi=1∂Gi
is composed of a finite number of closed rectifiable and pairwise-disjoint Jordan
curves. A contour is an oriented boundary of a Cauchy domain. The positive
orientation of ∂G designated by +∂G is defined by the positive (counterclockwise)
orientation +∂Gi of ∂Gi for every i.

If F ⊂ Ω ⊂ C∞ for a closed F (in C∞) and open Ω, a contour γ = ∂G envelopes
F in Ω if F ⊂ G and Ḡ ⊂ Ω, and G is bounded if, and only if, F is bounded. Here
we also assume that ∞ ∈ Ω (or Ω ⊂ C) if, and only if, ∞ ∈ F (or F ⊂ C).

Remark 2.1. It is shown in [29] (Theorem 3.1 in [29]) that there always exists a
contour γ enveloping F in ω if ∂Ω is bounded.

For a linear spaces X and Y , let B be linear operator from D(B) ⊂ X into Y ,
and let E be linear subset (manifold) of D(B). Then B|E is the restriction of B
to E. The relation A ⊂ B between two operators means that D(A) ⊂ D(B) and
A = BD(A). One also has D(A+B) = D(A) ∩D(B).

For an injective A, the inverse operator A−1 is the operator with the domain
D(A−1) = Im(A) satisfying AA−1 = I|Im(A) (right inverse) and A−1A = I|D(A)

(left inverse).
For (complex) Banach spaces X and Y , let L(X,Y ) and C(X,Y ) be, correspond-

ingly, the spaces of bounded and closed operators A from X (D(A) ⊂ X) into Y .
We say that {Ak}k∈N ⊂ C(X,Y ) converges to A in C(X,Y ) if

D(A) = lim inf
k→∞

D(Ak) and lim
i→∞

Akx = Ax for every x ∈ D(A).
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Assume also that L(X) = L(X,X) and C(X) = C(X,X).
For n ∈ N, a Banach space X and a closed operator A ∈ C(X), we assume that

D0(A) = X,

Dn(A) = D(An) = {x ∈ D(A) : Aix ∈ D(A) for 1 ≤ i < n}

and

D∞(A) =
⋂
n∈N

Dn(A).

Definition 2.2. For a Banach space X and a closed A ∈ C(X), the resolvent set
ρ(A) is the open set of λ ∈ C, such that there exists (A − λI)−1 ∈ L(X). The
spectrum σ(A) is the complement C\ρ(A). We shall always assume that∞ ∈ σ(A)
if, and only if, A 6∈ L(X), and ρ(A) 6= ∅.

If λ is an isolated point of σ(A), then the operator-valued function (z − A)−1

(called the resolvent) is analytic in H\{λ}, where an open H ⊂ C is a neighborhood
of λ disjoint with σ(A) \ {λ}, and can be expanded into the Laurent series

(z −A)−1 =
∑
i∈Z

Ai(z − λ)i.

For n ∈ N, the point λ is a pole of the order n if A−n 6= 0 but Ai = 0 for i < −n.

Definition 2.3 (Classes of holomorphic functions). For an open Ω ⊂ C∞, let H(Ω)
be the class of all bounded holomorphic functions on Ω endowed with the topology
of the uniform convergence on the compact subsets of Ω ∩ C. Let H∞(Ω) be the
class of all bounded holomorphic functions on Ω endowed with the norm inherited
from L∞(Ω).

For Ω ⊃ C \C, where C is a disc in C, and d ∈ N, let Hd(Ω) be the subspace of
H(Ω) consisting of the functions with the pole at ∞ of an order not greater than
d, and let HN(Ω) =

⋃
n∈N H

n(Ω). Assume also that H0(Ω) = H(Ω ∪ {∞}), and
H−1(Ω ∪ {∞}) is the subspace of H0(Ω) consisting of the functions with zeros of
order, at least, 1 at ∞, i.e. satisfying

f(∞) = lim
|z|→∞

f(z) = 0.

Definition 2.4 (Holomorphic functional calculus). For a subspace Y ⊂ HN(Ω)
and a closed operator B : X ⊃ D(B) → X with σ(B) ⊂ Ω, we say that B possess
the Y -functional calculus if there exists a mapping F : Y → C(X), f 7→ f(B)
satisfying
1) F(0) = 0;
2) F(1) = I if 1 ∈ Y ;
3) F(z) = B if z ∈ Y ;
4) F(αf + βg) = αF(f) + βF(g) if α, β ∈ C and f, g ∈ Y ;
5) F(fg)x = F(f)F(g)x if f, g, fg ∈ Y and x ∈ D (F(fg))

⋂
D (F(f)F(g));

6) limk→∞ fk(B)
C(X)
= f(B) if {fk}∞k=1 ⊂ Y and limk→∞ fk

H(Ω)
= f in the topology

of the uniform convergence on compact subsets inherited from H(Ω);
7) g(B) = f(B) if g = f|G for an open G with the bounded ∂G satisfying σ(B) ⊂ G
and Ḡ ⊂ Ω.

The operator B is also said to possess the bounded H∞(Ω)-functional calculus
if, in addition, one has Im(F) ⊂ L(X) and F ∈ L(H∞(G),L(X)):
8) ‖F(f)‖L(X) ≤ C‖f‖H∞(G) for every f ∈ H∞(G).

The value of the best constant C in 6) is the norm ‖F|L(H∞(G),L(X))‖ of the
functional calculus operator F .
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3. Gel’fond’s formula: real and complex cases

This section is devoted to Gel’fond’s formula and its real line counterpart that
is the outcome of the work started by Ch. Hermite [15] in 1877 and going back to
A.-L. Cauchy, J.L. Lagrange, G. Leibniz, C. Maclaurin, I. Newton and B. Taylor.

3.1. Complex case and background. Assume that F = {zj}nj=1 ⊂ G ⊂ C,
where zi 6= zj for i 6= j, G ⊂ C is an open subset of a complex plane, and that a
contour γ envelopes {zj}nj=1 in G.

In 1871, G. Frobenius [12] found explicit formulas for the coefficients of the
Newton series and for the remainder in terms of Cauchy integrals. Naturally, the
remainder term appeared coinciding with that in the formula (cFH) below (see [3]
for more details).

In 1877, Ch. Hermite [15] has described how to find the polynomial pf that solves
the complex Hermite interpolation problem of finding a polynomial of the degree
less than m satisfying

p
(i)
f (zj) = f (i)(zj) for 1 ≤ j ≤ n and 0 ≤ i < mj ∈ N0, (cH)

where m =
∑n
j=1mj and f is a given function from H(G). He was primarily

concerned with establishing the following integral representation for the residual
term:

f(z)− pf (z) =
ω(z)
2πi

∮
γ

f(ζ)
(ζ − z)ω(ζ)

dζ. (cFH)

where

ω(z) =
n∏
j=1

(z − zj)mj .

The case mj = 1 for 1 ≤ j ≤ n corresponds to the Lagrange approximation problem
considered much earlier, while the case n = 1 is the Taylor interpolation problem.

In 1883, Sylvester used Lagrange’s solution to the Lagrange approximation prob-
lem to define a function f(A) of a matrix A with the minimal polynomial ω(A) = 0
as the polynomial pf (A), where pf is the Lagrange polynomial

pf (z) =
n∑
j=1

f(zj)
ωj(z)
ωj(zj)

, where ωj(z) =
ω(z)
z − zj

.

In 1886, Buchheim [4] has lifted the restriction mj = 1 defining f(A) as pf (A),
where pf is the solution to the Hermite interpolation problem:

pf (z) =
n∑
j=1

ωj(z)
mj−1∑
i=0

(i!)−1

(
f

ωj

)(i)

(zj)(z − zj)i, where

ωj(z) = ω(z)/(z − zj)mj .
Eventually, with the aid of his contribution to the theory of divided differences

of analytic functions, Gel’fond [13] has established the following remarkable explicit
formula: for f ∈ H(G) and z ∈ G, one has

f(z) =
∑
j=1

ωj(z)
mj−1∑
i=0

(i!)−1

(
f

ωj

)(i)

(zj)(z−zj)i+ω(z)4{(z,1)}∪{(zj ,mj)}nj=1
f, (G)

where ωj(z) = ω(z)/(z − zj)mj and 4{z} ∪ Ff is the divided difference of f with
the nodes {z}∪{zj}nj=1 with the multiplicities 1 and {mj}nj=1 correspondingly (see
[13] for various equivalent definitions in complex case). We should note that in
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complex case the divided difference with the multiple nodes F ∗ = {(zj ,mj)}nj=1

can be defined by

4F∗f =
1

2πi

∮
γ

f(ζ)
ω(ζ)

dζ

meaning that the residual in Gel’fond’s formula is, in fact, in Hermite’s form, while
pf is the outcome of Hermite’s method. Gel’fond’s proof is rather simple and uses
only the Cauchy representation formula and its traditional corollaries.

3.2. Abstract Hermite decomposition and divided differences. In this sub-
section we first define and investigate the properties of the divided differences in
the case of functions on open subsets of the real line with minimal differentiability
requirements, and, then, utilise Gel’fond’s method to deduce a counterpart of his
formula in the real case. Note that the same approach works in the complex case
as well thanks to the remarkable differentiability properties of holomorphic func-
tions. In particular, we provide very simple proof of the continuous dependence of
the divided difference on its nodes and the derivation of the Hermite interpolation
polynomial.

We shall deal with the specific classes (linear algebras) of differentiable functions
defined as follows.

Definition 3.1. For n ∈ N and {mj}nj=1, let F = {xj}nj=1 ⊂ R (or C) be
distinct points, let F ∗ = {(xj ,mj)}nj=1 be F with multiplicities {mj}nj=1, and
m =

∑n
j=1mj . Assume also that open G = ∪nj=1Ij ⊂ R (or C), where the finite or

infinite interval Ij satisfies Ij ∩ F = {xj} for every j.
Let CF

∗
(G) be the linear algebra of the functions f possessing the derivatives

{f (i)(x)}mj−1
i=0 in the interval Ij and the mjth derivative f (mj)(xj) at xj for every

1 ≤ j ≤ n.
Let also ω(x) = ωF∗(x) =

∏n
j=1(x − xj)mj and ωj(x) = ωF∗−(xj ,mj)(x) =∏

i6=j(x− xi)mi .

Definition 3.2 (Set operations). For a finite subset F ⊂ R, its multiplicity relation
F ∗ ⊂ R× N (or C× N) is defined by the multiplicity function µF∗ : R→ N0:

µF∗(x) =

{
mx if (x,mx) ∈ F ∗;
0 if x 6∈ F.

; and F = supp µF∗ .

Let also m(F ∗) =
∑
x∈F µF∗(x) and ψ(F ∗) =

∑
x∈F xµF∗(x).

Let F ∗, H∗ ⊂ R × N0 be two multiplicity relations. Let the partial relation
F ≤ H be defined by µF∗ ≤ µH∗ . In this case, we also define their difference
G∗ = F ∗ −G∗ by µG∗ = µH∗ − µF∗ . Let also its sum D∗ = F ∗ +H∗ be defined by
µD∗ = µH∗ + µF∗ . We also assume that ∅∗ = {(∅, 0)} and µ∅∗ = 0.

For a system {F ∗j }nj=1 of multiplicity relations, let F ∗max = maxnj=1 F
∗
j and F ∗min =

minnj=1 F
∗
j be defined, correspondingly, by the relations

µF∗max
= max

j
µF∗j and µF∗min

= min
j
µF∗j .

The next simple lemma is a direct corollary of the Leibniz formula.

Lemma 3.1. For n ∈ N, a point x0 ∈ I ⊂ R (or C) and open I, let {f, g, h} ∪
{fk}k∈N possess the derivatives up to order m− 1 (inclusive) in I and up to order
m at x0. Then, one has
a) (fg)(i)(x0) = (fh)(i)(x0) for 0 ≤ i ≤ m if g(i)(x0) = h(i)(x0) for 1 ≤ i ≤ m;
b) limk→∞(fkg)(i)(x0) = (fg)(i)(x0) for 0 ≤ i ≤ m if limk→∞ f

(i)
k (x0) = f (i)(x0)

for 1 ≤ i ≤ m.
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In the next theorem we establish an abstract Hermite (AH) decomposition pro-
viding a linear projection onto a general space of quasi-polynomials. This gener-
alization has a simpler proof and will be used in §5 in relation with a functional
calculus.

Theorem 3.1 (AH-decomposition). For n ∈ N and a multiplicity relation F ∗ =
{(zj ,mj)}nj=1, let {f}∪{gj}nj=1 ⊂ CF

∗−F×{1}(G) and f/gj have the derivatives up
to the order mj − 2 in Ij (see Def. 3.1) and up to the order mj − 1 at xj, while
g(l)(zk) = 0 for 1 ≤ j, k ≤ n, k 6= j and 0 ≤ l < mk. Then the following ~g-quasi-
polynomial solves the Hermite problem for the quasi-polynomials

∑n
j=1 gjPmj−1:

p~g,F∗f(x) =
∑
j=1

gj(x)
mj−1∑
i=0

1
i!

(
f

gj

)(i)

(xj)(x− xj)i, and (1)

we have the decomposition
a) f(x) = p~g,F∗f(x) + ωF∗−F×{1}(x)r(x) for f ∈ CF

∗
(G), where r ∈ C(G),

r(zj) = 0 and there exists r(mj−2)(x) for x ∈ Ij \ {zj} (see Def. 3.1) for every
1 ≤ j ≤ n;
b) f(x) = p~g,F∗f(x)+ωF∗(x)r~g(x) for f ∈ H(G), F ⊂ G ⊂ C, where r~g ∈ H(G),

if {gj , 1/gj}nj=1 ⊂ H(G).

The proof of Theorem 3.1. According to Part a) of Lemma 3.1 the function
φj = Tmj−1(f/gj , zj)gj , where Tmj−1(f/gj , zj) is the Taylor polynomial of the
order mj − 1 at zj possesses the derivatives

φ
(l)
j (zk) = δkjf

(l)(zk) for k 6= j, 0 ≤ l < mk

because Tmj−1(f/gj , zj) has the same derivatives up to the order mk − 1 at zk for
every 1 ≤ k ≤ n as f . Hence,

∑n
j=1 φj solves the Hermite interpolation problem

in the class of the ~q-quasi-polynomials
∑n
j=1 gjPmj−1. The factorisation of the

remainder term is established by induction with the aid of Part a) of Theorem 3.4
and the Bezout theorem (Theorem 3.2) for analytic functions in the cases of Parts
a) and b) correspondingly. Indeed, q0 = p− pf possesses 0 derivatives up to order
mj − 1 at zj for 1 ≤ j ≤ n. Therefore, q0(x) = q1(x)(x− z1)m1−1 thanks to Part a)
of Theorem 3.4 and q0 is continuous in G and possesses 0 derivatives up to order
mj − 1 at zj for 2 ≤ j ≤ n. Eventually, we set r = qn. If f ∈ H(G), we use the
stronger factorisation steps qj−1(z) = (z − zj)mjaj(z). �

Remark 3.1. Let us note that the multiplication operation (f, g) 7→ p~g,F∗(fg) for
f, g ∈

∑n
j=1 gjPmj−1 provides (together with the natural linear structure) a non-

trivial ring structure for
∑n
j=1 gjPmj−1. In classical purely polynomial choice of ~g

considered in the next theorem, the ring
∑n
j=1 gjPmj−1 = Pm−1 endowed with this

structure appears to be isomorphic to the quotient P/ωF∗P, where P =
⋃
l∈N Pl

(see Theorem 3.3 and Corollaries 3.1 and 3.4 and pages 52–53 in [3]).

We shall also need the Bezout theorem that easily follows from the Taylor rep-
resentation of a polynomial.

Theorem 3.2. For l ∈ N0, let p be a polynomial (or rational, or analytic function at
x0). Then we have p(i)(x0) = 0 for 0 ≤ i ≤ l − 1 if, and only if, p(x) = (x−x0)lr(x),
where r(x) is a polynomial (or rational, or analytic function at x0).

The next theorem is well-known (for example, see [2] p. 147) but we provide a
short proof based on the previous lemma avoiding the traditional usage of either the
L’Hôpital rule or the Taylor expansions of rational functions. It should be noted
that the interpolation polynomial does not depend on G as far as G contains the
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nodes F . This theorem is a particular case gj = ωj of the previous theorem. We
provide the same proof to compare its simplicity with the existing proofs.

Theorem 3.3 (Hermite interpolation polynomial). Let f ∈ CF∗−F×{1}(G). Then
the real Hermite interpolation problem of finding a polynomial of a degree less than
m satisfying

p(i)(xj) = f (i)(xj) for 1 ≤ j ≤ n and 0 ≤ i < mj ∈ N, (rH)

where m =
∑n
j=1mj, has the unique solution

pF∗f(x) =
∑
j=1

ωj(x)
mj−1∑
i=0

1
i!

(
f

ωj

)(i)

(xj)(x− xj)i. (1)

Moreover, if p is a polynomial of a degree l ≥ m satisfying the conditions (rH),
then

p(x) = pF∗f(x) + ωF∗(x)q(x),

where q(x) is a polynomial of the degree l −m.

The proof of Theorem 3.3. Applying the Bezout theorem to q0 = p− pf at x0 =
x1, then to q1 at x0 = x2 and so on, we obtain the factorizations r(x) = (x −
x1)m1r1(x) ... q0 = ωq. It also gives the uniqueness.

Let us now find the polynomial pj of the minimal degree, satisfying, for some
1 ≤ j ≤ n,

p
(i)
j (xk) = δkjf

(i)(xj) for 1 ≤ k ≤ n and 0 ≤ i < mj ∈ N, (rH(j))

According to the Bezout theorem, pj = ωjrj for a polynomial rj of degree less then
mj . Eventually, thanks to part a) of Lemma 3.1, we can take as rj the Taylor
polynomial of the degree mj − 1 for f

ωj
at the point xj because it has the same

derivatives at xj as f
ωj

:

pj(x) = ωj(x)
mj−1∑
i=0

1
i!

(
f

ωj

)(i)

(xj)(x− xj)i.

Thus, one has p(i)
j (xj) = f (i)(xj) since f = ωj

f
ω in a neighborhood of xj . We finish

the proof by taking pf =
∑n
j=1 pj . �

Corollary 3.1. For f, g ∈ CF∗(G) and ~g as in Theorem 3.1, one has

p~g,F∗(fg) = p~g,F∗ (fp~g,F∗g) = p~g,F∗ (p~g,F∗fp~g,F∗g) .

The proof of Corollary 3.1 According to Theorem 3.1, pF∗ depends on the deriva-
tives {f (k)(x)}{(x,k)}≤F∗ , and these derivatives are the same for the products fg,
fpF∗g and pF∗fpF∗g thanks to Lemma 3.1. �

Now we are in a position to define a divided difference with the nodes of arbitrary
multiplicities.

Definition 3.3 (Divided difference). For F ∗ = {(zj ,mj)}nj=1 as in Definition 3.1
and m = m(F ∗), let f ∈ CF

∗
(G). Then the divided difference 4F∗f is the co-

efficient near the senior power xm−1 of the Hermite interpolation polynomial pf ,
i.e.

4F∗f =
(pF∗f)(m−1)

(m− 1)!
=

n∑
j=1

1
(mj − 1)!

(
f

ωj

)(mj−1)

(zj). (4F∗)
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This definition (without the explicit expression for the divided difference) was
given by G. Kowalewski [20] in 1932. In 1938, Chakalov [5] gave an explicit formula
in the form

4F∗f =
n∑
j=1

1
(mj − 1)!

mj−1∑
k=0

aj,kf
(k)(xj), where

1
ωF∗(z)

=
n∑
j=1

1
(mj − 1)!

mj−1∑
k=0

aj,k
k!

(z − zj)k+1
,

under the condition that f is smooth enough to be approximated (together with
some of its derivatives) by the linear combinations of the functions (· − z)−1 for z
from R or C (if f is analytic).

The next lemma is a the well-known generalization of the Leibnitz rule. Ac-
cording to de Boor [3], the earliest proofs are provided by T. Popoviciu (1933) and
Steffensen (1939) We provide a short direct proof in terms of our notation. The
term “Leibniz rule” is due to C. de Boor (see Corollaries 28 and 30 in [3] for a
different proof and a generalisation).

Lemma 3.2 (Leibnitz rule). For a multiplicity relation F ∗ with m(F ∗) = m,
let {F ∗k }mk=0 be a maximal monotone sequence (“ladder”) of multiplicity relations
satisfying

F ∗0 = ∅∗, F ∗m = F ∗, F ∗k − F ∗k−1 = (x, 1) for some x ∈ F and 0 < k ≤ m.

Assume also that f, g ∈ CF∗(G) and F̄ ∗k = F ∗ − F ∗k for 1 ≤ k ≤ m. Then one has

4F∗(fg) =
m∑
k=1

4Fkf4F̄∗k−1
g.

The proof of Lemma 3.2. The Hermite interpolation operator pF∗ can be repre-
sented in the forms

pF∗f =
m∑
k=1

pF∗k f − pF∗k−1
f and pF∗g =

m∑
k=1

pF̄∗k−1
g − pF̄∗k g. (1)

Part a) of Lemma 3.2, Theorem 3.3, Definition 3.1 and Corollary 3.1 imply the
identities

4F∗(fg) = 4F∗ (pF∗fpF∗g) and pF∗ (pF∗fpF∗g) = pF∗(fg) (2)

Thus, we have

pF∗fpF∗g =
m∑

i,j=1

(pF∗i f − pF∗i−1
f)(pF̄∗j−1

g − pF̄∗j g) =

=
∑
i≤j

(pF∗i f−pF∗i−1
f)(pF̄∗j−1

g−pF̄∗j g)+
∑
i>j

pF∗i f−pF∗i−1
f)(pF̄∗j−1

g−pF̄∗j g) = I0+I1.

(3)

Comparing (3) with the last assertion of Theorem 3.3 and the uniqueness of the
Hermite interpolation polynomial pF∗ (pF∗fpF∗g), we see that

I0 =
∑
i≤j

(pF∗i f − pF∗i−1
f)(pF̄∗j−1

g − pF̄∗j g) = pF∗ (pF∗fpF∗g) and I1 = ωF∗q, (4)

where q is a polynomial. Indeed, all summands in I1 have the factor ωF∗ according
to Theorem 3.3. We finish the proof by comparing the coefficients near xm−1 in
the both sides of the first identity in (4). �
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This explicit formula for a divided difference in Definition 3.3 leads to a simple
proof of both the merging and general continuity of a divided difference of a mini-
mally smooth function with the aid of the classical B. Taylor’s expansions with the
remainder terms in the forms of G. Peano and J.L. Lagrange.

Part a) of the next theorem is due to G. Peano, while Part b) follows from the
corresponding result of J.L. Lagrange

Theorem 3.4. a) For an interval I ⊂ R, x ∈ I and n ∈ N, let g possess the
derivatives g(n)(x) and g(n−1)(y) for every y ∈ I. Then one has, for y ∈ I

g(y) =
n∑
k=0

g(k)(x)
k!

(y − x)k + (y − x)nrP (y),

where rP is continuous on I with rP (x) = 0, and there exists r(n−1)
P (y) for y ∈

I \ {x}.
b) For an interval I ⊂ R, x ∈ I and n ∈ N, let g possess the bounded derivative
g(n+1) on I. Then one has, for y, z ∈ I,

g(y) =
n∑
k=0

g(k)(z)
k!

(y − z)k + (y − z)nrL(y, z),

where limy−z→0 supz∈I rL(y, z) = 0.

Corollary 3.2. For m0,m1 ∈ N and n = m0 +m1− 1, let g satisfy either Part a),
or Part b) of Theorem 3.4. Then we have the representation

1
(m0 − 1)!

(
g

(· − x)m1

)(m0−1)

(y) +
1

(m1 − 1)!

(
g

(· − y)m0

)(m1−1)

(x) =
g(n)

n!
(x) + r,

where r possesses either the properties of rP in Part a) of Theorem 3.4 (except
for the existence of r(n−1)

P (y) for y ∈ I \ {x}), or rL in Part b) of Theorem 3.4
correspondingly.

The proof of Corollary 3.2. For 0 ≤ l ≤ n, Theorem 3.4 justifies the expansion

g(l)(y)
l!

=
n∑
k=l

g(k)(x)
k!

(y − x)k−l + (y − x)n−lrl. (1)

With the aid of the Leibnitz rule and (1), we obtain the identities

(y − x)n

(m0 − 1)!

(
g

(· − x)m1

)(m0−1)

(y)

=
m0−1∑
l=0

g(l)(y)
l!

(y − x)l(−1)m0−1−l
(
m0 +m1 − 2− l
m0 − 1− l

)

=
n∑
k=0

g(k)(x)
k!

(y − x)k
min(k,m0−1)∑

l=0

(
k

l

)
(−1)m0−1−l

(
m0 +m1 − 2− l
m0 − 1− l

)

+ (y − x)n
m0−1∑
l=0

rl(−1)m0−1−l
(
m0 +m1 − 2− l
m0 − 1− l

)
. (2)

Multiplying the Taylor expansions for (1 + z)k and (1 + z)−m1 on the (open) unit
disc, we see that ∑

i=0

ck,iz
i = (1 + z)k−m1
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and

ck,m0−1 =
min(k,m0−1)∑

l=0

(
k

l

)
(−1)m0−1−l

(
m0 +m1 − 2− l
m0 − 1− l

)
. (3)

The computation of ck,m0−1 (using Theorem 3.4, for example) gives us the identity

ck,m0−1 =


(−1)m0−1

(
n−k−1
m1−k−1

)
if 0 ≤ k ≤ m1 − 1;

0 if m1 ≤ k < n;
1 if k = n.

(4)

In turn, the Leibniz rule also provides

(y − x)n

(m1 − 1)!

(
g

(· − y)m0

)(m1−1)

(x) = (−1)m0

m1−1∑
k=0

gk(x)
k!

(y − x)k
(
n− 1− k
m1 − k − 1

)
. (5)

The addition of (3) and (5) with the aid of (4) and Theorem 3.4 finish the proof
with

r =
m0−1∑
l=0

rl(−1)m0−1−l
(
n− 1− l
m0 − 1− l

)
. (6)

�
The next two theorems provide sufficiently sharp conditions imposed on a func-

tion f for the continuous dependence of its divided difference with respect to two
cases of the simultaneous convergence of (multiple) nodes. When p is a polynomial,
it is shown by de Boor (see Proposition 21 in [3]) that a shorter and simpler proof
of both theorems at once is available.

Theorem 3.5 (Merging convergence). For n ∈ N, {nj}nj=1 ⊂ N and {mj,i}
n,nj
j=1,i=0⊂

N, let F ∗ = {(xj,i,mj,i)}
n,nj
j=1,i=0 and F ∗0 = {(xj,0,mj)}nj=1 with mj =

∑nj
i=0mj,i

for 1 ≤ j ≤ n. Assume also that {xj,i}i=0 ⊂ Ij, where Ij ⊂ R is an interval,
and G = ∪nj=1Ij corresponds to F ∗0 in the sense of Definition 3.1. Then, for every
f ∈ CF∗0−F0×{1}(G), we have

lim
F∗→F∗0

4F∗f = 4F∗0 f,

where F ∗ → F ∗0 means that xj,i → xj,0 for every 1 ≤ j ≤ n and 0 ≤ i ≤ nj.

The proof of Theorem 3.5. Let us define

ω(x) =
n∏
j=1

nj∏
i=0

(x− xj,i), ω0(x) =
n∏
j=1

(x− xj,0)mj and

ωj,i(x) =
ω

(x− xj,i)mj,i
, ω0,j(x) =

ω0(x)
(x− xj,0)mj

.

Then we have, thanks to Definition 3.2,

4F∗0 f =
n∑
j=1

1
(mj − 1)!

(
f

ωj

)(mj−1)

(xj,0) and

4F∗f =
n∑
j=1

nj∑
i=0

1
(mj,i − 1)!

(
f

ωj,i

)(mj,i−1)

(xj,i). (1)

Thanks to Part b) of Lemma 3.1, the summands

I0 =
nj0∑
i=0

1
(mj0,i − 1)!

(
f

ωj0,i

)(mj0,i−1)

(xj0,i) and J0 =
1

(mj0 − 1)!

(
f

ωj

)(mj0−1)

(xj0,0) (2)
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depend continuously on {xj,i}
1≤i≤nj
j 6=j0 . This means that it is enough to prove that the

first expression I0 converges to J0 if xj0,i converges to xj0,0 for every 1 ≤ i ≤ nj0 .
Without loss of generality, we assume that j0 = 1. Corollary 3.2 (the Lagrange

reminder version) permits us to start calculating I0 with

I2 =
1

(m1,1 − 1)!

(
f

ω1,1

)(m1,1−1)

(x1,1) +
1

(m1,1 − 1)!

(
f

ω1,2

)(m1,2−1)

(x1,2)

=
1

(m1,1 +m1,2 − 1)!

(
f

ωF∗−{(x1,2,m1,1),(x1,2,m1,1)}

)(m1,1+m1,2−1)

(x1,2)

+ rL2(x1,1 − x1,2, x1,2). (3)

Continuing in the same manner and calculating

Ij+1 = Ij +
1

(m1,j+1 − 1)!

(
f

ω1,j+1

)(m1,j+1−1)

(x1,j+1),

we obtain

In1 =
1

(m1,1 − 1)!

(
f

ωF∗−
Pn1
i=1{(x1,i,m1,i)}

)(m1−m1,0−1)

(x1,n1) +
n1∑
i=2

rLi(x1,i−1 − x1,i, x1,i).

(4)
Eventually we apply Corollary 3.2 with the Peano remainder to establish

I0 = Ij +
1

(m1,0 − 1)!

(
f

ω1,0

)(m1,0−1)

(x1,0)

=
1

(m1 − 1)!

(
f

ω0,1

)(m1−1)

(x1,0) + rP0(x1,n1 − x1,0) +
n1∑
i=2

rLi. (5)

Since the remainder terms in (5) converge to 0 when x1,i → x1,0 for 0 < i ≤ n1,
we have just proved that the left expression in (2) converges to the right one. This
finishes the proof of the theorem. �

Theorem 3.6 (General convergence). For n ∈ N, {nj}nj=1 ⊂ N and {mj,i}
n,nj
j=1,i=1 ⊂

N, let F ∗ = {(xj,i,mj,i)}
n,nj
j=1,i=1 and H∗ = {(xj ,mj)}nj=1 with mj =

∑nj
i=1mj,i for

1 ≤ j ≤ n. Assume also that {xj,i}i=0 ⊂ Ij, where Ij ⊂ R is an interval, and
G = ∪nj=1Ij corresponds to H∗ in the sense of Definition 3.1. Then, for every f

with the bounded f (mj) on Ij for every 1 ≤ j ≤ n, we have

lim
F∗→H∗

4F∗f = 4F∗0 f,

where F ∗ → H∗ means that xj,i → xj if for every 1 ≤ j ≤ n and 1 ≤ i ≤ nj.

The proof of Theorem 3.6. It is almost literal repetition of the proof of Theorem
3.5 with only two exceptions: we should always use the Lagrange remainder version
of Corollary 3.2, and at the very last step we have to show that

lim
xj0,nj0

→xj0

1
(mj0 − 1)!

(
f

ω0,j0

)(mj0,nj0
−1)

(xj0,nj0 ) =
1

(mj0 − 1)!

(
f

ωj0

)(mj0−1)

(xj0)

for 1 ≤ j0 ≤ n with the aid of Part a) of Theorem 3.4. �
The next theorem provides minimally necessary smoothness conditions for the

validity of Gel’fond’s formula in the real case.

Theorem 3.7 (General Gel’fond’s formula). For n ∈ N and a multiplicity relation
F ∗ = {(xj ,mj)}nj=1. Then, for every f ∈ CF∗(G) and x ∈ G, we have

f(x) = pF∗f(x) + ωF∗(x)4F∗x f,
where F ∗x = F ∗ + {(x, 1)}.
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Remark 3.2. It is interesting that Gel’fond’s formula reflects, in particular, a pure
algebraic phenomenon. If P is the ring of polynomials, and p is an arbitrary poly-
nomial of degree m, then the ideal pP is described by the conditions

q ∈ pP ⇐⇒ q(k)(zj) = 0 for 0 ≤ k < mj , 1 ≤ j ≤ n, where p = cωF∗ ,

while the dimension of P/pP is m− 1. Similarly, in the case of the ring H(Ω) for
an open Ω ⊂ C, it shows that the ideal pH(Ω) for an arbitrary polynomial p (one
always has p = p0ωF∗ where F is the part of its roots that is in Ω) is described by
the conditions

f ∈ pP ⇐⇒ f (k)(zj) = 0 for 0 ≤ k < mj , 1 ≤ j ≤ n, where F ∗ = {(zj ,mj)}nj=1,

and the dimension of H(Ω)/pH(Ω) is equal to m(F ∗)− 1.

The proof of Theorem 3.7. Let ωj = ωF∗−{(xj ,mj)}. Noticing that ωF∗x (y) =
(y − x)ωF∗(y), we see, with the aid of Definition 3.3 and the Leibnitz rule that

4F∗x f =
f(x)
ωF∗(x)

+
n∑
j=1

1
(mj − 1)!

(
f

ωj(· − x)

)(mj−1)

=

=
f(x)
ωF∗(x)

− 1
ωF∗(x)

n∑
j=1

mj−1∑
k=0

(
f

ωj

)(k) (x− xj)k

k!
(1)

The proof is finished by multiplying both sides of (1) by ωF∗(x) and by noticing
that both sides of the resulted identity are well-defined according to Definition 3.3
also for x ∈ F and continuous thanks to Theorem 3.5. �

The composition rule for divided differences is well-known but can be deduced
from the Leibnitz rule as shown in the proof of the next corollary. A different proof
can be found, for example, in [3].

Corollary 3.3 (Composition rule). For multiplicity relations F ∗ and H∗ 6= ∅∗, let
D∗ = F ∗ +H∗ and f ∈ CD∗ . Then one has

4D∗f = 4H∗φF,f where φF,f (x) = 4F∗+{(x,1)}f.

The proof of Corollary 3.3. Since 4D∗pF∗f = 0, one applies Lemma 3.2 to
Gel’fond’s formula (Theorem 3.7) to obtain

4D∗f = 4D∗ (ωF∗φF∗,f ) = 4H∗φF,f
because

4Q∗ωf∗ =


0 if Q∗ ≤ F ∗,
1 if F ∗ ≤ Q∗ and m (Q∗ − F ∗) = 1,
0 if F ∗ ≤ Q∗ and m (Q∗ − F ∗) > 1.

(1)

�

Remark 3.3. Noting that 1
ωF∗

(x) = 4F∗
(

1
x−·

)
, one can write the following well-

known identity, useful for the integration of rational or meromorphic functions,
f(x)
ωF∗(x)

= 4F∗
(
f(x)
x− ·

)
= 4F∗

(
f(·)
x− ·

)
+4F∗

(
f(x)− f(·)

x− ·

)
. (1)

The rigorous proof of this identity can be reduced to the Lagrange case (mj = 1
for every j), thanks to Theorem 3.5. The superposition rule (Corollary 3.3) shows
that the second summands in the right-hand sides of (1) and Gel’fond’s formula
(Theorem 3.7) coincide, immediately implying the following representation for the
Hermite interpolation polynomial of f :

pF∗f(x)
ωF∗(x)

= 4F∗
(
f(·)
x− ·

)
.
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3.3. Lagrange-Hermite interpolation basis and right inverses. In this sub-
section we interpret results of the previous section from the geometric point of
view.

The following theorem is classical and traditionally proved with the aid of either
Taylor expansions or l’Hôpital’s rule [2, 24]. we deduce it as an immediate corollary
of Part a) of Lemma 3.1 and a particular case of Theorem 3.3.

Theorem 3.8 (Hermite interpolation basis). For n ∈ N, let F ∗ = {(xj ,mj)}nj=1 be
a multiplicity relation. The Hermite interpolation basis of the space of polynomials
of degree less then m(F ∗), that is the system {pj,k}

0≤k<mj
1≤j≤n of polynomials satisfying

p
(k)
i,l (xj) = δijδkl for 1 ≤ j ≤ n and 0 ≤ k < mj ,

consists of the polynomials

pj,k(x) = ωj(x)
(x− xj)k

k!

mj−k−1∑
i=0

(
1
ωj

)(i) (x− xj)i

i!
.

The proof of Theorem 3.8. To find pj,k, it is sufficient to take f(x) = (x−xj)k
k!

in the formula (1) in the proof of Theorem 3.3, and then use the Leibnitz rule to
extract the common multiplier from the resulting Taylor sum. �

Gel’fond’s formula (Theorem 3.7) and Theorem 3.2 applied to polynomials and
HN(G)-functions have the following geometric meaning.

Corollary 3.4. a) Let P = ∪i∈NPi be the space of real or complex polynomials, and
let F ∗ be a multiplicity relation (over C or R). Then the operator TF∗ : p(x) 7→
4F∗+{(x,1)}p acts from Pl onto Pl−m(F∗) for l ≥ m(F ∗)− 1, kerTF∗ = Pm(F∗)−1,
and TF∗ also possesses the right inverse MωF∗ , that is the pointwise multiplier by
the polynomial ωF∗ . Moreover, p2

F∗ = pF∗ = I −MωF∗TF∗ .
b) For F ⊂ G ⊂ C for some open C\D ⊂ G with a closed disc D ⊂ C, let F ∗ be a

multiplicity relation (over C or R). Then the operator TF∗ : f(x) 7→ 4F∗+{(x,1)}f

acts from H l(G) onto H(l−m(F∗)+1)+−1(G) for l ≥ m(F ∗)−1, kerTF∗ = Pm(F∗)−2,
and TF∗ also possesses the right inverse MωF∗ , that is the pointwise multiplier by
the polynomial ωF∗ . Moreover, p2

F∗ = pF∗ = I −MωF∗TF∗ .

Remark 3.4. It is easily checked that if ωF∗ is a polynomial with real coefficients
(i.e. F ∗ is invariant with respect to the complex conjugation), then pF∗ and TF∗ =
4F∗+{(·,1)} map the real polynomials onto the real polynomials.

In the case of the bounded holomorphic functions we can add the following
quantitative estimate. For z ∈ C and r > 0, let D(z, r) be the disc with the centre
z and the radius r and C(z, r) be its boundary circle.

Theorem 3.9. For n ∈ N, let F ∗ = {(zj ,mj)}nj=1 be a multiplicity relation with
F ⊂ Ω for a bounded open

n⋃
j=1

D(zj , dj) ⊂ Ω ⊂ C where dj = min
i 6=j
|zi − zj |.

Then the operator TF∗ : f(z) 7→ 4F∗+{(z,1)}f acts from H(Ω) onto itself, kerTF∗ =
Pm(F∗)−1(C), and it also possesses the right inverse MωF∗ , that is the pointwise
multiplier by the polynomial ωF∗ . Moreover, p2

F∗ = pF∗ = I −MωF∗TF∗ , and we
have the estimate

‖pF∗ |L(H∞(Ω))‖ ≤
n∑
j=1

mj∑
l=1

dl−mj φj(l)
∥∥ωF∗−{(zj ,l)}∣∣H∞(Ω)

∥∥ ,
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where

φj(l) =

{
(m−l)m−l

(mj−l)mj−l(m−mj)m−mj
if 1 ≤ l < mj ;

1 if l = mj .

The proof of Theorem 3.9. Theorem 3.3 and Definition 3.3 show that kerTF∗ =
Pm(F∗)−1(C). This, in turn, implies the identity p2

F∗ = pF∗ . Gel’fond’s formula
(Theorem 3.7) provides pF∗ = I − MωF∗TF∗ and the observation that MωF∗ is
the right inverse for TF∗ thanks to Theorem 3.2 (Bezout). To see that TF∗f is
holomorphic function, we can either use the induction and the composition rule
(Corollary 3.3), or Theorem 3.6 (the proof works even easier for analytic functions),
or Gel’fand’s representation for TF∗ (see §3.1).

To estimate the quantity

Ij,k =
1
k!

(
f

ωj

)(k)

for 0 ≤ k < mj

we use its Cauchy representation

Ij,k =
1

2πi

∮
C(zj ,r)

f(ζ)
ωj(ζ)(ζ − zj)k+1

dζ for r ∈ (0, rj). (1)

Namely, one has

|Ij,k| ≤
‖f |H∞(Ω)‖

rk minC(zj ,r) |ωj(z)|
≤ ‖f |H∞(Ω)‖

gj,k(r)
where g(r) = rk(rj − r)m−mj . (2)

Mean arithmetic-geometric inequality clearly suggests that

max
[0,rj)

gj,k(r) =
(m−mj + k)m−mj+k

kk(m−mj)m−mj
r
m−mj+k
j for 0 < k < mj

and
sup
[0,rj)

gj,0(r) = r
m−mj+k
j . (3)

To finish the proof of the estimate for the norm of pF∗ , we use the triangle inequality
and (2, 3):

‖pF∗f |H∞(Ω)‖ ≤
n∑
j=1

mj−1∑
k=0

|Ij,k|
∥∥ωF∗−{(zj ,mj−k)}

∣∣H∞(Ω)
∥∥ ≤

≤ ‖f |H∞(Ω)‖
n∑
j=1

mj∑
l=1

dl−mj φj(l)
∥∥ωF∗−{(zj ,l)}∣∣H∞(Ω)

∥∥ . (4)

�

3.4. Arithmetics of polynomials and wavelet theory. In this subsection we
provide examples demonstrating that the Hermite interpolation theory considered
in the previous subsection delivers very simple constructive proofs for two classical
results about the ring of polynomials and two results from the wavelet theory.

Theorem 3.10. For n ∈ N, let {pi}ni=1 be a system of complex or real polynomials
without any common nontrivial divisors (i.e. F ∗min = ∅∗), and pi = ai,m(F∗i )ωF∗i
for 1 ≤ i ≤ n. Then, for every polynomial p, there exists a system {qi}ni=1 of
polynomials satisfying

n∑
i=1

qipi = p.

The system {qi}ni=1 is unique if, and only if, the degree of p is less than m(F ∗max)
and either n = 2, or n = m(F ∗max), {Fi}ni=1 = {Fmax \ {y}}y∈Fmax .
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The proof of Theorem 3.10. Without loss of generality, we may assume that
ai,m(F∗i ) = 1 for 1 ≤ i ≤ n. According to Corollary 3.4, every polynomial p
can be represented in the form

p = pF∗max
p+ ωF∗max

TF∗max
p

=
∑

y∈Fmax

ωy

µF∗max
(y)−1∑

k=0

(· − y)k

k!

(
f

ωy

)(k)

+ ωF∗max
TF∗max

p =
∑

y∈Fmax

ωyqy. (1)

where

ωy = ωF∗max−{(y,µF∗max
(y))},

and this representation is unique if, and only if, p ∈ Ker(TF∗max
) = Pm(F∗max)−1. To

finish the existence part of the proof of the theorem, it is left to note that, for every
y ∈ Fmax, there exists, at least, one Fj ≤ F ∗max − {(y, µF∗max

(y))} meaning that

ωy = ωF∗j ωF∗max−{(y,µF∗max
(y))}−Fj . (2)

The proof of the uniqueness part is finished by observing that, for n > 2, there
exist, at least, two relations

Fj ≤ F ∗max − {(y, µF∗max
(y))} and Fi ≤ F ∗max − {(y, µF∗max

(y))}

for some y ∈ Fmax if {Fi}ni=1 6= {Fmax \ {y}}y∈Fmax . �

Remark 3.5. a) The case n = 2 and p = 1 of the previous theorem plays an
important role in the classical wavelet theory (see Theorem 6.1.1 on page 169 in
[7]).
b) For example, the method of Cohen, Daubechies and Feauveau of constructing
wavelets utilizes the explicit expressions (see page 171 in [7] ) for the general form
of the solutions q1 and q2 in a particular case p1(y) = ym, p2(y) = (1 − y)m and
p = 1 that can be treated with the aid of Theorem 3.10 (even Theorem 3.3) without
resorting to the symmetry argument.

Theorem 3.11. For n ∈ N, let {pi}ni=1 and {ri}ni=1 be systems of complex or real
polynomials, such that every couple pi, pj with i 6= j have no common nontrivial
divisors, and the degree of ri is strictly less than the degree of pi for 1 ≤ i ≤ n.
Then there exists a polynomial p of the degree strictly less than m(F ∗max), where
pi = ai,m(F∗i )ωF∗i for 1 ≤ i ≤ n, satisfying p = qipi + ri for 1 ≤ i ≤ n and a system
{qi}ni=1 of polynomials.

The proof of Theorem 3.11. As in the classical approach, this theorem is proved
by induction in n with the aid of the previous theorem in the case n = 2. �

The last example of natural applications shows that the discrete Fourier trans-
form is a particular case of the Lagrange interpolation case mj = 1.



78 SERGEY AJIEV

For n ∈ N, let L∗ = L × {1} with L = {zj}nj=1 and zj = eijπ/n. If p(z) =∑n−1
k=0 akz

k, one has pL∗p = p, i.e.,

p(z) =
n∑
j=1

p(zj)
ωj(z)
ωj(zj)

=
n∑
j=1

p(zj)

∑n−1
k=0 z

kzn−k−1
j

nzn−1

=
n−1∑
k=0

zk
1
n

n∑
j=1

p(zj)z−kj

=
n−1∑
k=0

zkak.

The inverse discrete Fourier transform corresponds to calculating the values {p(zj) :
1 ≤ j ≤ n} relying on the knowledge of the coefficients {ak}n−1

k=0 .

3.5. Probability distributions, Steklov and B-splines and ordinary dif-
ferences. The most natural measures on a convex envelope of a finite number of
vectors are those defined in terms of barycentres. In this subsection we first apply
Theorem 3.5 on merging convergence to show, in particular, that the projections of
the measures from some class have B-spline densities. Then we demonstrate that
the Steklov splines, corresponding to the projections of the uniform measures, play
the same role in the theory of the ordinary differences as the B-splines in the theory
of divided differences.

Definition 3.4 (Barycentric distributions). For n ∈ N and m ∈ Nn, let {zj}nj=1

be elements of a linear space X. We define a relation F ∗ =
∑n
j=1{(zj ,mj)}. In

particular, if all zj 6= zk for j 6= k, we can write F ∗ = {(zj ,mj)nj=1}. For a vector
e in the (linear) dual X ′, let F ∗e = e(F ∗) =

∑n
j=1{(〈zj , e〉),mj)}.

Assume that Sn is the following simplex in Rn defined by

Sn = {x ∈ Rn : xj ≥ 0 and
n∑
j=1

xj = 1} (Sn)

and endowed with the probability measure

dµS,~m(x) =
(m− 1)!
n1/2

x~m−
~1

(~m−~1)!
dµn−1(x), where

x~m−
~1

(~m−~1)!
=

n∏
j=1

x
mj−1
j

(mj − 1)!
and

µn−1 is the n−1-dimensional Lebesgue measure on Sn. Let ζ~m be the corresponding
Sn-valued stochastic variable with the probability µS,~m. We say that a convF -
valued stochastic variable ξF∗ has ~m-barycentric distribution (and belongs to the
class Z~m) if

ξF∗ = 〈~z, ζ~m〉 =
n∑
j=1

ζ~mjzj . (Z~m)

The probability measure corresponding to ξF∗ will be called ~m-barycentric on
convF .

Definition 3.5 (Peano kernel/B-spline). For a (scalar) multiplicity relation F ∗

with F ⊂ R, the Peano kernel (or B-spline) is

bF∗(t) = (m(F ∗)− 1)4F∗(· − t)m(F∗)−2.
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Remark 3.6. The name Peano kernel is explained by the following corollary of
the Taylor expansion with the remainder in integral form. For n ∈ N, let F ∗ =
{(xj ,mj)}nj=1 be a multiplicity relation with F ⊂ R, and let f be a function on
[minj xj ,maxj xj with the integrable f (m(F∗)−1). Then one has

4F∗f =
1

(m(F ∗)− 1)!

∫
R
bF∗(x)f (m(F∗)−1)(x)dx. (P )

Indeed, this identity clearly holds in the Lagrangian case (m(F ∗) = |F |) and, then
we can use the merging convergence continuity property (Theorem 3.5) to validate
the identity for an arbitrary F ∗ because bH∗(τ) converges to bF∗(τ) when H∗ is
merging to F ∗ thanks to the same Theorem 3.5.

Another representation for a divided difference of a smooth function is the con-
tent of Part a) of the next lemma slightly generalising Exercise 55 on page 193 in
[2]. The Lagrangian case (F ∗ = F × {1}) of Part a) was established by Genocchi
[14], while Hermite [15] establishes a representation for his remainder term that
implies Part a) in its full generality.
Lemma 3.3. For n ∈ N and m ∈ Nn, let ~x ∈ Rn, ~m ∈ Nn with m =

∑n
j=1mj

and F ∗ =
∑n
j=1{(xj ,mj)}. Assume also that f is a function on [minj xj ,maxj xj ]

with integrable f (m(F∗)−1). Then we have

a) 4F∗f =

1∫
0

tn−1∫
0

. . .

t3∫
0

t2∫
0

f (m−1) (φx(t)) ρ̃~m(t) dt1dt2 . . . dtn−1

where

φx(t) = t1x1 +
n−1∑
j=2

(tj − tj−1)xj + (1− tn−1)xn

and

ρ̃~m(t) =
tm1−1
1

(m1 − 1)!

n−1∏
j=2

(tj − tj−1)mj−1

(mj − 1)!
(1− tn−1)mn−1

(mn − 1)!
;

b) 4F∗f =
1

(m− 1)!

∫
Sn

f (m−1) (〈~x, ~y〉) dµS,~m(~y)

=
1

(m− 1)!

∫
Sn

f (m−1)

 n∑
j=1

xjyj

 dµS,~m(~y).

The proof of Lemma 3.3. Let us note that Part a) implies Part b) with the aid of
the change of variables y1 = t1 and yj = tj − tj−1 for 1 < j < n followed by further
mapping of the new domain {yj ≥ 0,

∑n−1
j=1 yj ≤ 1} in Rn−1 onto Sn (inverse of

the orthogonal projector).
The Lagrangian case (m = n) of Part a) followed from the Newton-Leibniz

formula (i.e. the case m = n = 2) and a particular case of the composition rule
(Corollary 3.3):

4F∗f = 4{xn,xn−1}×{1}4F∗−{xn,xn−1}×{1}+{(·,1)}.



80 SERGEY AJIEV

This means that, for H∗ = H × {1} and distinct {yi}mi=1 = H ⊃ F with mini yi =
minj xj and maxi yi = maxj xj , we have

4H∗f =

1∫
0

tm−1∫
0

. . .

t3∫
0

t2∫
0

f (m−1) (φx(t)) ρ~m(t) dt1dt2 . . . dtn−1, (1)

where φy(t) = t1y1 +
∑m−1
j=2 (tj − tj−1)yj + (1− tm−1)ym and

ρ~m(t) =
tm1
1

m1!

n−1∏
j=2

(tj − tj−1)mj

mj !
(1− tn−1)mn

mn!
.

It is clear that the integral in the right-hand side of (1) has the form

I(~y) =

maxi yi∫
mini yi

fm−1(τ)ρ~y(τ)dτ

with the density ρ~y depending continuously on τ , and, thus, continuous in ~y itself.
Using the merging convergence continuity (Theorem 3.5) with H∗ merging to F ∗,
we see that (1) holds for H = F . Now we use m− n times the identity∫ b

a

(b− τ)k−1(τ − a)l−1dτ =
(k − 1)!(l − 1)!

(k + l − 1)!
(b− a)k+l−1

to establish Part a) with xj 6= xk for k 6= j. One more application of Theorem 3.5
permits us to establish Part a) with {xj}nj=1 allowed to coincide (~x ∈ Rn). �

Theorem 3.12. For a linear space X, e ∈ X ′, n ∈ N, ~m ∈ Nn and ~z ∈ Xn,
let F ∗ =

∑n
j=1{(zj ,mj)}, and let the convF -valued stochastic variable ξF∗ have

the ~m-barycentric distribution. Then the scalar-valued stochastic variable e(ξF∗)
possesses the density bF∗e = (m(F ∗)− 1)4F∗e (· − t)m(F∗)−2, where F ∗e = e(F ∗). In
particular, bF∗e is strictly positive on (min e(F ),max e(F )〉).

Remark 3.7. In a view of the direct proof of Theorem 3.13 corresponding to the
Steklov splines below, it would be interesting to find a direct proof of Theorem
3.12.

The proof of Theorem 3.12. Taking zje = e(zj), we see that Remark 3.6 and
Theorem 3.11 imply the identity∫
Sn

f (m−1) (〈~ze, ~y〉) dµS,~m(~y) = (m(F ∗)−1)!4F∗e f =
∫

R
bF∗(τ)f (m(F∗e )−1)(τ)dτ (1)

for every f with integrable f (m(F∗)−1), particularly, f (m(F∗)−1) = χI , where I is
an arbitrary subinterval of [min e(F ∗),max e(F ∗)]. The conclusion that bF∗e is the
density follows. In turn, geometric considerations imply the strict positivity of the
density, that is bF∗e , on (minj〈e, zj〉,minj〈e, zj〉). This finishes the proof. �

Before the appearance of the Sobolev averaging (with the hat-function or other
C∞-functions), their role was played by the Steklov averages, i.e. the products of
the averaging operators of the form

Shg(x) =
1
h

∫ h

0

g(x+ τ)dτ for h ∈ R \ {0} and g ∈ L1,loc(R).

The Steklov splines correspond to the densities of the Steklov averages.
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Definition 3.6 (Steklov differences and splines). For n ∈ N, a finite subset F ⊂
R(C) and a multiplicity relation F ∗, we define the Steklov difference

4F
∗

=
∏
h∈F

D
µF∗ (h)
h , where (4F∗)

Dh =

{
D if h = 0,
4h
h if h 6= 0.

Here D is the differentiation, and 4h is the ordinary difference of the first order
4hg(x) = g(x+ h)− g(x). Let us define the Steklov F ∗-spline by the formula

sF∗(z) = 4F
∗ (· − z)m(F∗)−1

+

(m(F ∗)− 1)!
. (sF∗).

Note that the Steklov spline sF∗ coincides with a B-spline bH∗ only in the ex-
treme case F ∗ = {(h,m)}, H∗ = H×{1} and m(H∗) = m(F ∗)+1 of the consecutive
equidistant nodes of the Lagrangian H∗ with the step h, i.e. the classical B-splines
are also the classical Steklov splines.

The next theorem is the counterpart of Theorem 3.12 for Steklov splines and
uniform distributions.

Theorem 3.13. a) For a linear space X, e ∈ X ′, n ∈ N, ~m ∈ Nn and ~z ∈ Xn, let
F ∗ =

∑n
j=1{(zj ,mj)}, and let {ξj,k}

1≤k≤mj
1≤j≤n be a system of independent stochastic

variables with the identical uniform distribution on [0, 1] (on R with the density
χ[0,1]), and

ηF∗ =
n∑
j=1

mj∑
k=1

ξj,kzj .

Then the scalar-valued stochastic variable e(ξF∗) possesses the Steklov F ∗-spline
density sF∗e , where F ∗e = e(F ∗). In particular, sF∗e is strictly positive on(

min
H∗≤F∗e

∑
h∈H∗

µH∗(h)h, max
H≤F∗e

∑
h∈H∗

µH∗(h)h

)
.

b) For m ∈ N, the Euclidean space Rm with an orthonormal basis {ej}mj=1,
h ∈ Rm and a system {ξj}mj=1 of independent stochastic variables with the identical
uniform distribution on [0, 1] (on R with the density χ[0,1]), let

ξ =
m∑
j=1

ξjej and ξh = (h, ξ)Rm =
m∑
j=1

ξjhj .

Then ξh possesses the Steklov spline density sF∗ for F ∗ =
∑m
j=1{(hj , 1)}:

ρξh(x) =
m∏
j=1

Dhj

(
(· − x)m−1

+

(m− 1)!

)
.

Remark 3.8. Let us note that, in the Lagrangian case F ∗ = F × {1} of linearly
independent F spanning X and with the appropriate choices of e, Part a) describes
the volume of the intersections of the parallelepiped

∑
z∈F [0, 1]z with the family of

the parallel hyperplanes described by e.

The proof of Theorem 3.13. Part a) follows from Part b) with a linearly renum-
bered hj,k = δl,jzl thanks to the identity

e(ξF∗) =
n∑
j=1

mj∑
k=1

ξj,khj,k. (1)
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Let us first consider the case hj = (h, ej) 6= 0 for every j of Part a) and assume
that ψF∗(H∗) =

∑
z∈H µH∗(z)z for H∗ ≤ F ∗. The distribution function of ξh is

equal to the volume V (x) of

{v ∈ [0, 1]m : (h, v) < x}.

Recalling that the (oriented) volume of the simplex conv({0} ∪ {vjej}mj=1) with
some vj 6= 0 for every j is equal to (m!)−1

∏m
j=1 vj , we employ the inclusion-

exclusion formula to obtain the representation

V (x) =
∑

H∗≤F∗
(−1)m(H∗)

∏
z∈H

1
z

(
µF∗(z)
µH∗(z)

)
(x− ψF∗(H∗))m+

m!
. (2)

Differentiating we establish the density

ρξh(x) =
∑

H∗≤F∗
(−1)m(H∗)

∏
z∈H

1
z

(
µF∗(z)
µH∗(z)

)
(x− ψF∗(H∗))m−1

+

(m− 1)!
. (3)

Eventually, thanks to the identities

(x− a)l+ = (x− a)l + (−1)l+1(a− x)l+ and
∏
z∈F

4µF∗ (z)
z

z
(· − x)m(F∗)−1 = 0, (4)

we can rewrite (3) in the desirable equivalent form (recall that m = m(F ∗))

ρξh(x) =
∏
z∈F

4µF∗ (z)
z

z

(· − x)m−1
+

(m− 1)!
. (5)

If 0 ∈ F , then the sum
∑m
j=1 hjξj contains only l = m(F ∗) − µF∗(0) summands,

and we have (5) with l instead of m. To finish the proof one only has to note that

(y − x)m(F∗)−µF∗ (0)−1
+

(m(F ∗)− µF∗(0)− 1)!
= D

µF∗ (0)
0

(· − x)m(F∗)−1
+

(m(F ∗)− 1)!
(y) (6)

and that Dk
w commute for different w ∈ R and k ∈ N. �

The following lemma is the counterpart of Part b) of Lemma 3.3 and Remark
3.6.
Lemma 3.4. For n ∈ N and m ∈ Nn, let ~h ∈ Rn, ~m ∈ Nn with F ∗ =∑n
j=1{(xj ,mj)}. Assume also that f is a function on(

min
H∗≤F∗e

∑
h∈H∗

µH∗(h)h, max
H≤F∗e

∑
h∈H∗

µH∗(h)h

)
with integrable f (m(F∗)−1). Let also Q = [0, 1]m(F∗) be the unit cube in

Rm(F∗) =
n∏
j=1

Rmj ,

and let t = {tj,k}
1≤k≤mj
1≤j≤n be the variable describing the points of Q endowed with

the Lebesgue measure. Then we have

a) 4F
∗
f =

∫
R
sF∗(τ)f (m(F∗))(τ)dτ ;

b) 4F
∗
f =

∫
Q

f (m)

 n∑
j=1

mj∑
k=1

xjtj,k

 dt.
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The proof of Lemma 3.4. As the statement of Remark 3.6, Part a) is an imme-
diate consequence of the Taylor expansion formula with the remainder in integral
form:

f(y) =
m−1∑
k=0

f (k)(x)
k!

(y − x)k +
∫ y

x

f (m)(τ)
(y − τ)m−1

+

(m− 1)!
dτ. (1)

Part b) is implied by either Part b) of Theorem 3.13, or by the repeated applica-
tion of the Newton-Leibniz formula accompanied by the homogeneous change of
variables. �

4. Algebraic operators

The notion of the algebraic operator was introduced by Dirac [8]. Particular
important cases of algebraic operators are involutions of order n (An = I), idem-
potents of order n (An+1 = A, for example, projectors), nilpotent operators of
order n (An = 0) and the operators with a finite-dimensional range (of finite rank)
F(X,Y ).

Definition 4.1 (Algebraic operator). Let X be linear space, and let A be linear
operator A : X → X with D(A) = X. The operator A is algebraic if there exists
a polynomial q satisfying q(A) = 0. The polynomial q is minimal for B if it is the
polynomial of the minimal degree with this property. We assume it normalized by
an = 1 (an is the senior coefficient of q), i.e. q = ωF∗ for some multiplicity relation
F ∗ with F ⊂ C.

Let also L(X) be the ring of all linear operators from X into itself. If R is a
subring of L(X) (linear operators), and J is an ideal in R, then A is almost algebraic
if A+ J is algebraic in the quotient R/J .

Remark 4.1. Let us note that the Taylor expansion for the minimal polynomial q
implies that

(A− λI)−1 = − 1
q(λ)

m(F∗)∑
k=1

q(k)(λ)
k!

(A− λI)k−1 if q(λ) 6= 0,

i.e. λ 6∈ F .

A particular class of almost algebraic operators (R = L(X,Y ) and J = F(X,Y )
is the ideal of the finite rank operators) was investigated by S.M. Nikol’skii in
1943 in connection with his celebrated characterisation of Fredholm (i.e. of index
zero) operators as invertible elements of L(X,Y )/F(X,Y ). In turn, the latter
characterization shows that every Fredholm operator is a sum of an invertible and
an algebraic operator! In 1947, related abstract notions were studied by Khalilov.
The developed abstract theory of algebraic and almost algebraic operators appeared
in [24].

In 1948, Kaplansky characterized algebraic operators as operators with the
bounded maximal dimension of the linear envelope of the orbits [{Akx}k∈N] (the
maximal dimension is equal to the degree of the minimal polynomial) and ap-
plied this result to some cases of the Kurosch problem partially solved (in different
settings) by Jacobson [16] in 1945 and Malcev [21] in 1943. Kaplansky’s character-
ization shows, in particular, that all operators of finite rank are algebraic.

In this section we establish a variant of a Jordan form representation for an
algebraic operator strengthening some of the main tools (Properties 2.1 − 2.3 on
pp. 69-70 and Theorems A.II.5.1, A.II.7.2 and A.II.7.3 in [24]) of the abstract
theory developed by D. Przeworska-Rolewicz and S. Rolewicz in [24], and then show
that bounded algebraic operators share the properties of the classes of projectors,
idempotents and involutions. In particular, Theorem 4.3 characterizes the class of
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functions f ∈ CF
∗
, such that Im(f(A)) is closed for a given bounded algebraic

operator A.
Parts a) and b) of the next Theorem are properties 2.1 and 2.2 from [24] (p. 69),

while Part c) is the (ultimate) improvement of Property 2.3 on page 70 and Part b)
of Theorem A.II.5.1 in [24] (i.e.the inclusion Im(px) ⊂ Ker((A−xI)µF∗ (x))), while
the first half of Part d) is the improvement of Part c) of Theorem A.II.5.1 from
[24]. Part g) is classical (see [29] or [24]).

We assume that p(A) =
∑n
k=0 akA

k and A0 = I if p(z) =
∑n
k=0 akz

k.

Theorem 4.1 (Jordan form). For a linear space X, let A ∈ L(X) be an algebraic
operator with the minimal polynomial ωF∗ . Assume also that, for every x ∈ F , the
operator Px ∈ L(X) is Px = px(A), where

px(z) = ωF∗−{(x,µF∗ (x))}(z)
µF∗ (x)∑
k=0

1
k!

(
1

ωF∗−{(x,µF∗ (x))}

)(k)

(x)(z − x)k.

Then we have the following properties:

a) I =
∑
x∈F

Px;

b) PxPy = PyPx = δx(y)Px for x, y ∈ F ;

c) Im(Px) = Ker((A− xI)µF∗ (x)) = Ker((A− xI)l) for l > µF∗(x) and x ∈ F ;

d) X =
⊕
x∈F

Ker((A− xI)µF∗ (x)) and

Ker((A− xI)µF∗ (x)) =
⋂

y∈F\{x}

Im((A− yI)µF∗ (y)) for x ∈ F ;

e) Im((A− xI)µF∗ (x)) =
⊕

y∈F\{x}

Ker((A− yI)µF∗ (y)) = Im((A− xI)l)

for l > µF∗(x) and x ∈ F ;

f) Ker((A− xI)l) 6= Ker((A− xI)l+1) and Im((A− xI)l) 6= Im((A− xI)l+1)

for 0 < l < µF∗(x), x ∈ F ;

g) Ker((A− xI)k) ⊂ Ker((A− xI)l) and Ker((A− xI)k) ∩Ker((A− yI)l) = {0}
for k, l ∈ N, k ≤ l, x 6= y.

Moreover, Part g) holds for a non-algebraic A, as well as the inclusion Im((A −
xI)l) ⊂ Im((A − xI)k). If, in addition, X is Banach and A is bounded, then the
projectors Pz for z ∈ F are bounded and the sums in d) and e) are topological.

The proof of Theorem 4.1. Let us assume that F ∗ ≤ H∗ and define pH∗,x and
PH∗,x as we have defined px and Px substituting F ∗ with H∗. We also assume that
F = H because PH∗,y = 0 if y ∈ H \ F . Thanks to Theorem 3.3, the observation∑

x∈H
pH∗,x(z) = 1 implies

∑
x∈H

PH∗,y = I (1)

showing the validity of Part a) (case H∗ = F ∗).
Part b) with PH∗,x instead of Px follows from (1) and the observation

pH∗,xpH∗,y = q0ωH∗ = q1ωF∗ if x 6= y. (2)

To establish the first equality in c) (with H∗ instead of F ∗), we expand

ωH∗−{(x,µH∗ (x))} and 1/ωH∗−{(x,µH∗ (x))}
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into Taylor series in a neighborhood of x:

ωH∗−{(x,µH∗ (x))}(z) =
∞∑
k=0

bk(z − x)k

where bk = 0 for k > sx = m(H∗)− µH∗(x) and

1
ωH∗−{(x,µH∗ (x))}(z)

=
∞∑
k=0

ck(z − x)k. (3)

Multiplying we establish the convolution identity

δ0n =
n∑
k=0

ckbn−k. (4)

For v ∈ Ker((A − xI)µH∗ (x)) one has (A − xI)lv = 0 for l ≥ µH∗(x). Using this
observation and, then, (4), we obtain

pH∗,x(A)v =
m(H∗)−1∑

l=0

(A− xI)lv
l∑

k=0

ckbl−k = v, (5)

meaning that Ker((A − xI)µH∗ (x)) ⊂ Im(PH∗,x). The opposite inclusion follows
from the identity

(A− xI)µ(H∗)(x)pH∗,x(A) = q2(A)ωH∗(A) = 0. (6)

The inclusion and the cases x 6∈ H = F or y 6∈ H = F of the identity in Part
g) (see Remark 4.1) are trivial. When x, y ∈ H = F , the identity follows from the
existence of the polynomials q3, q4 provided by Theorem 3.10 and satisfying

q3(A)(A− xI)k + q4(A)(a− yI)l = I.

Now the proved identities of Parts a)− c) imply the identity

X =
⊕
x∈H

Ker((A− xI)µH∗ (x)), (7)

which, particularly, holds when H∗ = F ∗ (i.e. the first identity in Part d)). Com-
paring this particular case with (7) with the aid of Part g), we finish the proof of
c).

To obtain e), we observe, with the aid of the commutativity of the polynomial
products defining pH∗,y (and c) with H∗ instead of F ∗), that

Ker((A− yI)µH∗ (y)) = Im(PH∗,y) ⊂ Im((A− xI)µF∗ (x)) for y ∈ H \ {x}. (8)

At the same time, the second equality in c) shows that

Ker((A− xI)l) ∩ Im((A− xI)µF∗ (x)) = {0} for x ∈ H = F. (9)

Comparing now the first equality in c) with (8) and (9) in the same way as we
compared (7) with the both statements of Part g), we see that

Im((A− xI)µH∗ (x)) =
⊕

y∈F\{x}

Ker((A− yI)µF∗ (y)). (10)

Now comparing (10) with the trivial inclusion after Part g), we finish the proof of
e).

Now the second identity in Part d) follows from the first one in Part e).
To finish the proof of the theorem, it is enough to note that the boundedness of

Pz on a Banach X implies that the sums in d) and e) are topological. �
Theorem 3.3, Corollaries 3.1 and 3.4 and the next Lemma provide the correctness

for the following definition of the CF
∗
-functional calculus for a linear algebraic

operator. The idea is based on Remark 3.1.
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Definition 4.2 (CF
∗
-functional calculus). For a linear space X and a linear alge-

braic A ∈ L(X) (D(A) = X) with the minimal polynomial ωF∗(A) = 0, let the CF
∗
-

functional calculus FCF∗ : CF
∗
(G)→ L(X) be defined by FCF∗ : f 7→ pF∗f(A).

Since pF∗ in Theorems 3.1 and 3.3 does not depend on G = ∪x∈F Ix ⊃ F , this
symbol will be often omitted or chosen conveniently.

Lemma 4.1. For a linear space X, let A ∈ L(X) be an algebraic operator with the
minimal polynomial ωF∗ . Assume also that f, g ∈ CF∗(G). Then one has

a) pF∗f(A)pF∗g(A) = pF∗(fg)(A); (4.1)

b) (pF∗f(A))−1 = pF∗(1/f)(A) if f(x) 6= 0 for x ∈ F. (4.2)

The proof of Lemma 4.1. Part a) follows from Corollaries 3.1 and 3.4:

pF∗f(A)pF∗g(A) = pF∗(fg)(A) + r(A)ωF∗(A) = pF∗(fg)(A),

where r is some polynomial. In turn, Part a) implies b). �
Theorem 4.1 and the methods of its proof permits us to establish a counterpart

of Theorems A.II.7.2 and A.II.7.3 from [24] providing necessary and sufficient
conditions for the solvability of the equation f(A)x = y with given f ∈ CF∗ and
y ∈ X.

Theorem 4.2. For y ∈ X, f ∈ CF∗ and an algebraic A ∈ L(X) with the minimal
polynomial ωF∗ , let F ∗0 be the maximal multiplicity relation satisfying f (k)(z) = 0
for 1 ≤ k ≤ µF0 and F ∗1 = F ∗ − F ∗0 . Then there exists x ∈ X satisfying f(A)x = y
if, and only if,
a) ωF∗1 (A)y = 0, and
b) for every z ∈ F0 ∩ F1, there exists xz ∈ X satisfying

(A− zI)µF∗0 xz = ωF∗1z (A)

µF∗1
(z)−1∑
k=0

(
(· − z)µF∗0 (z)

fωF∗1z

)(k)
(A− zI)k

k!
y,

where F ∗1z = F ∗1 − {z, µF∗1 (z)}.
Every solution x, if it exists, has the form x =

∑
z∈F xz, where xz are as in b)

if z ∈ F0 ∩ F1, xz is an arbitrary element of Ker((A− zI)µF∗ (z)) if z 6∈ F1, and, if
z ∈ F1 \ F0, xz is uniquely described by

xz = ωF∗1z (A)

µF∗1
(z)−1∑
k=0

(
1

fωF∗1z

)(k) (A− zI)k

k!
y

The proof of Theorem 4.2. The necessity of a) follows from the observation that
pF∗f(A) = ωF∗0 (A)q(A) and, hence,

ωF∗1 (A)y = q(A)ωF∗(A)y = 0. (1)

Let Pz = pz(A) be the projectors from Theorem 4.1. The commutativity
pz(A)g(A) = g(A)pz(A) for every g ∈ CF∗ shows the equivalence of the equations

g(A)x = y ⇐⇒ g(A)xz = Pzy and z =
∑
z∈F

xz. (2)

In particular, g(A)Ker((A−zI)µF∗ (z)) ⊂ Ker((A−zI)µF∗ (z)). Noting that the min-
imal polynomial for the restriction of A to Ker((A−zI)µF∗ (z)) is ω{(z,µF∗ (z))}(w) =
(w − z)µF∗ (z), we see with the aid of Part b) of Lemma 4.1 that g(A) is invertible
on Xz = Ker((A− zI)µF∗ (z)) if, and only if, g(z) 6= 0 and, in this case,

g(A)−1
|Xz =

µF∗ (z)−1∑
k=0

(1/g)(k)

k!
(A− zI)k. (3)
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Now (3) shows that ωF∗1−{(z,µF∗1 (z))} is invertible on Xz. Together with the equiv-
alence (2) with g = ωF∗1 and the condition a), this shows that

y ∈ XF∗1
=
⊕
z∈F1

Ker((A− zI)µF∗1 (z)), (4)

and, in fact, we have, for every g ∈ CF∗ ,

g(A)v = pF∗1 g(A)v for every v ∈ XF∗1
. (5)

Combining (4) and (5), we also observe that

Pzv = pF∗1 ,z(A)v = ωF∗1 ,z(A)

µF∗1
(z)∑

k=0

(1/ωF∗1 ,z)
(k) (A− zI)k

k!
v for v ∈ XF∗1

. (6)

Eventually, the observation (3) with g(w) = gz(w) = f(w)

(w−z)
µF∗0

(z) implies, with the

aid of (6) and (4) the equivalence

f(A)xz = Pzy ⇐⇒
µF∗1

(z)−1∑
k=0

(1/gz)(k)

k!
(A− zI)kPF∗1 ,zy = (A− zI)µF∗0 (z)

xz. (7)

Now the “B. Taylor calculus” in the form of Part a) of Lemma 4.1 with {(z, µF∗(z))}
instead of F ∗ (or the less conceptual considerations led to the proof of the identity
(5) in the proof of Theorem 4.1) shows that for v ∈ Ker((A− zI)µF∗1 (z)), one has

p{(z,µF∗1 (z))}
1
gz
p{(z,µF∗1 (z))}

1
ωF∗1 ,z

v = p{(z,µF∗1 (z))}

(
1

gzωF∗1

)
v. (8)

Part b) for z ∈ F0 is exactly (7) simplified with the aid of (8), i.e.

(A− zI)µF∗0 xz = ωF∗1z (A)

µF∗1
(z)−1∑
k=0

(
(· − z)µF∗0 (z)

fωF∗1z

)(k)
(A− zI)k

k!
y for z ∈ F1, (9)

while (7) itself is equivalent to (2) with g = f . Note that, for z ∈ F1 \F0, (9) gives
the explicit unique value of xz since µF∗0 (z) = 0.

The solution x has the form

x =
∑
z∈F

xz, where

xz can be any element of Xz if z 6∈ F1 (meaning that f(A)Xz = {0} because of
ωF∗0 (A)Xz = {0}) and is defined by (9) if z ∈ F1. �

Corollary 4.1. For a multiplicity relation F ∗, F ∗z = F ∗ −{(z, µF∗(z))} for z ∈ F
and a linear space X, let A ∈ L(X) be an algebraic operator with the minimal
polynomial ωF∗ . Let also ~q = {qz}z∈F be a family of rational or holomorphic in an
open G ⊃ F functions satisfying qz(z) 6= 0 for every z ∈ F . Then, for f ∈ CF∗ , we
have

pq̃,F∗f(A) = pF∗f(A),
where q̃ = {qzωF∗z }z∈F and pq̃,F∗f is as in AH-decomposition (Theorem 3.1).

The proof of Corollary 4.1. We employ the tool that has been used twice in
the proof of Theorem 4.2. Thanks to Part d) of Theorem 4.1 and Theorem 4.2
Im(ωF∗z (A)) = Ker((A− zI)µF∗ (z)) meaning that it is enough to show that

p{(z,µF∗ (z))}(f/qz)(A)qz(A) = p{(z,µF∗ (z))}(f/qz)(A)p{(z,µF∗ (z))}qz(A)

= p{(z,µF∗ (z))}f(A) (1)
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for z ∈ F . The second identity in (1) is provided by Part a) of Lemma 4.1, while
the first follows from either the Bezout theorem (Theorem 3.2) or the definition of
CF

∗
-calculus:

g(A) = pF∗f(A).
�

The rest of this section is devoted to metric properties of functions of bounded
algebraic operators.

Definition 4.3 (A priori constant). For Banach spaces X,Y and a closed operator
A : X ⊃ D(A) → Y with Im(A) = Im(A), an a priori constant CA(A) is the
infimum of the constants C satisfying the following property:
for every y ∈ Im(A), there exists x ∈ D(A), such that y = Ax and ‖x‖X ≤ C‖y‖Y .

Note that the definition is correct thanks to the Banach open-mapping theorem.
Moreover, if Im(A) ⊂ D(B), we have the inequality

CA(BA) ≤ CA(B)CA(A). (∗∗)
The next theorem of this section demonstrates in a quantitative manner that

polynomials p(A) (and even CF
∗

functions f(A)) of a bounded algebraic operator
possess closed ranges if some particular polynomials of the form (A− zI)k do.

Theorem 4.3. For an algebraic A ∈ L(X) with the minimal polynomial ωF∗ , let
F ∗0 ≤ F ∗ be a multiplicity relation and F ∗1 = F ∗−F ∗0 . Then Im(f(A)) = Im(f(A))
for every f ∈ CF∗ satisfying f (k)(z) = 0 for 1 ≤ k ≤ µF0 if, and only if,

Im((A− zI)µF∗0 (z)) = Im((A− zI)µF∗0 (z)) for z ∈ F0. (∗ ∗ ∗)
If this is the case, we also have the estimate

CA(f(A)) ≤

∑
z∈F1

cA

(
(A− zI)µF∗0 (z)

)∥∥∥∥∥∥ωF∗1z (A)

µF∗1
(z)−1∑
k=0

(
(· − z)µF∗0 (z)

fωF∗1z

)(k)
(A− zI)k

k!

∥∥∥∥∥∥
L(X)

.

Remark 4.2. a) Let us note that the condition (∗ ∗ ∗) cannot be omitted thanks to
the following example of a nilpotent operator of an order n.

Let X be an infinite-dimensional Banach space and A ∈ L(X) be a non-algebraic
compact operator. Considering the operator

SA : Xn → Xn : (x1, x2, . . . , xn) 7→ (0, Ax1, Ax2, . . . , Axn−1),

we see that SnA = 0 but Im(SkA) is never closed for 1 ≤ k < n because Ak is compact
while Im(Ak) is infinite-dimensional (otherwise Ak would be algebraic according to
Kaplansky’s criterium mentioned above).

Since every infinite-dimensional Banach space contains a basic sequence, the
operator

Ax =
∑
k∈N

αkfk(x)ek, where αk ≥ 0,
∑
k∈N

αk <∞

and {ek}k∈N ⊂ X is a normalized basic sequence with a bi-orthogonal normal-
ized system {fk}k∈N ⊂ X∗, is compact but not algebraic thanks to the following
criterium due to Kaplansky (or Theorem 4.4 below).
b) Kaplansky [18] has established the following characterisation of bounded al-

gebraic operators. For a Banach space X, an operator A ∈ L(X) is algebraic if,
and only if, for every x ∈ X, one has

dim
[
{Ak}k∈N0

]
<∞, i.e. A is locally algebraic.
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The proof of Theorem 4.3. The estimate in the statement of the theorem follows
from Theorem 4.2 and Definition 4.3. Indeed, it is enough to set xz = 0 for
z ∈ F0 \ F1 and use the representation for xz with z ∈ F1.

Part d) and the last sentence of Theorem 4.1, imply, as in the proof of Theorem
4.2, the equivalence

Im(f(A)) = Im(f(A))⇐⇒ Im(f(A)Pz) = Im(f(A)Pz) for z ∈ F.

Now the proof of formula (3) from the proof of Theorem 4.2 shows, for f = ωF∗0 ,
the further equivalence

Im(f(A)Pz) = Im(f(A)Pz)⇐⇒ Im((A− zI)µF∗0 (z)) = Im((A− zI)µF∗0 (z)),

for z ∈ F , finishing the proof of the theorem. �
The following theorem extends the last Kaplansky’s characterization of bounded

algebraic operators to closed operators.

Theorem 4.4. For some n ∈ N0, a Banach space X, and a closed operator
A : X ⊃ D(A) → X with ρ(A) 6= ∅, assume that for every x ∈ Dn(A), there
exists a polynomial px ∈ P satisfying px(A)x = 0. Then A is a bounded algebraic
operator.

The proof of Theorem 4.4. For w ∈ ρ(A) and x ∈ Dn(A), let T = (A−wI)−1 ∈
L(X) and p be a polynomial of degree m, such that px(A)x = 0 (meaning also that
x ∈ Dmax(mx,n)). Then Dl(A) = Im(T l) for l ∈ N and

px(A) = T−mx
mx∑
k=0

p(mx−k)(w)
(mx − k)!

T k = T−mx p̄x(T ). (1)

Hence, for every y ∈ X, there exists a polynomial

qy(z) = p̄x(z), where x = Tn, satisfying qy(T )y = 0. (2)

Thanks to the second criterium due to Kaplansky [18] (that is Part b) of Remark
4.2), operator T is algebraic because it is locally algebraic (see (2)) and bounded,
meaning that q(T ) = 0 (and T−mq(T )x = 0 for x ∈ Dm(A)) for some polynomial
q(z) =

∑m
k=0 ckz

k of degree m. This immediately implies that
m∑
k=0

cm−k(A− wI)kx = 0 for x ∈ Dm(A).

Since A is algebraic, we see that it is also bounded thanks to Theorem 4.6 below
due to A. Taylor [29]. �

The last but one theorem of this section is an immediate corollary with respect
to Theorem 3.9 and its proof, where the key estimates for the related coefficients
are established.

Theorem 4.5. For n ∈ N, let F ∗ = {(zj ,mj)}nj=1 be a multiplicity relation with
F ⊂ Ω for a bounded open

n⋃
j=1

D(zj , dj) ⊂ Ω ⊂ C, where dj = min
i6=j
|zi − zj |.

Assume also that X is a Banach space and an algebraic A ∈ L(X) with the minimal
polynomial ωF∗ . Then the restriction FH∞(Ω) of the functional calculus FCF∗ is a
bounded H∞(Ω)-calculus with∥∥FH∞(Ω)

∣∣L (H∞(Ω),L(X))
∥∥ ≤ n∑

j=1

mj∑
l=1

dl−mj φj(l)
∥∥ωF∗−{(zj ,l)}∣∣H∞(Ω)

∥∥ ,
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where

φj(l) =

{
(m−l)m−l

(mj−l)mj−l(m−mj)m−mj
if 1 ≤ l < mj ;

1 if l = mj .

We finish this section with the next remarkable characterization of the closed
algebraic operators with non-empty resolvent set due to A. Taylor (Theorem 12.2
in [29]) that we use in the proof of Theorem 4.4.

Theorem 4.6 ([29]). For n ∈ N0, a Banach space X, a polynomial p of degree n
and a closed operator A : X ⊃ D(A)→ X with ρ(A) 6= ∅, let

p(A)x = 0 for every x ∈ D(An) = D(p(A)). Then A ∈ L(X).

5. Continuous HN-calculus for closed operators

In this section we define an example of HN-calculus for closed operators and in-
vestigate its properties (including the uniqueness) relying heavily on the definitions
and results established by A. Taylor in [29] providing related natural examples of
algebraic operators. Then we provide a representation for this functional calculus
permitting to “ignore” a finite number of isolated points of spectrum. The section
ends with a correct definition of a mixed HN-calculus for the operators that are
(double)sectorial and possess an additional bounded spectral set outside the (dou-
ble)sector. Eventually a representation is provided, when the additional spectral
set is a finite number of isolated points of spectrum that are poles of the resolvent
operator.

In the first definition we outline the constructive definition of HN-calculus for a
closed (unbounded) operator with non-empty resolvent set provided by A. Taylor
[29]. More precisely, he defined H(Ω ∪ {∞})-calculus and polynomial calculus
(P-calculus), along with their products H(Ω ∪ {∞})P and PH(Ω ∪ {∞}) and
showed their correctness and the majority of their properties, including even a
representation for f(A) + p(A) with f ∈ H(Ω ∪ {∞}) and p ∈ P. We use his
definitions and results to define an HN-calculus relying on the identity HN(Ω) =
H−1(Ω) +P and outline the correctness (except for the convergence property 6) in
Definition 2.4). Then we show the presence of the convergence property and the
uniqueness that are traditionally investigated in connection with the HN-calculus
for (bi)sectorial operators relying on the well-known approaches (see [22, 1, 6]). For
the history and further references related to the definitions of functional calculi one
can consult [11] and [1].

Definition 5.1 (An HN-calculus). For a Banach space X and a closed operator
A : X ⊃ D(A)→ X, let ρ(A) 6= ∅. Assume also that σ(A) ⊂ Ω ⊂ C∞ for an open
Ω 6= C∞ with the bounded boundary ∂Ω. The calculus FT : f 7→ f(A) is defined
as follows.

If A ∈ L(X), i.e. σ(A) = σ(A) ∩ C is bounded, for every f ∈ H(Ω) ⊃ HN(Ω),
one defines

f(A) =
1

2πi

∮
γ

f(ζ)RA(ζ)dζ, where RA(ζ) = (ζI −A)−1 and γ = ∂G (1)

is positively oriented contour for a Cauchy domain G ⊃ σ(A) enveloping σ(A) in Ω
that we assume fixed for the rest of the definition.

If σ(A) is not bounded and f ∈ H−1(Ω), we define f(A) using the same repre-
sentation (1). If p(z) =

∑n
k=0 akz

k is a polynomial of degree n ∈ N (an 6= 0), the
operator

p(A) =
n∑
k=0

akA
k is well-defined on Dn(A) = D(p(A)) (2)
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and closed (see Theorem 6.1 from [29]).
For n ∈ N and z0 ∈ C \ Ω, we define the Cauchy projector PPn : Hn(Ω) →

Pn : f 7→
∑n
k=0 ck(f)(z − z0)k by

ck(f) =
−1
2πi

∮
γ

f(ζ)dζ
(ζ − z0)k+1

=
−1
2πi

∮
γ∞

f(ζ)dζ
(ζ − z0)k+1

,

where γ∞ = ∂G∞ and G∞ is the unbounded component of G. Note that

Ker(PPn) = H−1(Ω).

Eventually, for n ∈ N0 and f ∈ Hn(Ω) \Hn−1(Ω), we define FT : f 7→ f(A) by

f(A) : Dn(A)→ C(X) : x 7→ PPnf(A)x+ (f − PPnf)(A)x.

Let us note that FT just defined does not depend on the particular choice of G
thanks to the operator-valued Cauchy theorem.

To prove the first theorem in this section, we need the following counterpart of
(1) from Definition 5.1 established by A. Taylor (Theorem 6.4 in [29]).

Theorem 5.1 ([29]). Let f ∈ Hn(Ω). Then, for every x ∈ Dn(A), one has

FT fx = f(A)x =
1

2πi

∮
γ

f(ζ)
(ζ − z0)n+1

(A− z0I)n+1RA(ζ)xdζ,

where the integral exists thanks to the representation(
A− z0I

ζ − z0

)n+1

RA(ζ)x = RA(ζ)x−
n∑
k=0

(
A− z0I

ζ − z0

)k
x for ζ ∈ γ.

Theorem 5.2 (HN(Ω)-calculus). The functional calculus operator FT from Def-
inition 5.1 is an HN(Ω)-calculus and a bounded H0

∞(Ω)-calculus. (as described
in Definition 2.4). Moreover, it is also the unique H−1(Ω)-calculus (and, hence,
HN(Ω)-calculus) and bounded H0

∞(Ω)-calculus satisfying

F(· − z)−1 = RA(z) for z ∈ ρ(A). (RA)

The proof of Theorem 5.2. The conditions 1) − 4) of Definition 2.4 are trivially
satisfied, while the validity of 7) follows from the independence of G mentioned
above. Theorem 5.1 and (1) from Definition 5.1 imply the following representation
used in [29] as the definition of H(Ω ∪ {∞})-calculus:

f(A) = f(∞)I +
1

2πi

∮
γ

f(ζ)RA(ζ)dζ for f ∈ H0(Ω). (1)

With the aid of the triangle inequality, this representation is followed by the validity
of 8) (Def. 2.4):∥∥FT | L(H0

∞(Ω),L(X))
∥∥ ≤ 1 +

1
2π

∫
γ

‖RA(ζ)‖L(X)|dζ|. (2)

Now we see that, for f ∈ Hn(Ω), (I − Pnf)(A) is bounded, while Pnf(A) is
closed thanks to Theorem 6.1 from [29], meaning that f(A) ∈ C(X).

Since γ = ∂G is compact, the condition 6) (Def. 2.4) is satisfied too. Namely, if

fk → f uniformly on compact subsets for {fk}k∈N ⊂ Hn(Ω) then (fk−Pnf)(A)
L(X)−→

(f − pnf)(A) due to (2) and the coefficients of Pnfk(A) converge to the coefficients
of Pnf(A).

To check the multiplication invariance 5) (Def. 2.4) in the case f ∈ H−1(Ω) and
g ∈ Hn(Ω), we use Theorem 5.1, the Hilbert identity and the Cauchy theorem and
formula for holomorphic C-valued functions. Indeed, assume that σ(A) ⊂ G1 ⊂
G ⊂ Ω are two Cauchy domains with γ = ∂G and γ1 = ∂G1 satisfying Ḡ1 ⊂ G and
Ḡ ⊂ Ω. Then we have, for x ∈ Dn(A) and z0 ∈ ρ(A) \ Ω,
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g(A)f(A)x =
−1
4π2

∮
γ

∮
γ1

f(w)
g(ζ)

(ζ − z0)n+1
(A− z0I)n+1RA(ζ)RA(w)xdwdζ =

=
−1
4π2

∮
γ

∮
γ1

f(w)
g(ζ)

(ζ − z0)n+1
(A− z0I)n+1RA(ζ)

ζ − w
xdwdζ+

+
−1
4π2

∮
γ1

∮
γ

f(w)
g(ζ)

(ζ − z0)n+1
(A− z0I)n+1RA(w)

w − ζ
xdζdw =

=
−1
4π2

∮
γ

∮
γ1

f(w)
g(ζ)

(ζ − z0)n+1
(A− z0I)n+1RA(ζ)

ζ − w
xdwdζ =

=
1

2πi

∮
γ

f(ζ)g(ζ)
(ζ − z0)n+1

(A− z0I)n+1RA(ζ)xdζ = (gf)(A)x. (3)

The last identity in (3) holds due to Theorem 5.1 and the inclusion gf ⊂ Hn(Ω).
Note that

{RA(ζ)RA(w)x,RA(w)x,RA(ζ)x} ⊂ Dn+1(A) for x ∈ Dn(A),

while f(A)x ∈ Dn+1(A) thanks to the definition of f(A) for f ∈ H−1(Ω). Similarly
we establish f(A)g(A)x = (fg)(A)x = (gf)(A) for x ∈ Dn(A).

In the general case f ∈ Hm(Ω) and g ∈ Hn(Ω) we obtain with the aid of
Definition 5.1 that for x ∈ Dm+n(A),

f(A)g(A)x = Pmf(A)Png(A)x+Pmf(A)(g−Png)(A)x+ (f − pmf)(A)g(A)x =

= (PmfPng) (A)x+ (Pmf(g − Png)) (A)x+ ((f − pmf)g) (A)x = (fg)(A)x, (4)

where Pmf(A)Png(A)x = (PmfPng) (A)x as polynomials.
The identity (RA) follows from the identity

(ζ − z0)−1RA(ζ) =
(
(ζ − z0)−1 −RA(ζ)

)
RA(z0) for z0 ∈ ρ(A), (5)

the Cauchy theorem applied to RA(ζ), the Cauchy formula applied to (ζ − z0)−1

and the choice of G with z0 6∈ Ḡ.
To establish the uniqueness, we note that, thanks to the continuity property

related to the approximation of this integral with its Riemann sums, the inte-
gral defining FT commutes with another calculus F satisfying (RA), implying the
uniqueness. �

Let us discuss the definition of an HN-calculus in the mixed case of an operator
that has a spectral set outside a (double)sector. Such an operator can appear as a
perturbation of a (double)sectorial operator (see Definition 5.3).

Definition 5.2 (Sectors and classes). The sector and double sector are defined by

S1
θ := {z ∈ C \ {0} : |argz| < θ} for θ ∈ [0, π), and

S2
θ := −S1

θ ∪ S1
θ for θ ∈ [0, π/2).

Let Sθ be either S1
θ or S2

θ , and let Ω ⊂ C be Ω0 ∪ Sθ with Ω0 ∩ Sθ = ∅, where Ω0

is bounded and open.
As earlier the symbol H(Ω) denotes the space of all holomorphic functions on Ω

endowed with the topology of the uniform convergence on compact subsets of Ω.
For β ∈ R, let also Hβ(Ω) ⊂ H(Ω) be the subspace of functions satisfying

lim sup
|z|→0

|f(z)||z/(α2 + z2)|−β <∞ and lim sup
|z|→∞

|f(z)||z/(α2 + z2)|−β <∞



ALGEBRAIC OPERATORS, HERMITE INTERPOLATION AND SPLINE DISTRIBUTIONS 93

for some α > 0 with ±iα 6∈ Ω0. Assume also that H∞(Ω) is the Banach space of
the bounded holomorphic functions on Ω endowed with the L∞-norm, and

Ψ(Ω) =
⋃
β>0

Hβ(Ω) and F (Ω) =
⋃
β≤0

Hβ(Ω).

Definition 5.3 (F (Ω)-calculus). For a Banach space X and Ω defined in Definition
5.2, let A : X ⊃ D(A)→ X be a closed operator with D(A) = X and (unbounded)
spectrum σ(A) containing a bounded spectral set (i.e. compact and open subset of
σ(A) in the induced topology) σ0 satisfying

σ0 ⊂ Ω0, σ(A) \ σ0 ⊂ Ω \ Ω0 and
∥∥(A− λI)−1

∥∥
L(X)

≤ C(ν)
|λ|

(1)

for every λ ∈ Ω \ (Ω0 ∪ Sν) and ν ∈ (θ0, θ] for some θ0 ∈ (0, θ).
Let us define F : F (Ω)→ C(X) : f 7→ f(A) by the formula

f(A) =
1

2πi

∮
γ0

f(ζ)RA(ζ)dζ + FMf (F(F ))

for some contour γ0 = ∂G0 enveloping σ0 in Ω0 and the functional calculus operator
FM : F (Sθ) → C(X) introduced by A. McIntosh in [22] and further investigated
in [1, 6].

Note that the first summand in (F(F )) does not depend on a particular choice
of γ0.

Theorem 5.3 (FD +FM ). The functional calculus operator F from Definition 5.3
is correctly defined and satisfies the conditions of Definition 2.4. Moreover, it is also
unique H∞(Ω)-calculus (and, hence, HN(Ω)-calculus) and bounded H0

∞(Ω)-calculus
satisfying

F(· − z)−1 = RA(z) for z ∈ ρ(A). (RA)

The proof of Theorem 5.3. The right-hand side of (F(F )) is a closed operator
as a sum of a bounded and a closed operators. Without loss of generality we may
assume that Ω0 is bounded. There exists a bounded open Ω1 ⊃ Ω0 with Ω1∩Sθ = ∅.
Choosing Ω′ = Ω0 ∪ C \ Ω1, we can use Theorem 5.1 on HN(Ω′)-calculus and the
results from [29]. In particular, we see with the aids of the results from §8 in [29]
that Pσ0 = χΩ0(A) is a spectral projector with X = Xσ0⊕X ′σ0

for Xσ0 = Im(()Pσ0)
and X ′σ0

= Ker(Pσ0), that the restriction Aσ0 = APσ0 ∈ L(Xσ0), and that

RA(z)|X′σ0 = RA|X′σ0
and RA(z)|Xσ0 = RA|Xσ0

. (1)

The definition of FM in [1] (pages 89-90) also shows that

FMfPσ0 = 0. (2)

The observations (1) and (2) imply that it is enough to check the conditions of
Definition 2.4 for the restrictions of A onto Xσ0 and X ′σ0

because

f(A) = f
(
A|Xσ0

)
Pσ0 + f

(
A|X′σ0

)
(I − Pσ0), where f

(
A|X′σ0

)
(I − Pσ0) = FMf

(3)
for a (double)sectorial operator A|X′σ0 (Indeed, σ

(
A|X′σ0

)
= σ(A) ∩ Sθ and the

resolvent bound is preserved by its restriction to X ′σ0
.) Since the validity of the

conditions of Definition 2.4 holds for the restrictions thanks to Theorem 5.2 above
and Lecture 2 in [1] respectively, the proof of the theorem is complete. �

Theorem 5.4. For n ∈ N, let f ∈ Hn(Ω). Assume also that A is as in Definition
5.3, and that, for a multiplicity relation F ∗, σ0 = F consists of a finite number
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of isolated poles z ∈ F of the orders µF∗(z) of the resolvent RA(ζ). Let also
z0 ∈ ρ(A) \ Ω. Then

Ffx = pF∗
(
f(φ−m(F∗)

α

)
(A) (φα(A))m(F∗)

x+

+ FM
(

((φm(F∗)
α ωF∗4F∗+{(·,1)}

(
fφ−m(F∗)

α

))
x for x ∈ Dn(A),

where φα(z) = z
α2+z2 for some α > 0 with {±iα} ⊂ ρ(A) \ Ω.

The proof of Theorem 5.4. As was shown by A. Taylor in Theorem 10.8 in [29]
with the aid of the Laurent expansion of the resolvent RA(ζ) around an isolated
pole λ of RA(ζ) of order l, one has

X = Ker((A− λI)l)
⊕

Im((A− λI)l), and Im((A− λI)l) = Im((A− λI)l). (1)

Hence we see that the subspace Xσ0 (see the proof of Theorem 5.3) has the form
XF∗ :

Xσ0 = Im(Pσ0) = XF∗ =
⊕
z∈F

Ker((A− zI)µF∗ (z)) and X = Xσ0

⊕
X ′σ0

. (2)

Therefore, the restriction of A onto XF∗ is an algebraic operator with the mini-
mal polynomial ωF∗ . Applying the general Gel’fond’s formula (Theorem 3.7) to
the holomorphic (on Ω0) function fφ

−m(F∗)
α ∈ Ψ(Ω), we obtain, with the aid of

Theorem 5.3 and its proof, that

f
(
A|Xσ0

)
Pσ0 = pF∗

(
f(φ−m(F∗)

α

)
(A) (φα(A))m(F∗)

Pσ0 and

f
(
A|X′σ0

)
(I − Pσ0) = pF∗

(
f(φ−m(F∗)

α

)
(A) (φα(A))m(F∗) (I − Pσ0)+

+ FM
(

((φm(F∗)
α ωF∗4F∗+{(·,1)}

(
fφ−m(F∗)

α

))
(I − Pσ0). (3)

These identities imply the statement of the theorem thanks to (2) in the proof of
Theorem 5.3. �
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