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Abstract. Isoperimetric estimates stretch back for thousands of years
in geometry, and for more than a hundred years in harmonic analysis and
mathematical physics. We will touch on some of these highlights before
describing recent progress that uses rotational symmetry to prove sharp
upper bounds on sums of eigenvalues of the Laplacian. For example, we
prove in 2 dimensions that the scale-normalized eigenvalue sum

(λ1 + · · · + λn)
A3

I

(where A denotes area and I is moment of inertia about the centroid) is
maximized among triangles by the equilateral triangle, for each n ≥ 1.
This theorem, which is due to the author and B. A. Siudeja, generalizes
a result of Pólya for the fundamental tone.

Numerous related problems will be discussed, such as the inverse
spectral and spectral gap problems for triangular domains.

1. Introduction

Goals. Extremal domains frequently possess rotational symmetry. Indeed,
the symmetry can help to establish the desired extremal property. This
expository paper reports on recent such work identifying rotationally sym-
metric extremals for sums of eigenvalues of the Laplacian.

A prototypical result says that the scale-normalized eigenvalue sum

(λ1 + · · ·+ λn)
A3

I

(where A denotes area and I is moment of inertia about the centroid) is
maximal for the equilateral triangle among all triangles, for each n ≥ 1.
This sharp result generalizes work of Pólya [41] for the fundamental tone
n = 1. Like all the original work reported in this paper, it was proved jointly
by the author with B. A. Siudeja. Precise references will be given later.

The method applies to competing domains that are linear transformations
of the extremal, and so in particular our results cover all triangles and
parallelograms, as they are the linear images of equilateral triangles and
squares, both of which are rotationally symmetric. Further possible extremal
domains are shown in Figure 1.

Notably, the method is valid for all major boundary conditions (Dirichlet,
Robin and Neumann) and for eigenvalue sums of arbitrary length. It requires
no explicit knowledge of the eigenvalues or eigenfunctions of the extremal
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Figure 1. Some rotationally symmetric domains, in 2 and
3 dimensions. (Image credits for tetrahedron and dodecahe-
dron: http://en.wikipedia.org/)

domain. An interesting feature of the argument is an averaging step over
the rotation group of the extremal domain, which employs the tight frame
(Plancherel-type) property of the rotation orbits in order to understand the
effect of linear transformation on the Rayleigh quotient.

Itinerary. En route to our destination, we will enjoy a leisurely tour of the
classic sights. The tour departs in the next section with separation of vari-
ables for the interval and rectangle. Then we travel onward to view ancient
isoperimetric monuments and modern eigenvalue constructions, in Section 3.
We state Pólya’s result and our own new work in Section 4. A side trip in
Section 5 reveals more about tight frames. These exceedingly useful systems
behave like orthonormal bases except for their being overcomplete (linearly
dependent). Returning subsequently to the main route, we encounter a cu-
rious fact about the higher dimensional case in Section 6, namely that the
moment of inertia must be normalized not on the original domain where the
eigenvalue was evaluated, but instead on an “inverse” domain. Our journey
concludes with open problems in Section 7 and a re-cap in Section 8. Ap-
pendix A offers formulas for the eigenvalues of an equilateral triangle, and
corresponding pictures of nodal patterns.

The work we describe lies in the field of “isoperimetric inequalities in
mathematical physics”. Pólya and Szegő wrote the classic text in the field
[43]. Beginners might prefer to consult the brief online encyclopedia articles
by Benguria [8], before proceeding to the survey papers by Ashbaugh, Ben-
guria and Linde [4, 5, 9], and the appealing modern monographs by Bandle
[6], Henrot [18] and Kesavan [22], which contain a wealth of results and open
problems.

Thanks. This paper presents an expanded version of my talk at the AMSI
International Conference on Harmonic Analysis and Applications, held at
Macquarie University in February 2011. The organizers of the meeting de-
serve our sincere thanks for fostering a stimulating atmosphere of research
interaction.

2. Eigenvalues of the Laplacian

What is harmonic analysis? Wikipedia says it is “the branch of mathe-
matics that studies the representation of functions or signals as the super-
position of basic waves.” This quote ignores the group-theoretic aspects of
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the subject, and yet it captures the historical goal of harmonic analysis to
analyze and synthesize functions in terms of simpler objects.

One dimension. Harmonic analysis began with Fourier’s eigenfunction ex-
pansions of solutions of the heat (or diffusion) equation. Let us begin simi-
larly with the wave equation in 1 dimension, for a vibrating string of length
L along the x-axis:

c2φxx = φtt

where φ represents the transverse displacement of the string at position x
and time t. We separate variables by φ(x, t) = u(x) sin(

√
λct) and deduce

that the spatial function u should be an eigenfunction of the second deriva-
tive operator:

−uxx = λu.

We speak of the eigenvalues as frequencies or tones of vibration, although
more precisely it is the square root of the eigenvalue that determines the
frequency or “pitch” of the string, since√

λc = angular frequency of vibration in the term sin(
√
λct)

.

The allowable eigenvalues very much depend on the boundary conditions
imposed at the endpoints x = 0 and x = L. The simplest conditions are
“fixed endpoint” or Dirichlet conditions, namely u = 0 at x = 0, x = L,
which lead to infinitely many solutions

un(x) = sin
(nπx
L

)
, n = 1, 2, 3, . . .

with corresponding eigenvalues given explicitly by

λn =
(nπ
L

)2
, n = 1, 2, 3, . . .

Two dimensions. The two dimensional analogue of a string is a membrane
or drumhead, vibrating transversely in the third direction. By separating
variables in the wave equation c2∆φ = φtt we arrive at an eigenvalue problem
for the Laplacian ∆ = ∂2

x + ∂2
y :

−∆u = λu, Dirichlet BC u = 0 on boundary ∂Ω,

where the planar region Ω describes the rest shape of the drum and the
Dirichlet boundary condition means the drum is fixed at zero displacement
around the edge. The eigenvalues λn are positive, and increase to infinity:

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞.
Just like in 1 dimension,

√
λn is proportional to the n-th frequency of vi-

bration of the membrane.
Unfortunately, and in stark contrast to the 1-dimensional situation, the

eigenvalues of the Laplacian are not given by an explicit formula. Only on
a few special domains can the eigenvalues and eigenfunctions be computed,
most notably by separation of variables for disks (using polar coordinates
and Bessel functions) and for rectangles (using rectangular coordinates and
sine functions). A method of reflection and extension to a lattice succeeds
for equilateral triangles (using barycentric coordinates and trigonometric
functions). See Appendix A for the resulting formulas.
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Figure 2. The first eigenfunction of a rectangle of sides L
and M .

For example, the rectangle [0, L]× [0,M ] has first eigenfunction (or “fun-
damental mode”)

u1 = sin
(πx
L

)
sin
(πy
M

)
,

as plotted in Figure 2. That eigenfunction arises from a product of 1-
dimensional eigenfunctions in the x and y directions, and it satisfies the
eigenfunction equation −∆u1 = λ1u1 with first eigenvalue (or “fundamental
tone”)

λ1 = π2
( 1

L2
+

1

M2

)
.

For our later purposes, the most important feature of this eigenvalue formula
is its reciprocal dependence on the squares of the side lengths:

λ1 ∝
1

(length scale)2
.

On dimensional grounds this scaling relation must hold for all domains, in
fact, and not just for rectangles, because the dimensions of the eigenvalue
λ must match those of the second order differential operator −∆, which are
(length)−2.

Symmetry can help in computing eigenvalues of some other special do-
mains. For example, the spectrum can be computed using symmetry con-
siderations for a half-disk, and for a 45-45-90◦ triangle (which is half of
a square), and for a 30-60-90◦ triangle (which is half of an equilateral).
Nonetheless, the catalog of domains for which the eigenvalues of the Lapla-
cian can be calculated remains depressingly small.

Numerical methods can provide highly accurate approximations to finitely
many of the eigenvalues, and user-friendly software in 2 dimensions (such as
the PDE Toolbox in Matlab) makes the job almost painless. But numerical
results by themselves provide little insight into the dependence of the spec-
trum on the shape of the domain. To gain such insight we seek theoretical
results, particularly upper and lower bounds on eigenvalues.
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Figure 3. Queen Dido applying the isoperimetric theorem.
(Dido purchases land for the foundation of Carthage, engrav-
ing by Matthäus Merian the Elder, in Historische Chronica,
Frankfurt a.M., 1630.)

3. Lower bounds

Since we cannot calculate the eigenvalues of an arbitrary domain Ω, can
we at least estimate them? Can we obtain sharp “isoperimetric” type results
that relate the eigenvalues to simpler geometric quantities? We begin with
a quick survey of some famous lower bounds.

Isoperimetric motivation — Queen Dido of Carthage. The isoperi-
metric theorem asserts that among all domains of given area, the circle pos-
sesses the minimal perimeter. When stated as an inequality, the theorem
says

P 2 ≥ 4πA

where P is the perimeter.
Equivalently, this isoperimetric inequality says that among all domains

with given perimeter, the one maximizing the area is circular. This latter
form of the result was employed to good effect by Queen Dido, or so the
legend goes, when she founded the city of Carthage. Permitted by the local
king to found the city on only as much land as could be encompassed by
an oxhide, she cut the hide into thin strips and fashioned it into a rope
(Figure 3), and then placed it to encircle a suitable hilltop location, the
“Byrsa” on which the ruins of Carthage stand to this day. (Or perhaps she
enclosed a semicircle of land including the hill and abutting the coast, in
order to provide the city with access to the sea. Either way, isoperimetric
principles come into play.)

A new proof of the isoperimetric theorem appeared in 2010, due to Lawlor
[32]. This amazingly short proof requires only calculus. It begins with the
trivial 1-dimensional version of the theorem (that every bounded interval
has two endpoints) and proceeds by induction to higher dimensions. For a
delightful exposition of many other isoperimetric proofs in 2 dimensions, see
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Domain P
√
λ1

Disk 3.55 4.26
Square 4.00 4.44
Quarter Disk 4.03 4.55
Rectangle 2:1 4.24 4.97
Equilateral Triangle 4.56 4.77

Table 1. Evidence for the Isoperimetric and Faber–Krahn
Theorems: values of the perimeter and fundamental tone for
various domains of area A = 1.

the survey paper by Treibergs [45], and for isoperimetry on surfaces consult
the work of Howards, Hutchings and Morgan [20]. Osserman’s classic survey
on isoperimetric inequalities deserves close study too [40].

Rayleigh’s conjecture. In his book “The Theory of Sound”, Lord Rayleigh
wrote

“If the area of a membrane be given, there must evidently
be some form of the boundary for which the pitch (of the
principal tone) is the gravest possible, and this form can be
no other than the circle.” [44, §210]

Expressed in modern prose (which is lamentably less elegant), Rayleigh’s
conjecture asserts that

λ1A is minimal for the disk.

(The product λ1A is scale invariant, and so we need not specify the size of the
disk.) The intuitive motivation for Rayleigh’s conjecture is clear: boundary
clamping raises the frequency of a drum, and so the less boundary a domain
has, the lowers its fundamental tone should be. The domain with least
possible boundary (for given area) is exactly the disk, by the isoperimetric
theorem.

Rayleigh presented both experimental and numerical evidence for his con-
jecture, along with perturbational calculations for nearly-circular domains.
Table 1 presents some of the numerical evidence, and highlights the close
connection with the isoperimetric problem:

Raleigh’s Conjecture that λ1A is minimal for the disk took a suprisingly
long time to prove. Faber [13] and Krahn [23, 24] independently found
proofs in the mid-1920s, using what is now called symmetric decreasing
rearrangement. (A clear and highly readable version of Krahn’s proof using
modern terminology appears in Kesavan’s book [22, Sections 2.3 and 4.1].)
The proofs took so long partly because the co-area formula had not been
invented; indeed, Krahn’s second paper developed the formula in higher
dimensions.

In the 1970s, the Faber–Krahn and isoperimetric theorems were revealed
to be endpoint cases of a 1-parameter family of sharp results, in work by
Luttinger [35], who proved that the spectral zeta function

∑
n(λn)−s is max-

imal for the disk of the same area, for each s > 1. Even stronger, he showed
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L

M

Figure 4. Rectangle.

that the trace of the heat kernel
∑

n e
−λnt is maximal for the disk of the

same area, when t > 0. Letting t → ∞ in Luttinger’s result recovers the
Faber–Krahn inequality. Letting t→ 0 recovers the isoperimetric inequality,
in view of the two-term asymptotic expansion of the trace of the heat kernel:

(3.1)
∞∑
n=1

e−λnt =
A

4πt
− P

4
√

4πt
+O(1) as t→ 0.

Pólya and Szegő pursued a different generalization of the Faber–Krahn
result, by formulating a polygonal version of Rayleigh’s conjecture. They
asked [18, Ch. 3] whether

λ1A is minimal for regular N -gon, among all N -gons?

They proved this conjecture for triangles and quadrilaterals (N = 3, 4), by
means of Steiner symmetrization. For pentagons and above (N ≥ 5), the
problem remains open to this day.

4. Upper bounds

Upper bounds are the goal of this paper. First, let us check that the area
normalization used in the Faber–Krahn lower bound is useless for upper
bounds. Consider the rectangle in Figure 4, with sides of length L and M .

We have

λ1A = π2(
1

L2
+

1

M2
)LM

= π2(
M

L
+

L

M
)→∞

as L → ∞ with M = 1. In other words, a long thin rectangle has λ1A
tending to infinity. Thus we seem to need to normalize with a quantity that
penalizes long thin domains. The moment of inertia

I = min
~x0

∫
Ω
|~x− ~x0|2 dA(~x)

seems a plausible candidate. Indeed, the rectangle has moment of inertia

I =

∫ L/2

−L/2

∫ M/2

−M/2
(x2 + y2) dydx =

1

12
LM(L2 +M2)

and so

λ1
A3

I
= π2(

1

L2
+

1

M2
)

12(LM)3

LM(L2 +M2)

= 12π2,(4.1)

which is constant for all rectangles, regardless of the side lengths.
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The main point here is to normalize the eigenvalue by dividing by the
moment of intertia. The factor of A3 simply serves to make the resulting
expression λ1A

3/I scale invariant. Notice one can write

λ1
A3

I
= λ1A ·

A2

I

which expresses our quantity as the product of the Faber–Krahn expression
λ1A and a scale invariant geometric factor A2/I. Since A2/I is small when
the domain is long and thin, it compensates for the largeness of λ1A on such
domains.

Known results. The literature contains two results that involve the mo-
ment of inertia:

Theorem 4.1.
Hersch [19, eq. (5)]: Among parallelograms, the squares (and indeed, all
rectangles) maximize λ1A

3/I.
Freitas [14, Theorem 1]: Among triangles, the equilaterals maximize λ1A

3/I.

A stronger result was proved previously by Pólya.

Theorem 4.2 (Pólya [41], [42, p. 308,328]). Start with an N -fold rotation-
ally symmetric domain in the plane, where N ≥ 3. Then among all linear
images, the original domain maximizes λ1A

3/I.

If the rotationally symmetric domain is an equilateral triangle centered at
the origin, then its linear images yield all possible triangles (with centroid
at the origin). If the original domain is a square, then the linear images
consist of all parallelograms (with centroid at the origin). Thus Pólya’s
result encompasses those of Hersch and Freitas. In defense of the latter two
authors, we note their results were formulated in terms of side lengths rather
than moment of inertia, and the connection to Pólya’s result is not obvious.

Interestingly, Pólya’s proof does not use explicit formulas for the first
eigenfunction of the extremal domain (as Hersch and Freitas do), but relies
instead on rotational symmetry of the first eigenfunction of the rotationally
symmetric domain. Rotational symmetry of the eigenfunction depends on
two facts: (a) that the rotate of an eigenfunction is again an eigenfunction
with the same eigenvalue, by rotational invariance of the Laplacian and
of the domain; (b) that the first eigenfunction is unique up to constant
multiples, in other words, that the first eigenvalue is simple.

Pólya’s proof fails beyond the first eigenvalue, because although fact (a)
holds for all eigenfunctions, fact (b) definitely does not. For example, rotat-
ing a disk eigenfunction of the form J(r) cos θ by angle π/2 yields a different
eigenfunction, of the form J(r) sin θ, which has the same eigenvalue.

Question. Can we extend Pólya’s result to sums of eigenvalues?
Why should one care about the eigenvalue sum (λ1 + · · ·+λn)? The first

reason is physical: the sum of eigenvalues represents the energy needed to
fill the lowest n quantum states under the Pauli exclusion principle. The
second is mathematical: summing provides an easier route to studying the
high eigenvalues, which are difficult to study individually.
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U rotation

T

linear

Figure 5. A domain with N -fold rotational symmetry (here
N = 3), and its image under a linear transformation.

Let us explain, by recalling the variational characterization of eigenvalues.
The first eigenvalue of a domain Ω is characterized by the minimum of the
Rayleigh quotient:

λ1(Ω) = min
{∫

Ω
|∇v|2 dA : v = 0 on ∂Ω, ‖v‖2 = 1

}
,

where the boundary condition v = 0 means that v belongs to the Sobolev
space H1

0 (Ω) = W 1,2
0 (Ω). The higher eigenvalues are characterized by more

complicated “minimax” and “maximin” principles [6, pp. 98–99], and thus
bounds are much more difficult to obtain than for the first eigenvalue. The
sum of the first n eigenvalues behaves more like a first eigenvalue, though, in
the sense that its variational characterization involves just a single minimum:(

λ1 + · · ·+ λn
)
(Ω) = min

{∫
Ω
|∇v1|2 dA+ · · ·+

∫
Ω
|∇vn|2 dA :

vi = 0 on ∂Ω, 〈vi, vj〉L2 = δi,j

}
.

Main result — upper bound. Our main result estimates how the eigen-
value sum changes under linear transformation of the domain. Later we
express the result in terms of moment of inertia.

Theorem 4.3 (Laugesen & Siudeja [30]). Suppose the plane domain D has
rotational symmetry of order ≥ 3, and T is a linear transformation. (See
Figure 5.) Then

(λ1 + · · ·+ λn)|T (D) ≤
1

2
‖T−1‖2(λ1 + · · ·+ λn)|D.

For n = 1, equality holds iff T = multiple of orthogonal matrix or T (D) =
rectangle.

Here ‖M‖2 =
∑

i,jM
2
ij is the Hilbert-Schmidt norm of the matrix M .

Now we outline the proof, which involves a new

Method of Rotations and Tight Frames.

Further details and references can be found in our original paper [30].
In order to apply the variational characterization of the eigenvalue sum,

we need trial functions on Ω = T (D). Begin with an orthonormal basis
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~s
3
2~s

Figure 6. The “Mercedes–Benz” tight frame formed from
the 3rd roots of unity (rotated by π/2). Projecting against
these frame vectors leads to reconstruction of 3/2 times the
original vector ~s.

{ui}∞i=1 of eigenfunctions of the Laplacian on D, and write Um for the or-
thogonal matrix that rotates the plane by 2πm/N , where N is the order of
rotational symmetry of the domain D. Then the function

vi = ui ◦ Um ◦ T−1

is defined on the image domain T (D) and equals zero on the boundary.
Furthermore, 〈vi, vj〉L2 = 0 when i 6= j, by changing variable and using the
orthogonality of ui and uj . Thus after multiplying each vi by a normalizing
factor, one may use the vi as trial functions in the variational characteriza-
tion of the eigenvalue sum. One deduces (after a change of variable, again)
that

(4.2)

n∑
i=1

λi
(
T (D)

)
≤

n∑
i=1

∫
D
|(∇ui)UmT−1|2 dA.

To eliminate the rotation matrix Um from the formula, we will average
over all rotations Um,m = 1, . . . , N . The key to the averaging will be a
Plancherel-type identity for the rotational orbit, known as a tight frame
identity:

(4.3)
1

N

N∑
m=1

|~sUmM |2 =
1

2
|~s |2‖M‖2

where ~s ∈ R2 is a row vector and M is a matrix with 2 rows.
For example, if we chooseM = ( 1

0 ) to be the unit vector in the x-direction,
which has ‖M‖ = 1, then the collection {UmM : m = 1, . . . , N} consists of
the N -th roots of unity. The tight frame identity (4.3) says that the squares
of the dot products of ~s with these roots of unity reproduce the norm of ~s,
up to a factor of N/2. Thus the roots of unity behave like an orthonormal
basis!

For example, the “Mercedes–Benz” tight frame identity (N = 3) says that

3∑
m=1

|~s · Um ( 1
0 ) |2 =

3

2
|~s|2, ~s ∈ R2

as illustrated in Figure 6.
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By applying the tight frame identity (4.3) with ~s = ∇ui and M = T−1 to
our estimate (4.2), we find that

n∑
i=1

λi
(
T (D)

)
≤ 1

2
‖T−1‖2

n∑
i=1

∫
D
|∇ui|2 dA.

Integration by parts (Green’s formula) says that∫
D
|∇ui|2 dA = −

∫
D
ui∆ui dA = λi(D)

∫
D
u2
i dA = λi

because ui is a normalized eigenfunction on D. Hence we conclude that
n∑
i=1

λi
(
T (D)

)
≤ 1

2
‖T−1‖2

n∑
i=1

λi(D),

which proves the inequality in the theorem.
Proving the equality statement for the first eigenvalue (n = 1) requires

quite different arguments, which can be found in [30].

Connection to moment of inertia. Our main theorem above involves the
Hilbert–Schmidt norm of the matrix T−1. We would like to interpret this
norm geometrically, in terms of some property of the image domain T (D).
Since the Hilbert–Schmidt norm is a quadratic expression of the matrix
entries, and is invariant under rotations, one might expect it to relate to
the moment of inertia. One finds by consideration of the moment matrix of
T (D) and the rotational symmetry of D that [30, Lemma 5.3]

1

2
‖T−1‖2 =

I

A3

(
T (D)

)/ I

A3
(D).

Hence we achieve our goal of extending Pólya’s result to eigenvalue sums.

Corollary 4.4 (Laugesen & Siudeja [30]). For each n ≥ 1,

(λ1 + · · ·+ λn)
A3

I
is maximal for the


equilateral among triangles,

square among parallelograms,

disk among ellipses.

5. Aside — more about tight frames

Frame theory stretches more broadly than perhaps is suggested by the
root-of-unity construction above. A frame in a Hilbert space H is a span-
ning set {vm} ⊂ H for which the two sides of the Plancherel identity are
comparable:

A‖v‖2H ≤
∑
m

|〈v, vm〉|2 ≤ B‖v‖2H ∀v ∈ H,

for some positive constants A and B known as the frame bounds. A tight
frame occurs when the frame bounds are equal:∑

m

|〈v, vm〉|2 = B‖v‖2H ∀v ∈ H.

Thus a tight frame satisfies the Plancherel identity.
In the previous section, the Hilbert space was R2 and the frame vectors

were constructed from roots of unity. Other examples of tight frames include:
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• H = R3: vertices of the tetrahedron, cube, or any Platonic solid
centered at the origin,
• H = Rd: each nontrivial orbit of an irreducible rotation group

(proved by Schur’s Lemma; here “irreducible” means the orbits span
Rd),
• L2(Rd): wavelet frames, Gabor frames.

Frames have become indispensable in applied harmonic analysis, in recent
years. They provide overdetermined (or redundant) analysis and synthesis
operators, with applications to noise reduction and robustness to erasures
in signal processing.

Note the tight frames in this paper consist of equal-norm vectors. For
more on that fascinating special case, see the work of Benedetto and Fickus
[7]. General tight frames do not impose the equal-norm restriction. All
tight frames arise as (rescaled) projections of orthonormal bases in higher
dimensional spaces [17, Chapter 5]. For this and many more results in the
frame theory of finite and infinite dimensional spaces, one may consult the
monographs of Christensen [11] and Han et al. [17].

6. Higher dimensions

Can we extend our upper bound on eigenvalue sums to higher dimensions?
The appropriate assumption on rotational symmetry, in higher dimen-

sions, seems to be that the domain’s rotation group (or full isometry group)
should be irreducible. In this context, irreducibility means simply that the
orbit under the rotation group of any nonzero vector in Rd must span Rd. In
2 dimensions, irreducibility clearly holds for domains with rotational sym-
metry of order 3 or greater. In 3 dimensions, irreducibility is known to hold
for the ball, cube and regular tetrahedron, and indeed for each of the pla-
tonic solids. In dimensions ≥ 3, the ball, hypercube and regular simplex
have irreducible rotation groups, as do other domains that share the same
symmetry groups.

One might guess that our main theorem would now extend straightfor-
wardly to higher dimensions. But it does not, because the moment of inertia
no longer provides a satisfactory geometric normalization. A counterexam-
ple is provided by a rectangular box squashed in one direction, having sides
1, 1, ε, for which one calculates

λ1
V 7/3

I

∣∣∣∣∣
box

= 12π2 (2 + ε−2)ε4/3

2 + ε2
,

which tends to ∞ as ε → 0. Hence this natural (and scale invariant) nor-
malization of the first eigenvalue by volume and moment of inertia does not
yield a bounded quantity, even on the class of rectangular boxes.

The difficulty has its root in our calculation (4.1) for the rectangle, where
we used that the sum of two squares can be written as the sum of reciprocal
squares multiplied by a factor:

L2 +M2 =
( 1

L2
+

1

M2

)
(LM)2.
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T−1T−1(D) D
T

T (D)

Figure 7. A rotationally symmetric domain D, with its for-
wards domain T (D) and inverse domain T−1(D).

The corresponding formula for three squares is false:

L2 +M2 +N2 6=
( 1

L2
+

1

M2
+

1

N2

)
(LMN)2.

To escape the difficulty, we will normalize the moment of inertia not of the
original domain but of an “inverse” domain. In the case of a rectangular box
of side lengths L,M,N , the inverse box will have sides 1/L, 1/M, 1/N , as in
Figure 7. More generally, if the domain has the form T (D) for some linear
transformation T , then the inverse domain will have the form T−1(D).

The end result is that for a domain D ⊂ Rd having irreducible rotation
group (e.g. D = regular simplex, hypercube, ball), we prove:

Corollary 6.1 (Laugesen & Siudeja [31]).

(λ1 + · · ·+ λn)V 2/d
∣∣∣
T (D)

· V
1+2/d

I

∣∣∣∣∣
T−1(D)

is maximal for T =Identity.

In particular, this quantity is maximal for the regular simplex among sim-
plexes, maximal for the hypercube among parallelepipeds, and maximal for
the ball among ellipsoids.

Note the first factor (λ1 + · · ·+ λn)V 2/d is a scale invariant Faber–Krahn

type term on the domain T (D), and the second factor V 1+2/d/I is a purely
geometric scale invariant term evaluated on the inverse domain T−1(D).

We know of no other eigenvalue inequality in which the geometric nor-
malization occurs not on the original domain but on an auxiliary domain.
Perhaps other such results await discovery by the reader?

7. Open problems

General domains. Let us consider again Pólya’s result on the first eigen-
value. By substituting in the explicit eigenvalues of the equilateral triangle,
square and disk, we discover that his result implies

λ1
A3

I
≤


12π2 for triangles, with equality for equilaterals,

12π2 for parallelograms, with equality for rectangles,

2j2
0,1π

2 for ellipses, with equality for disks,

where j0,1 ' 2.4 denotes the first zero of the Bessel function J0. Because
2j2

0,1 ' 11.5 < 12, the disk does not maximize λ1A
3/I among all domains.

That is something of a surprise, since the disk solves so many other extremal
problems.
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Conjecture 7.1. Among convex plane domains, is

(degenerate sector) < λ1
A3

I
≤ (equilateral triangle and all rectangles) ?

Viewed from a different perspective, the conjecture seeks to identify the
optimal constants in the comparability relation

λ1 �
I

A3

that connects the analytic quantity λ1 to the geometric quantity I/A3.
The convexity assumption in the conjecture serves to rule out pathological

domains, such as domains with sets of measure zero removed. Such removals
can drive the eigenvalue to infinity without affecting the area or moment of
inertia.

For convex domains in higher dimensions, the moment of inertia must be
evaluated on some kind of “inverse” domain, as we saw in Corollary 6.1.
Perhaps that inverse should be the polar dual domain [31, Sec. 4]. For
example, the polar dual of a cube is an octahedron, and vice versa. (The
polar dual operation maps vertices to faces, and faces to vertices.)

Remark added in press. Recently, Siudeja and I discovered upper bounds
on eigenvalue sums that hold for rather general domains (convex and star-
like), with disks and balls being extremal [29]. There is no requirement that
the domains be linear images of rotationally symmetric domains. The geo-
metric normalizing factor again involves moment of inertia, as in this paper,
but also a kind of “radial deformation” factor.

This recent work further explains how to extend by “majorization” from
sums like λ1 + · · ·+ λn to more general functionals such as eigenvalue prod-
ucts, spectral zeta functions

∑
j λ
−s
j , and heat traces

∑
j e
−λjt. The main

results in this paper (Theorem 4.3 and Corollary 4.4) can similarly be ex-
tended to spectral zeta functions and heat traces.

Neumann eigenvalues. Our theorems hold without change for the Neu-
mann eigenvalue sums µ2 + · · · + µn (with boundary condition ∂u/∂ν = 0
for the eigenfunctions). We omit the first Neumann eigenvalue µ1 from our
sum, because it equals 0 for every domain.

Conjecture 7.2. Among convex plane domains, is

(µ2 + · · ·+ µn)
A3

I
≤ (disks) ?

The conjecture holds true for the second eigenvalue, n = 2, by work of
Szegő and Weinberger on µ2A. All other cases stand open.

Spectral gaps. The spectral gap λ2−λ1 is arguably the second-most impor-
tant spectral functional, after the fundamental tone λ1. The best geometric
normalizing factor for the spectral gap appears to be the diameter of the
domain.

Theorem 7.3 (Andrews and Clutterbuck [1]).

(λ2 − λ1)(diameter)2 ≥ 3π2
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Figure 8. Isospectral drums found by Gordon, Webb and
Wolpert. The two shapes have equal area and perimeter,
but are clearly not congruent. (Image credit: http://en.

wikipedia.org/)

for all convex domains in Rd. Equality holds in 1 dimension for the line
segment, and hence in all dimensions for a degenerate rectangular box.

This gap estimate was conjectured by van den Berg [10, formula (65)].
The proof by Andrews and Clutterbuck involves, among other innovations,
a parabolic comparison principle for the modulus of concavity.

Triangles behave differently, it seems. . .

Conjecture 7.4 (Antunes–Freitas [2, Conjecture 4]). Is

(λ2 − λ1)(diameter)2 ≥ 64π2

9

for all triangles? Equality holds for equilaterals.

Lu and Rowlett recently provided a computer-assisted proof [33].
Note that the conjectured minimizer here (the equilateral) is not degen-

erate, in contrast to the degeneracy of the line segment in Theorem 7.3.
Incidentally, the diameter normalization also lends itself to proving bounds

on sums of eigenvalues. The equilateral triangle has been shown to mini-
mize (λ1 + · · ·+ λn)(diameter)2 among all triangles [27, 28]. The analogous
problem remains open for general domains, with the disk proposed as the
minimizer.

Can one hear the shape of a drum? Do the eigenvalues determine the
domain? This inverse problem raised long ago by Kac [21] continues to
stimulate research today.

The Weyl asymptotic λj ∼ 4πj/A shows that knowledge of the high
eigenvalues (j → ∞) determines the area A. The perimeter too can be
obtained from the spectrum, as seen in the heat trace asymptotic (3.1). One
might hope by such investigations to determine more and more properties
of the domain in terms of the spectrum, and hence determine the shape
of the domain completely, up to congruence. Gordon, Webb and Wolpert
[15] showed the impossibility of this program, by finding two non-congruent
polygons which generate precisely the same eigenvalues. Figure 8 shows
these strikingly simple shapes. An elementary proof of the isospectrality,
due to Bérard and using his technique of transplantation, can be found in
the survey paper by Benguria and Linde [9].
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The drums found by Gordon, Webb and Wolpert have corners at the
boundary. Kac’s question remains open for smoothly bounded domains.
In the positive direction, one can hear the shape of drums with analytic
boundary curves and a reflectional symmetry, by recent work of Zelditch
[46].

Can one hear the shape of a triangular drum? The answer is Yes:
the whole spectrum {λn} determines a triangle up to congruence, as shown
by Durso [12] as a consequence of results on the wave operator. D. Grieser
and S. Maronna [16] have observed an alternative approach using the heat
trace asymptotic for triangles, as follows:

(7.1)

∞∑
n=1

e−λnt =
A

4πt
− P

4
√

4πt
+

1

24

(
− 1 +

3∑
j=1

π

θj

)
+ o(1) as t→ 0,

where θ1 ≤ θ2 ≤ θ3 are the interior angles of the triangle. To indicate their
idea, notice the values of A and P are known from the expansion (7.1),

and so is the value of
∑3

j=1 θ
−1
j . Also

∑3
j=1 θj has value π. The value of∑3

j=1 cot(θj/2) =
∏3
j=1 cot(θj/2) is known too, because it equals P 2/4A by

a standard formula for triangles. From the last three expressions, the three
angles θj can be obtained uniquely (although not straightforwardly; the
inversion requires insightful monotonicity arguments). The angles determine
the triangle’s shape, and then the area A fixes its size.

Incidentally, the asymptotic formula (7.1) has a somewhat complicated
history, which is discussed by Mazzeo and Rowlett [37]. They treat domains
with piecewise smooth boundary, and describe the origin of the “heat trace
anomaly” in the third coefficient by means of renormalized heat invariants
of auxiliary smooth domains that model the corner formation.

The solution above of the inverse spectral problem for triangles leaves
one feeling slightly embarrassed at needing infinitely many pieces of spec-
tral information (the eigenvalues used in defining the heat kernel or wave
operator) in order to determine just three parameters on which the triangle
depends. And so we ask:

do the first three eigenvalues λ1, λ2, λ3 suffice to determine
the shape of a triangle?

Numerical investigations by Antunes and Freitas [3] demonstrate convinc-
ingly that the answer is Yes. Can anyone find a proof?

8. Conclusions

In this expository paper we have recalled the historical origins of isoperi-
metric type inequalities for eigenvalues, and described modern developments
giving sharp upper bounds on eigenvalue sums in terms of moment of inertia.

The method of Rotations and Tight Frames by which these bounds are
proved

• works in all dimensions,
• handles linear images of rotationally symmetric domains,
• is geometrically sharp, meaning the rotationally symmetric do-

main is extremal,
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• handles eigenvalue sums of arbitrary length (that is, any n),
• applies universally: to Dirichlet, Robin and Neumann boundary

conditions, to Schrödinger potentials with rotational symmetry, and
even to the magnetic Laplacian [26].

Further applications seem likely in future.
If this paper has whetted your appetite for more, then please consult the

original papers [30, 31], which give a complete account of the proofs and a
fuller guide to the literature.

Appendix A. Eigenvalues of equilateral triangles, rectangles, disks

The Dirichlet eigenfunctions of equilateral triangles were derived about
150 years ago by Lamé [25, pp. 131–135]. More recent derivations appear
in the text of Mathews and Walker [36, pp. 237–239], and in a paper by
McCartin [38], who treated the Neumann eigenvalues too [39].

Eigenfunctions of rectangular domains and disks are well known, of course,
by separation of variables.

The Dirichlet eigenvalues of these domains are:{
(16π2/9)

[
k2

1 + k1k2 + k2
2

]
: k1, k2 ≥ 1

}
for an equilateral triangle of side 1,{

π2
[
(k1/l1)2 + (k2/l2)2

]
: k1, k2 ≥ 1

}
for a rectangle of side lengths l1, l2,{

j2
m,p : m ≥ 0, p ≥ 1

}
for the unit disk,

where jm,p is the pth zero of the Bessel function Jm.
The Neumann eigenvalues are:{

(16π2/9)
[
k2

1 + k1k2 + k2
2

]
: k1, k2 ≥ 0

}
for an equilateral triangle of side 1,{

π2
[
(k1/l1)2 + (k2/l2)2

]
: k1, k2 ≥ 0

}
for a rectangle of side lengths l1, l2,{

(j′m,p)
2 : m ≥ 0, p ≥ 1

}
for the unit disk,

where j′m,p is the pth zero of the Bessel derivative J ′m.
Figure 9 displays the nodal patterns of the first three Dirichlet eigenfunc-

tions of the equilateral triangle, extended by odd reflection across the sides
of the triangle.
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