
UNIQUENESS PROPERTIES OF DIFFUSION PROCESSES

DEREK W. ROBINSON

Abstract. We review recent results on the uniqueness of solutions of
the diffusion equation

∂ψt/∂t+Hψt = 0

where H is a strictly elliptic, symmetric, second-order operator on an
open subset Ω of Rd. In particular we discuss L1-uniqueness, the exis-
tence of a unique continuous solution on L1(Ω), and Markov uniqueness,
the existence of a unique submarkovian solution on the spaces Lp(Ω).
We give various criteria for uniqueness in terms of capacity estimates
and the Riemannian geometry associated with H.

1. Introduction

Let Ω be a connected open subset of Rd and H a second-order, formally
symmetric, elliptic operator on the domain D(H) = C∞c (Ω). The operator
H is defined to be L1-unique if it has a unique L1-closed extension H1 which
generates a strongly continuous semigroup T on L1(Ω). This is equivalent
to the parabolic diffusion equation

(1) ∂ψt/∂t+Hψt = 0

having a unique continuous weak solution t > 0 7→ ψt = Ttψ0 ∈ L1(Ω) for
each ψ0 ∈ C∞c (Ω). The ellipticity property of H, which will be specified
in more detail below, implies that H is L1-dissipative and consequently L1-
closable. Then it follows by an extension of the Lumer–Phillips theorem that
H is L1-unique if and only if H1 = H

1
, the L1-closure of H. Our primary

intention is to review recent results which establish alternative criteria for
L1-uniqueness of H.

Evolution equations of the type (1) occur in many applications since they
typically describe a diffusion process. Positive normalized L1-solutions are of
particular interest since they can be interpreted as probability distributions.
Specifically the solutions with a probabilistic interpretation are given by L1-
continuous semigroups T satisfying

positivity: Ttϕ ≥ 0 for all positive ϕ ∈ L1(Ω) and t > 0, and
conservation of probability: ‖Ttϕ‖1 = ‖ϕ‖1 for all positive ϕ ∈
L1(Ω) and t > 0.

The latter property is in fact closely related to the L1-uniqueness. This will
be discussed in Section 4.

The difficulty in establishing uniqueness properties is that they are not
generally true: the symmetric diffusion process described by H is not ex-
pected to be uniquely determined. There are two distinct reasons for lack
of uniqueness, one local and one global. If the diffusion can either reach
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the (local) boundary ∂Ω = Ω\Ω or can spread to infinity in a finite time
then the subsequent properties of the evolution depend on the specification
of boundary conditions. But the process will not reach ∂Ω if the diffusion
slows sufficiently near the boundary. Alternatively, the diffusion will not
spread to infinity in a finite time unless it accelerates sufficiently as it re-
cedes. Although these obstructions to uniqueness appear to be of a similar
nature, both relate to the accessibility of the relevant boundary, they do
differ in nature. To be more precise we must be more specific about the
structure of the operator H.

Throughout the sequel we assume that H is a second-order operator in
divergence form,

(2) H = −
d∑

k,l=1

∂k ckl ∂l

where the ckl = clk are real-valued W 1,∞
loc (Ω)-functions, and the matrix C =

(ckl) is strictly elliptic, i.e. C(x) > 0 for all x ∈ Ω. HereW 1,∞
loc (Ω) denotes the

space of restrictions to Ω of functions in W 1,∞
loc (Rd). The conditions on the

ckl ensure they extend continuously to the boundary ∂Ω and the extensions
are locally bounded. Moreover, it follows from these assumptions that H is
locally strongly elliptic, i.e. for each relatively compact subset V of Ω there
are µV , λV > 0 such that µV I ≤ C(x) ≤ λV I for all x ∈ V . Nevertheless
the coefficients can degenerate on the boundary. In particular one can have
ckl(x)→ 0 as x→ ∂Ω or ckl(x)→∞ as |x| → ∞.

The operatorH is positive and symmetric on L2(Ω) and the corresponding
quadratic form h is given by D(h) = C∞c (Ω) and

h(ϕ) =
d∑

k,l=1

(∂kϕ, ckl ∂lϕ) .

The form is closable and its closure hD = h determines a positive self-
adjoint extension HD of H, the Friedrichs’ extension (see, for example, [8],
Chapter VI). We have introduced the notation HD since this extension cor-
responds to Dirichlet conditions on the boundary ∂Ω. The closure hD is
a Dirichlet form and consequently the extension HD is submarkovian, i.e.
it generates a strongly continuous self-adjoint contraction semigroup S on
L2(Ω) satisfying 0 ≤ Stϕ ≤ 1 for all ϕ ∈ L2(Ω) with 0 ≤ ϕ ≤ 1 (for details
on Dirichlet forms and submarkovian semigroups see [2] [5] [10]). The semi-
group S extends from L2(Ω) ∩ Lp(Ω) to a positive contraction semigroup

S(p) on each of the spaces Lp(Ω), p ∈ [1,∞], and the generator Hp of S(p)

is an Lp-closed extension of H. Therefore H has a submarkovian extension
and also a generator extension on each of the Lp-spaces. In particular this
establishes that H has an L1-generator extension and that (1) has a positive
L1-continuous solution ψt = Stψ satisfying ‖Stψ‖1 ≤ ‖ψ‖1 for all ψ ∈ L1(Ω)
and t > 0.

The foregoing discussion raises the question of establishing criteria for
H to be Markov unique, i.e. for H to have a unique submarkovian exten-
sion. Our secondary intention is to review the characterization of Markov
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uniqueness. Each submarkovian extension determines a continuous semi-
group on L1(Ω) and the generator of this semigroup is an L1-extension of
H. It follows readily that distinct submarkovian extensions determine dis-
tinct L1-extensions. Therefore L1-uniqueness of H implies Markov unique-
ness. Markov uniqueness is in general a strictly weaker property than L1-
uniqueness but we will describe various conditions which ensure they are
equivalent.

2. Inaccessibility and Negligibility

The diffusion process described by H can be independent of boundary ef-
fects for two different reasons. Either the diffusion never reaches the bound-
ary or the boundary is sufficiently insignificant that it does not influence the
process. There are also two distinct factors which govern the independence.

The first factor is the geometry inherent to the process. The Riemann-
ian geometry associated with the operator H is determined by the distance
d( · ; · ) corresponding to the metric C−1 on Ω. This distance is naturally
suited to measurement of the diffusion. It can be defined in various equiva-
lent ways but in particular by

(3) d(x ; y) = sup{ψ(x)− ψ(y) : ψ ∈W 1,∞
loc (Ω) , Γ(ψ) ≤ 1}

for all x, y ∈ Ω where Γ, the carré du champ of H, denotes the positive map

(4) ϕ ∈W 1,2
loc (Ω) 7→ Γ(ϕ) =

d∑
i,j=1

cij(∂iϕ)(∂jϕ) ∈ L1,loc(Ω) .

Since Ω is connected and C > 0 it follows that d(x ; y) is finite for all
x, y ∈ Ω but one can have d(x ; y) → ∞ as x, or y, tends to the boundary
∂Ω. Throughout the sequel we choose coordinates such that 0 ∈ Ω and
denote the Riemannian distance to the origin by ρ. Thus ρ(x) = d(x ; 0)
for all x ∈ Ω. It is to be expected that the asymptotic behaviour of ρ gives
a measure of accessibility of the ‘boundary at infinity’. If ρ(x) → ∞ as
x → ∞ then it is plausible that the diffusion will take an infinite time to
reach infinity which is one interpretation of the statement that the boundary
is inaccessible. It is the most elementary condition which could possibly rule
out ambiguity due to the boundary at infinity.

The asymptotic behaviour can also be expressed in terms of the Riemann-
ian balls B(r) = {x ∈ Ω : ρ(x) < r}. One readily establishes that ρ(x)→∞
as x → ∞ if and only if the balls B(r) are bounded subsets of Ω for all
r > 0. The boundedness of the balls B(r) is the principal asymptotic fea-
ture of importance for Markov uniqueness (see Theorem 3.3). The situation
for L1-uniqueness is slightly different. Then the rate of growth of the vol-
ume (Lebesgue measure) |B(r)| of the balls as r → ∞ is also crucial. It is
a measure of the available volume for the diffusion to spread. The growth
bounds |B(r)| ≤ a exp(b r2), for all r > 0, are sufficient for the equivalence
of Markov uniqueness and L1-uniqueness (see Theorem 4.3).

Both of the foregoing geometric features are related to the asymptotic
growth of the coefficients ckl of H. For example if Ω = Rd and C(x) =

c(|x|)I with c > 0 then ρ(x) =
∫ |x|

0 c−1/2. Thus if c(|x|) ∼ x2(log |x|)α as

x → ∞ with α ≥ 0 then ρ(x) ∼ (log |x|)1−α/2 as x → ∞. Moreover, there
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are a, b > 0 such that |B(r)| ≤ a exp(b r2/(2−α)) for all r > 0. Therefore
ρ(x)→∞ as x→∞ if and only if α < 2 and the bounds |B(r)| ≤ a exp(b r2)
are valid if and only if α ≤ 1. But if d = 1 then Example 4.2 in [12] gives
an H with c(|x|) ∼ x2(log |x|)(log(log |x|)) as x → ∞ which is not L1-
unique. In this example the balls B(r) are bounded and for each ε > 0 one
has growth bounds |B(r)| ≤ a exp(b r2+ε) for all r > 0. We will conclude
that the growth c(|x|) ∼ x2(log |x|) corresponding to the bounds |B(r)| ≤
a exp(b r2), is essentially the maximal growth for L1-uniqueness and the
growth c(|x|) ∼ x2(log |x|)2 is essentially the maximal growth for Markov
uniqueness.

The second factor which influences uniqueness properties is the accessi-
bility or inaccessibility of the boundary ∂Ω. Clearly this is influenced by
the rate of diffusion near the boundary and that is again determined by
the magnitude of the coefficients. But the nature of the boundary is also
clearly important. For example, one would expect the reflection properties
of a smooth boundary to be quite different to those of a rough, or fractal,
boundary. The relevant property to assess the effect of the boundary is its
capacity, measured in a suitable sense by the operator H. The notion of
capacity originated in electrostatics as a measure of the charge necessary
on a closed surface to give a prescribed potential in the interior. There are
several classical ways of introducing the capacity but it is essentially a prop-
erty of the Laplacian. Therefore it is not surprising that it also enters the
theory of Brownian motion. In the latter context the sets with capacity zero
correspond to the sets which are negligible for the motion. Analogously the
uniqueness of the diffusion process is closely linked with the boundary hav-
ing capacity zero. To make this relation precise we introduce the capacity
corresponding as follows. Let A be a general subset of Ω then its capacity,
relative to H, is defined by

cap(A) = inf{hN (ψ) + ‖ψ‖22}

where the infimum is taken over those ψ ∈ W 1,2
loc (Ω) for which 0 ≤ ψ ≤ 1

and there exists an open set U ⊂ Rd such that U ⊇ A and ψ = 1 on U ∩Ω.
Here the quadratic form hN is defined by

D(hN ) = {ϕ ∈W 1,2
loc (Ω) : Γ(ϕ) + ϕ2 ∈ L1(Ω)}

and

hN (ϕ) =

∫
Ω

Γ(ϕ) .

The form hN is a Dirichlet form and the associated operator is an extension
HN of H which corresponds to Neumann boundary conditions on ∂Ω at
least if the boundary is smooth. This definition of the capacity is analogous
to the canonical definition of the capacity associated with a Dirichlet form
(see, for example, [2] or [5]). In fact if Ω = Rd the two definitions coincide.

As a simple illustration of the capacity of the boundary let d = 1, Ω =
〈0,∞〉 and Hϕ = −(c ϕ′)′ with c ∈ W 1,∞

loc (Ω) and c > 0. Then there are
two possibilities, either c(0) > 0, or c(0) = 0. In the first case cap({0}) > 0
but in the second cap({0}) = 0. It is important for the latter result that
the Lipschitz continuity of c implies that c(x) ≤ a x for some a > 0 and all

x ∈ [0, 1]. Note that if c(x) = O(x(1+δ)) as x → 0+ then the corresponding
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Riemannian distance satisfies d(1 ;x) =
∫ 1
x c
−1/2 = O(x(1−δ)/2) as x → 0+.

Thus if δ ∈ [0, 1〉 the distance to the boundary, i.e. to the origin, is finite
but c({0}) = 0.

3. Markov Uniqueness

We begin a more detailed discussion of uniqueness by describing various
characterizations of Markov uniqueness. Since the quadratic form associated
with each submarkovian extension of H is a Dirichlet form the description
of all such extensions is reduced to analyzing all Dirichlet form extensions
of the quadratic form h associated with H. Two examples have already
occurred, the closure hD of h and the form hN used in the definition of the
capacity. The form hN is closed as a direct consequence of the strict elliptic-
ity assumption C > 0 (see [13], Section 1, or [11], Proposition 2.1) and both
forms are Dirichlet forms by standard estimates. The self-adjoint operator
HN associated with hN is the submarkovian extension of H corresponding
to Neumann boundary conditions and HD is the extension corresponding to
Dirichlet boundary conditions. In general the two submarkovian extensions
HD and HN of H are distinct. Since hN ⊇ hD it follows, however, that one
has the ordering 0 ≤ HN ≤ HD. The significance of the forms hD and hN is
that they are the minimal and maximal Dirichlet form extensions of h. Ver-
sions of this result have been derived under various growth and smoothness
assumptions (see [5] Section 3.3.3, [4] Section 3c or [12], Section 2) but the
following statement is valid under the general assumptions of Section 1.

Proposition 3.1. Let k be a Dirichlet form extension of h. Then hD ⊆
k ⊆ hN . Thus if K is the submarkovian extension of H corresponding to k
one has HN ≤ K ≤ HD.

In particular, H is Markov unique if and only if hD = hN .

Proof. The proof is based on elliptic regularity and some standard results
in the theory of Dirichlet forms.

First one clearly has hD ⊆ k. Hence K ≤ HD. Secondly, since H is locally
strongly elliptic it follows from the usual elliptic regularity arguments that
C∞c (Ω)D(K) ⊆ D(H) whereH is the L2-closure ofH (see [12], Corollary 2.3,
and [13], Lemma 2.2). Thirdly for each χ ∈ C∞c (Ω) with 0 ≤ χ ≤ 1 define
the truncated form kχ by D(kχ) = D(k) ∩ L∞(Ω) and kχ(ϕ) = k(ϕ, χϕ) −
2−1k(χ, ϕ2). Then kχ(ϕ) ≤ k(ϕ) (see [2], Proposition 4.1.1). Moreover, if
ϕ ∈ D(K) ∩ L∞(Ω) then

kχ(ϕ) = (ϕ,Hχϕ)− 2−1(Hχ,ϕ2) .

But if χ1 ∈ C∞c (Ω) with χ1 = 1 on suppχ then ϕ1 = χ1ϕ ∈ D(H) ⊆
W 2,2

loc (Ω), where the last inclusion again uses elliptic regularity, and

kχ(ϕ) = (ϕ1, Hχϕ1)− 2−1(Hχ,ϕ2
1) =

∫
Ω
χΓ(ϕ1) .

Combining these observations one has∫
Ω
χΓ(ϕ1) = kχ(ϕ) ≤ k(ϕ)
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for all ϕ ∈ D(K) ∩ L∞(Ω). Then if V is a relatively compact subset of Ω
there is a µV > 0 such that C(x) ≥ µV I for all x ∈ V . Therefore choosing
χ such that χ = 1 on V one deduces that µV

∫
V |∇ϕ|

2 ≤ k(ϕ) for each

choice of V . Thus ϕ ∈ W 1,2
loc (Ω). Moreover,

∫
V Γ(ϕ) ≤ k(ϕ) for each V so

ϕ ∈ D(hN ). Consequently D(K) ∩ L∞(Ω) ⊆ D(hN ) and

hN (ϕ) = sup
V

∫
V

Γ(ϕ) ≤ k(ϕ)

for all ϕ ∈ D(K)∩L∞(Ω). But since K is the generator of a submarkovian
semigroup D(K) ∩ L∞(Ω) is a core of K. In addition D(K) is a core of
k. Therefore the last inequality extends by continuity to all ϕ ∈ D(k). In
particular D(k) ⊆ D(hN ). Hence k ⊆ hN and HN ≤ K. 2

Remark 3.2. The symmetric operator H also has a largest and a smallest
positive self-adjoint extension. The largest extension is the Friedrichs’ ex-
tension HD but the smallest extension, the Krein extension, is not generally
equal to HN (see, for example, [5], Theorem 3.3.3).

The identity hD = hN , in one guise or another, has been the basis of much
of the analysis of Markov uniqueness (see, for example, [5], Section 3.3, or
[4], Chapter 3). Since hN is an extension of hD the identity is equivalent to
the condition D(hD) = D(hN ). But D(hD) is the closure of C∞c (Ω) with

respect to the graph norm ϕ 7→ ‖ϕ‖D(hD) = (hD(ϕ) + ‖ϕ‖22)1/2. Therefore
hD = hN if and only if C∞c (Ω) is a core of hN . Equivalently, hD = hN if and
only if (D(hD) ∩ L∞(Ω))c, the space of bounded functions in D(hD) with
compact support in Ω, is a core of hN .

The next theorem gives two different characterizations of Markov unique-
ness which involve the capacity. They are both consequences of the equality
hD = hN .

Theorem 3.3. Consider the following conditions:

I. H is Markov unique,
II. for each bounded subset A of Ω there exist η1, η2, . . . ∈ C∞c (Ω) such

that
limn→∞ ‖11AΓ(ηn)‖1 = 0 and limn→∞ ‖11A(11Ω − ηn)ϕ‖2 = 0 for each
ϕ ∈ L2(Ω),

III. cap(∂Ω) = 0.

Then I⇒II and I⇒III. Moreover, if B(r) is bounded for all r > 0 then II⇒I,
III⇒I and all three conditions are equivalent.

The second condition of the theorem is a version of capacity estimates
introduced by Maz’ya (see [9] Section 2.7) in his analysis of the equality
hD = hN in the special case Ω = Rd. In fact his arguments extend to
general Ω (see [5] Section 3.3) and give the following result.

Proposition 3.4. The following conditions are equivalent:

I. H is Markov unique,
II. for each subset A of Ω with cap(A) < ∞ there exist η1, η2, . . . ∈

C∞c (Ω) such that limn→∞ ‖11AΓ(ηn)‖1 = 0 and limn→∞ ‖11A(11Ω −
ηn)ϕ‖2 = 0 for each ϕ ∈ L2(Ω),
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We will not elaborate on the proof but refer to the relevant sections of [9]
and [5]. It should be emphasized that the proposition is valid without any
assumption on the Riemannian geometry or the growth of the coefficients
of H. Moreover, sets of finite capacity are not necessarily bounded.

Now returning to Theorem 3.3 one sees that the implication I⇒II follows
from Proposition 3.4 since bounded subsets automatically have finite ca-
pacity. The converse implication II⇒I is not, however, valid without some
growth assumption. We briefly describe how it can be established assuming
ρ(x)→∞ as x→∞, i.e. the Riemannian balls are bounded.

II⇒I It is necessary to prove that D(hN ) = D(hD). The proof is in two
steps. The first step establishes that (D(hN ) ∩ L∞(Ω))c, the subspace of
D(hN ) spanned by the bounded functions with compact support, is a core
of hN . The argument is quite standard and is based on the assumption that
the balls B(r) are bounded. Let τ be a C∞-function on the right half line
satisfying 0 ≤ τ ≤ 1, τ(s) = 1 if s ≤ 1, τ(x) = 0 if s ≥ 2 and |τ ′| ≤ 2. Then
set τn = τ ◦ (n−1ρ). Since the B(r) are bounded τn has compact support.
Moreover, τn(x) → 1 as n → ∞ for all x ∈ Ω. But Γ(ρ) ≤ 1. So one also
has ‖Γ(τn)‖∞ ≤ 4n−2. Then fix ϕ ∈ D(hN ) ∩ L∞(Ω) and set ϕn = τnϕ. It
follows that ϕn ∈ (D(hN ) ∩ L∞(Ω))c. But one estimates straightforwardly
that ϕn converges in the D(hN )-graph norm to ϕ. We omit the details.

The second step consists of proving that each ϕ ∈ (D(hN )∩L∞(Ω))c can
be approximated in the D(hN )-graph norm by a sequence ϕn ∈ D(hD) ∩
L∞(Ω). This immediately implies that hN = hD.

Let A = suppϕ. If ηn is the sequence in Condition II corresponding to
A set ϕn = ηnϕ. It follows that ϕn ∈ D(hN ) ∩ L∞(Ω). But suppϕn ⊂ Ω.
Hence ϕn ∈ D(hD) ∩ L∞(Ω). Moreover,

lim
n→∞

‖ϕ− ϕn‖2 = lim
n→∞

‖11A(11Ω − ηn)ϕ‖2 = 0 .

In addition, since ∇(ϕn − ϕ) = (∇ηn)ϕ+ (1− ηn) (∇ϕ), one has

Γ(ϕn − ϕ) ≤ 2 Γ(ηn)ϕ2 + 2 (1− ηn)2 Γ(ϕ) .

Then since suppϕn ⊆ suppϕ = A one has

hN (ϕ− ϕn) = ‖11AΓ(ϕn − ϕ)‖1 ≤ 2 ‖11AΓ(ηn)‖1 ‖ϕ‖2∞ + 2 ‖11A(11Ω − ηn)χ‖22
where χ = Γ(ϕ)1/2 ∈ L2(Ω). Therefore hN (ϕ− ϕn)→ 0 as n→∞.

The equivalence of Conditions I and III was established in [12] and [13]
under slightly different growth assumptions. Again we sketch the arguments.

I⇒III Assume ψ ∈ D(hN ) and ψ = 1 on U ∩ Ω where U ⊂ Rd is an open
neighbourhood of ∂Ω. Since hD = hN there is a sequence ψn ∈ C∞c (Ω)
such that limn→∞ ‖ψ − ψn‖D(hN ) = 0. But since ψn ∈ C∞c (Ω) there are
open neighbourhoods Un of ∂Ω such that ψ − ψn = 1 on Un ∩Ω. Therefore
cap(∂Ω) = 0.

III⇒I Again since the B(r) are bounded (D(hN )∩L∞(Ω))c is a core of hN .
Hence it suffices to show that each ϕ ∈ (D(hN ) ∩ L∞(Ω))c can be approxi-
mated in the D(hN )-graph norm by a sequence ϕn ∈ D(hD). Then hN = hD
and H is Markov unique. But if A = suppϕ ∩ ∂Ω then cap(A) = 0 and one
can choose ψn ∈ D(hN ) and open sets Un ⊂ Rd such that A ⊂ Un, ψn = 1
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on Un ∩Ω and ‖ψn‖D(hN ) → 0 as n→∞. Moreover, since hN is a Dirichlet
form one may also assume 0 ≤ ψn ≤ 1. Setting ϕn = (1 − ψn)ϕ it follows
that ϕn ∈ D(hD) ∩ L∞(Ω) and

‖ϕ− ϕn‖D(hN ) = ‖ψnϕ‖D(hN ) ≤ 2 ‖ψn‖D(hN )‖ϕ‖∞ + 2

∫
Ω
ψ2
n Γ(ϕ) .

But both terms on the right converge to zero as n → ∞. The convergence
of the second term follows by an equicontinuity estimate since ‖ψn‖2 → 0 as
n→∞ and Γ(ϕ) ∈ L1(Ω). Therefore ϕn converges to ϕ in the D(hN )-graph
norm.

The most interesting point of Theorem 3.3 is that it provides a practical
means of verifying Markov uniqueness. It suffices to establish two properties,
ρ(x)→∞ as |x| → ∞ and cap(∂Ω) = 0.

The first of these conditions can be verified by calculating the largest
eigenvalue λ(x) of C(x), setting µ(r) = sup{λ(x) : x ∈ Ω , |x| < r} and

noting that ρ(x) ≥ ν(|x|) where ν(r) =
∫ r

0 µ
−1/2. Thus if, for example,

µ(r) ∼ r2(log r)α as r → ∞ then ν(r) ∼ (log r)1−α/2 as r → ∞. Therefore
ρ(x)→∞ as x→∞ for all α ∈ [0, 2〉.

The second condition is a bit more complicated. Its verification is sim-
plified by noting that it suffices to establish that cap(B) = 0 for each
bounded subset B ⊆ ∂Ω. But cap(B) depends on two gross features of
H and Ω, the order of degeneracy of the coefficients ckl at the boundary
and the dimension of the boundary. First to assign a dimension to B set
Bδ = {x ∈ Ω : ρB(x) < δ}. Then assume there is a d(B) ∈ [0, d〉 such that

supδ∈〈0,1] δ
−(d−d(B))|Bδ| <∞. Secondly to quantify the degeneracy of the co-

efficients define ρB(x) = {d(x ; y) : y ∈ ∂Ω} and assume C(x) ≤ a ρB(x)γ(B)I
for some a > 0, γ(B) ≥ 0 and all x ∈ B1. It then follows by elementary
estimation that cap(B) = 0 whenever γ(B) ≥ 2 − (d − d(B)) (see [12]
Proposition 4.2). In particular cap(B) = 0 if γ(B) ≥ 2 or d(B) ≤ d− 2. Al-
ternatively if B is Lipschitz then d(B) = d−1 and it suffices that γ(B) ≥ 1.

4. L1-uniqueness

The L1-uniqueness property is in principle stronger than Markov unique-
ness and consequently is valid only in more restrictive circumstances. We
will describe an analogue of Theorem 3.3 based on two general criteria for
L1-uniqueness. The first has already been alluded to in the introduction.
The operator H is L1-unique if and only if the L1-closure H

1
is the genera-

tor of an L1-continuous semigroup (see [4], Theorem 1.2 in Appendix 1.A).
Alternatively this criterion can be expressed in terms of the submarkovian
semigroup S generated by the Friedrichs’ extension HD of H on L2(Ω). The
semigroup S extends from L2(Ω) ∩ Lp(Ω) to a contraction semigroup on

S(p) for all p ∈ [1,∞] which is strongly continuous if p ∈ [1,∞〉 and weakly∗

continuous if p = ∞. If Hp denotes the generator of S(p) on Lp(Ω) then H

is L1-unique if and only if H1 = H
1
.

The second criterion is the conservation of probability for the semigroup
S. This is expressed in terms of S(1) acting on L1(Ω). The conservation
criterion has been derived in several settings (see [7] [1] [3] [6] and references
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therein). It is equivalent to the semigroup being Markovian, a property

expressed in terms of the dual semigroup S(∞) acting on L∞(Ω).

Proposition 4.1. The following conditions are equivalent:

I. H is L1-unique,

II. S conserves probability, i.e. ‖S(1)
t ϕ‖1 = ‖ϕ‖1 for all positive ϕ ∈

L1(Ω) and t > 0,

III. S is Markovian, i.e. S
(∞)
t 11Ω = 11Ω for all t > 0.

Proof. The equivalence II⇔III follows from duality since (S
(1)
t )∗ = S

(∞)
t for

all t > 0.
The implication I⇒II is straightforward. Clearly (Hχ, 11Ω) = 0 for all

χ ∈ C∞c (Ω). But L1-uniqueness is equivalent to the condition H1 = H
1
.

Therefore (H1χ, 11Ω) = 0 for all χ ∈ D(H1) by closure. Then

‖S(1)
t ϕ‖1 − ‖ϕ‖1 = (S

(1)
t ϕ, 11Ω)− (ϕ, 11Ω) =

∫ t

0
ds (H1S

(1)
s ϕ, 11Ω) = 0

for all positive ϕ ∈ D(H1). Then Condition II follows by density.
The real content of the proposition is contained in the implication III⇒I.

The proof of which is a consequence of the following lemma (see [1], Corol-
lary 2.5 or [3], Lemma 2.3).

Lemma 4.2. If ψ ∈ L∞(Ω), ψ ≥ 0 and ξ = (I +H∞)−1ψ then

((I +H)χ, ξ) = (χ, ψ)

for all χ ∈ C∞c (Ω).
Moreover, if η ≥ 0 is a continuous function with

((I +H)χ, η) ≥ (χ, ψ)

for all positive χ ∈ C∞c (Ω) then η ≥ ξ.

We refer to [3] for the proof but emphasize that it is independent of
the growth of the coefficients ckl at infinity. The proof only involves the
Friedrichs’ extensions ofH and its restrictionsH|C∞

c (V ) to relatively compact
subsets V of Ω.

The proof of the implication III⇒I in Proposition 4.1 now proceeds by
negation.

First since H is L1-dissipative its closure is the generator of a strongly
continuous semigroup if and only if the range of I +H is L1-dense. Assume
the contrary, i.e. assume there is a ϕ ∈ L∞(Ω) with ‖ϕ‖∞ = 1 such that

((I +H)χ, ϕ) = 0

for all χ ∈ C∞c (Ω). Then ϕ ∈ D(H∗V ) with HV = H|C∞
c (V ) for each relatively

compact subset V of Ω where the star indicates the L2-adjoint. Since HV

is strongly elliptic it follows by elliptic regularity that ϕ is continuous. Set
η = 11Ω − ϕ. Then η ≥ 0, η is continuous and

((I +H)χ, η) = ((I +H)χ, 11Ω)− ((I +H)χ, ϕ) = (χ, 11Ω)

for all χ ∈ C∞c (Ω) since (Hχ, 11Ω) = 0. Therefore

η ≥ (I +H∞)−111Ω
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by Lemma 4.2, i.e. 11Ω− (I+H∞)−111Ω = ϕ 6= 0. Hence S is not Markovian.
2

The characterization of L1-uniqueness in terms of conservation of proba-
bility then allows the extension of Theorem 3.3.

Theorem 4.3. Consider the following conditions:

I. H is L1-unique,
II. H is Markov unique,
III. for each bounded subset A of Ω there exists a sequence η1, η2, . . . ∈

C∞c (Ω) such that limn→∞ ‖11AΓ(ηn)‖1 = 0 and limn→∞ ‖11A(11Ω −
ηn)ϕ‖2 = 0 for each ϕ ∈ L2(Ω),

IV. cap(∂Ω) = 0.

Then I⇒II⇒III and II⇒IV. Moreover, if B(r) is bounded for all r > 0 then

I⇒II⇔III⇔IV. If, in addition, there are a, b > 0 such that |B(r)| ≤ a eb r
2

for all r > 0 then IV⇒I and all four conditions are equivalent.

The implication I⇒II is evident and the implications II⇒III and II⇒IV
follow directly from Theorem 3.3. Moreover, if the balls B(r) are bounded
then the earlier theorem also establishes that III⇒II and IV⇒II. Although
the boundedness of the balls suffices to establish Markov uniqueness from
the capacity estimates it is not sufficient to establish L1-uniqueness. Exam-
ple 4.2 in [13] gives a one-dimensional example of an H with a coefficient
c(|x|) ∼ x2(log |x|)(log(log |x|)) as x → ∞ which is Markov unique but not
L1-unique. In this example the balls B(r) are finite intervals and the growth

bounds |B(r)| ≤ a eb r
2

fail. But the bounds only just fail. For each ε > 0

there are a, b > 0 such that |B(r)| ≤ a eb r
2+ε

for all r > 0. If, however,
c(|x|) ∼ x2(log |x|) then the one-dimensional operator is L1-unique because

the bounds |B(r)| ≤ a eb r2 are valid.

The only current proof of IV⇒I is based on the ideas of [12] [13] and is
quite lengthy. Nevertheless, the strategy of the proof is straightforward. It
begins by establishing that if Ω is bounded, or more generally if |Ω| < ∞,
then II⇒I. This is straightforward since one then has L∞(Ω) ⊆ L2(Ω) and
so 11Ω ∈ L2(Ω). Moreover, 11Ω ∈ D(HN ), HN11Ω = 0 and the semigroup T
generated by HN is Markovian. But S = T by Markov uniqueness. Thus
S is Markovian and H is L1-unique by Proposition 4.1. Then the idea is
to exploit the result through an approximation of H by a sequence of oper-
ators Hn acting on a family of increasing subspaces L2(Ωn) where the Ωn

are bounded. If τn is a pointwise increasing sequence of C∞-functions with
0 ≤ τn ≤ 1, τn = 1 if |x| ≤ n/2 and τn = 0 if |x| ≥ n then one defines Hn

as the operator with coefficients τnckl acting on Ωn = Ω ∩ {x : |x| < n}. It
follows from the assumption cap(∂Ω) = 0 that capn(∂Ωn) = 0 where capn is
the capacity relative to Hn on L2(Ωn). Then the Hn are Markov unique. But

the corresponding Markovian semigroups T (n) on L2(Ωn) can be extended to

Markovian semigroups Ŝ(n) on L2(Ω) by setting Ŝ
(n)
t = T

(n)
t ⊕11Ω′

n
on L2(Ω)

where Ω′n = Ω ∩ {x : |x| > n}. Then using monotonicity arguments one es-

tablishes that the Markovian semigroups Ŝ(n) are L2-convergent to the semi-
group S generated by the Friedrichs’ extension of H. But L2-convergence
does not imply that S is Markovian, for this one requires L1-convergence.
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The latter can, however, be deduced from combining the L2-convergence
with Davies–Gaffney off-diagonal Gaussian bounds. It is in this latter part
of the proof that the Gaussian growth bounds on the balls B(r) are needed.
The form of the bound is a reflection of the Gaussian decrease of the Davies–
Gaffney bounds.

The proof of equivalence of L1-uniqueness and Markov uniqueness is
rather lengthy because it allows a very general volume growth. If the as-

sumption of Gaussian growth, |B(r)| ≤ a eb r
2

as r → ∞, is somewhat
relaxed then there is an alternative, simpler, proof which we next describe.
This proof covers exponential volume growth which arises if the norm ‖C(x)‖
of the matrix of coefficients C(x) satisfies bounds ‖C(x)‖ ≤ λ (1 + x2) for
all x ∈ Ω.

Theorem 4.4. Assume the balls B(r) are bounded for all r > 0 and there
are a, b > 0 such that |B(r)| ≤ a eb r for all r > 0. Then the following
conditions are equivalent:

I. H is L1-unique,
II. H is Markov unique.

Proof. Clearly I⇒II and it suffices to prove the converse. Therefore assume
H is Markov unique. But H is L1-unique if and only if its L1-closure is the
generator of a continuous semigroup and since H is L1-dissipative this is the
case if and only if (λI +H)C∞c (Ω) is dense in L1(Ω) for all large positive λ.
Now we argue by contradiction.

Suppose there is a non-zero ψ ∈ L∞(Ω) and a λ > 0 such that (ψ, (λI +
H)ϕ) = 0 for all ϕ ∈ C∞c (Ω). Then for each relatively compact open subset
U of Ω one has ψ ∈ D(H∗U ) where H∗U denotes the L2(U)-adjoint of the
restriction HU = H|C∞

c (U). But HU is strongly elliptic on L2(U) and it

follows from elliptic regularity that ψ ∈ W 2,2
loc (U). In particular η ψ, η2ψ ∈

W 2,2(U) for all η ∈ C∞c (U). Then (ψ, (λI +HU )ϕ) = 0 for all ϕ ∈W 2,2(U)
where HU denotes the L2-closure of HU . Thus setting ϕ = η2ψ one has

λ ‖η ψ‖22 = −(ψ,HU η
2ψ) = (ψ,Γ(η)ψ)− (η ψ,HU η ψ) .

It follows by positivity of HU that

(5) λ ‖η ψ‖22 ≤ (ψ,Γ(η)ψ)

for all η ∈ C∞c (U) and for all relatively compact open subsets U of Ω. Thus
(5) is valid for all η ∈ C∞c (Ω). But since ψ ∈ L∞(Ω) one has ‖η ψ‖2 ≤
‖η‖2‖ψ‖∞. In addition

|(ψ,Γ(η)ψ)| ≤ ‖Γ(η)‖1‖ψ‖2∞ = hD(η) ‖ψ‖2∞ .

Hence (5) extends by continuity to all η ∈ D(hD). Therefore, since D(hD) =
D(hN ) by Markov uniqueness, (5) is valid for all η ∈ D(hN ).

Now for each n ∈ N choose a τn ∈ C∞c (0,∞) with 0 ≤ τn ≤ 1, τn(y) = 1
if 0 ≤ y ≤ n, τn(y) = 0 if y ≥ n + 1 and |∇τn| ≤ λ0. Then set ηn =
τn ◦ ρ. It follows that 0 ≤ ηn ≤ 1, ηn = 1 on B(n) and ηn = 0 on B(n +
1)c. Since Γ(ρ) ≤ 1 it also follows that Γ(ηn) ≤ λ2

0 η
2
n+1 on Ω. Therefore

Γ(ηn) + η2
n ∈ L1(Ω) and ηn ∈ D(hN ). Next set bn = e−b(n+1)‖ηnψ‖22. Then

bn ≤ e−b(n+1) |B(n + 1)| ‖ψ‖2∞ ≤ a ‖ψ‖2∞ uniformly for all n ∈ N by the
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exponential growth bound on the balls B(r). Replacing η in (5) by ηn one
deduces that

bn ≤ e−b(n+1) λ−1 (ψ,Γ(ηn)ψ)

≤ λ2
0 e
−b(n+1) λ−1 ‖ηn+1ψ‖22 = (λ2

0 e
b/λ) bn+1

and, by iteration,

bn ≤ (λ2
0 e

b/λ)m bn+m ≤ a (λ2
0 e

b/λ)m ‖ψ‖2∞
for all m ∈ N. Thus if λ > λ2

0 e
b one concludes in the limit m → ∞ that

bn = 0. In particular the L2(B(n))-norm of ψ is zero. Since this conclusion
is valid for all n one must have ψ = 0 which is a contradiction. So H is
L1-unique. 2

The foregoing reasoning is closely related to arguments used by many
authors to establish self-adjointness properties of elliptic operators (see [3],
Section 3, and references therein). It can also be extended to derive unique-
ness of non-symmetric elliptic operators from uniqueness of the symmetric
principal part, but that is another story.
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10. Ma, Z. M., and Röckner, M., Introduction to the theory of (non symmetric) Dirichlet
Forms. Universitext. Springer-Verlag, Berlin etc., 1992.

11. Ouhabaz, E., and Robinson, D. W., Uniqueness properties of degenerate elliptic op-
erators. J. Evol. Equ. (2012) (to appear).

12. Robinson, D. W., and Sikora, A., Markov uniqueness of degenerate elliptic operators.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (2011), 731–759.

13. , L1-uniqueness of degenerate elliptic operators. Studia Math. 203 (2011), 79–
103.

Mathematical Sciences Institute, Australian National University, Can-
berra, ACT 0200


