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Abstract. A family of equivalent submultiplicative weights on the to-
tally disconnected, locally compact group G is defined in terms of the
conjugation action of G on itself. These weights therefore reflect the
structure of G, and the corresponding weighted convolution algebra is
intrinsic to G in the same way that L1(G) is.

1. Introduction

The group convolution algebra L1(G) is key to the functional analytic
approach to harmonic analysis on G, see [16, 17, 24, 25] for example, and
the algebraic properties of L1(G) are intimately related to the structure of
G. Indeed, L1(G) is only able to be defined because locally compact groups
support a left-invariant Haar measure, and the normed algebra L1(G) carries
complete information about G in the sense that, if L1(G) and L1(H) are
isometrically isomorphic, then G ∼= H, see [31].

When G is totally disconnected another group convolution algebra, a
subalgebra of L1(G), may be associated with G. This algebra, which is
denoted by L1

cw(G), is defined below in Section 3 in terms of the action of
G on itself by conjugation. It can therefore be expected that the structure
if L1

cw(G) will reflect properties of this action and, as a first step in this
direction, it is shown that L1

cw(G) is equal to L1(G) if and only if G is an
[IN]-group.

The algebra L1
cw(G) is a weighted convolution algebra on G, and basic

definitions and properties of these algebras are recalled in next section.

2. Weighted Convolution Algebras

2.1. Beurling algebras and spectral synthesis.

Definition 2.1. A submultiplicative weight on a locally compact group G
is a measurable function w : G→ R+ such that

w(xy) ≤ w(x)w(y), (x, y ∈ G).
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Given a submultiplicative weight w, a norm may be defined on C00(G),
the space of continuous functions on G with compact support, by

‖φ‖w :=

∫
G
|φ(g)|w(g) dg, (φ ∈ C00(G)),

where the integration is with respect to the Haar measure on G. Submul-
tiplicativity of the weight w implies that ‖ · ‖w is an algebra norm on the
convolution algebra C00(G), that is,

‖φ ∗ ψ‖w ≤ ‖φ‖w‖ψ‖w, (φ, ψ ∈ C00(G)).

Denote the completion of C00(G) under this norm by L1(G,w). Then
L1(G,w) may be identified with{

f ∈ L1
loc(G) | ‖f‖w :=

∫
G
|f(x)|w(x) dx <∞

}
.

(As usual, functions that are equal almost everywhere are identified.) The
algebra L1(G,w) is called a weighted convolution algebra on G or a Beurling
algebra. Note that, when w is bounded below (necessarily by 1), L1(G,w)
is a subalgebra of L1(G).

According to Y. Domar, [7], weighted convolution algebras were originally
studied in [3] by A. Beurling with G = R. The aim of these papers was to
understand spectral synthesis on R, and it was only during this period that
the example of L. Schwartz showing the failure of spectral synthesis on R3

was discovered, [28]. Domar emphasized the Banach algebraic approach and
systematized much of the earlier work. An important property considered
in relation to spectral synthesis is that of being regular, which means that
functions with compact support are dense in the Gel’fand transform, and
Domar showed that L1(G,w) is regular if and only if w is non-quasianalytic,
that is,

∑∞
n=1 n

−2 logw(xn) <∞ for all x ∈ G.
The weighted convolution algebras to be studied in Section 3 have more

in common with algebras that are not regular, such as the following.

Example 2.2. Let G = (Z,+) and w(n) = b|n| (n ∈ Z), where b ≥ 1. Then
`1(Z, w) is a subalgebra of `1(Z). The annulus

Ab = {z ∈ C | 1/b ≤ |z| ≤ b}
is the carrier space of `1(Z, w) and the Gel’fand transform maps

δn 7→ zn.

The range is contained in the algebra of continuous functions on Ab that
are analytic on the interior.

Work in more recent times has studied related questions for non-abelian
G. It is shown in [15] for example that, if G is an [FC]−-group and w is
symmetric and non-quasianalytic, then L1(G,w) satisfies the Wiener prop-
erty, that is, each proper closed ideal is annihilated by an irreducible *-
representation. Compactly generated groups with polynomial growth are
studied in [9, 10] and it is shown that L1(G,w) is symmetric if and only if

limn→∞w(xn)1/n = 1 for every x ∈ G. A functional calculus is developed
in these papers and in [8] and is used to show that L1(G,w) has the Wiener
property.
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Certain weighted convolution algebras L1(Rn, w) also appear naturally as
part of the description of topologically simple modules over L1(G), where G
is a simply connected, exponential, solvable Lie group, see [22] and [19].

2.2. Equivalence of weights.

Definition 2.3. Two submultiplicative weights w1 and w2 on G are equiv-
alent if there are constants C and D with

Cw1(x) ≤ w2(x) ≤ Dw1(x), (x ∈ G).

The significance of equivalence of weights lies in the following, easily ver-
ified, assertion.

Proposition 2.4. The weights w1 and w2 on G are equivalent if and only
if L1(G,w1) = L1(G,w2).

Before proceeding to the definition of the particular weighted convolution
algebras on totally disconnected groups that are the subject of this note,
it is worth observing that Example 2.2 may be extended to produce many
distinct weighted convolution algebras on any given locally compact group.

Example 2.5. Let ` : G→ R≥0 be a length function on G, that is,

`(xy) ≤ `(x) + `(y), (x, y ∈ G).

(One way to define a length function on a locally compact group G is to
use a word metric: if K is a symmetric generating set for G, define w(x) =
min {n ∈ N | x ∈ Kn}.) Then

w(x) := b`(x) and w(x) := (1 + `(x))α

are submultiplicative weights for every b ≥ 1 and α ≥ 0. Provided that ` is
unbounded, such weights with different bases b or different exponents α are
not equivalent. Hence there are uncountably many inequivalent submulti-
plicative weights on G.

The submultiplicative weights (and corresponding convolution algebras)
in the previous example are only loosely tied to the structure of the under-
lying group. The weights on totally disconnected groups that are about to
be defined are tied to the structure of the groups much more closely than
those defined in terms of length functions.

3. Totally Disconnected Groups

3.1. Compact open subgroups and weights. Throughout this section,
G will denote a totally disconnected, locally compact group. The follow-
ing result, proved by van Dantzig in the 1930’s [6], is fundamental in the
structure theory of such groups. See [17, Theorem II.7.7] for a proof.

Theorem 3.1 (van Dantzig). Let G be a totally disconnected, locally com-
pact group and U be a neighbourhood of the identity. Then there is a compact
open subgroup V ⊂ U .
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Denote the set of all compact, open subgroups of G by B(G). Any two
compact open subgroups, U and V , of G are commensurable, that is, the
index of U ∩ V in U , which will be denoted by [U : U ∩ V ], is finite, as is
[V : U ∩ V ].

A submultiplicative weight on G may be defined for each V ∈ B(G).

Proposition 3.2. Let V ≤ G be a compact open subgroup. Then the func-
tion

wV (x) := [xV x−1 : xV x−1 ∩ V ], (x ∈ G),

is a continuous, submultiplicative weight on G.

Proof. Continuity of wV at x follows from the fact that it is constant on the
open neighbourhood xV .

To prove submultiplicativity, observe that wV (xy) is bounded above by

[xyV (xy)−1 : xyV (xy)−1 ∩ xV x−1 ∩ V ],

which, since xyV (xy)−1 ∩ xV x−1 ∩ V ≤ xyV (xy)−1 ∩ xV x−1 ≤ xyV (xy)−1,
is equal to

[xyV (xy)−1 : xyV (xy)−1 ∩ xV x−1]
× [xyV (xy)−1 ∩ xV x−1 : xyV (xy)−1 ∩ xV x−1 ∩ V ].

The first factor is equal to wV (y) because conjugation by x is an auto-
morphism of G. The second is less than or equal to wV (x) because the
map

z
(
xyV (xy)−1 ∩ xV x−1 ∩ V

)
7→ z

(
xV x−1 ∩ V

)
is injective from(

xyV (xy)−1 ∩ xV x−1
)
/
(
xyV (xy)−1 ∩ xV x−1 ∩ V

)
→

xV x−1/
(
xV x−1 ∩ V

)
.

�

All weights as defined in the previous theorem are equivalent.

Proposition 3.3. The weights wU and wV are equivalent for any two
U, V ∈ B(V ).

Proof. Since U ∩ V is contained in both U and V , it suffices to treat the
case when U ≤ V . Let x ∈ G. Equivalence may then be seen by factoring
the index [xV x−1 : xUx−1 ∩ U ] in two ways. One factoring yields that
[xV x−1 : xUx−1 ∩ U ] is equal to

[xV x−1 : xUx−1][xUx−1 : xUx−1 ∩ U ] = [V : U ]wU (x),

and the second that it is equal to

[xV x−1 : xV x−1 ∩ V ][xV x−1 ∩ V : xUx−1 ∩ U ]

= wV (x)[xV x−1 ∩ V : xUx−1 ∩ U ].

Therefore

[V : U ]wU (x) = wV (x)[xV x−1 ∩ V : xUx−1 ∩ U ].
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Since all indices are at least 1, it follows that

wV (x) ≤ [V : U ]wU (x) and wU (x) ≤ [xV x−1 ∩ V : xUx−1 ∩ U ]wV (x).

Equivalence follows because

[xV x−1 ∩ V : xUx−1 ∩ U ]

= [xV x−1 ∩ V : xUx−1 ∩ V ][xUx−1 ∩ V : xUx−1 ∩ U ] ≤ [V : U ]2.

�

Definition 3.4. A weight w(x) = [xV x−1 : xV x−1 ∩ V ] will be called a
conjugation weight.

The algebra L1(G,w) is independent of the conjugation weight w by
Proposition 3.3 and we denote it by L1

cw(G). Since conjugation weights
are bounded below by 1, L1

cw(G) is a subalgebra of L1(G).

3.2. Conjugation weights and the scale function. As a consequence
of its definition, L1

cw(G) comes equipped with many natural algebra norms
but, unlike L1(G) or the group C∗-algebra C∗(G), there does not appear
to be a single most natural norm. However, integration against the scale
function, which is defined next, is a natural linear functional on L1

cw(G).

Definition 3.5. Let x ∈ G. The scale of x is the positive integer

s(x) := min
{

[xV x−1 : xV x−1 ∩ V ] : V ∈ B(G)
}
.

The compact open subgroup V of G is minimizing for x if the minimum is
attained at V .

This standard statement of the definition of the scale may be restated
in terms of the conjugation weights: s(x) = min {wV (x) | V ∈ B(G)}. The
concepts of scale and minimizing subgroup are partial substitutes in the
structure theory of totally disconnected, locally compact groups for linear
algebra techniques in the theory of Lie groups, as may be seen in proofs
in [1, 5, 11, 12, 13, 18, 23, 29, 34] for example. The following structural
characterisation of minimizing subgroups combines results from [32, 33].

Theorem 3.6. Let G be a totally disconnected, locally compact group. For
x ∈ G and V ∈ B(G) put

V+ :=
⋂
k≥0

xkV x−k and V− :=
⋂
k≥0

x−kV xk.

Then V is minimizing for x if and only if

TA: V = V+V−, and
TB: V++ :=

⋃
k∈Z x

kV+x
−k is closed.

If V is minimizing for x, then s(x) = [xV+x
−1 : V+].

A subgroup satisfying the conditions TA and TB is said to be tidy for x.
The scale has the following properties, which are established in [32].

Theorem 3.7. The scale function s : G→ Z+ is a continuous for the given
topology on G and the discrete topology on Z+. Furthermore:

(1) s(x) = 1 = s(x−1) if and only if there is V ∈ B(G) that is normalized
by x;



CONJUGATION WEIGHTS 141

(2) s(xk) = s(x)k for every k ≥ 0; and
(3) ∆(x) = s(x)/s(x−1), where ∆ : G→ R+ is the modular function on

G.

Definition 3.8. The group G is said to be uniscalar if s(x) = 1 for every
x ∈ G.

If G is uniscalar, then every element of G normalizes some compact, open
subgroup of G. That does not imply, however, that G has a compact, open,
normal subgroup, as Example 3.13 below shows.

The scale function is not generally submultiplicative on G, as the exam-
ple of the automorphism group of a tree examined in the last section of
[32] shows. Nevertheless, the above remark, that the scale is the greatest
lower bound of the conjugation weights, suggests that L1

cw(G) is the largest
convolution algebra of functions integrable against the scale. This bounded
functional on L1

cw(G) will be denoted

ϕcw(f) :=

∫
G
f(x)s(x) dx, (f ∈ L1

cw(G)).

Given this close link between L1
cw(G) and the scale, the relationship between

L1
cw(G) and the functional ϕcw on one hand and the structure of G on the

other is a promising area of investigation. This relationship is explored
further in the remainder of this subsection.
A spectral radius formula. The following asymptotic formula for the
scale was obtained by R. Möller in [21], in which he relied on results in [20].

Theorem 3.9. Let G be a totally disconnected locally compact group and
x ∈ G and let V be any compact open subgroup of G. Then, for any x ∈ G,

s(x) = lim
k→∞

[xkV x−k : xkV x−k ∩ V ]1/k.

Möller’s formula looks superficially like a spectral radius formula, and
it becomes precisely that on the space L1

cw(G): the translation operator
f 7→ δx ∗ f on L1(G,wV ) has norm wV (x) and so the spectral radius of this

map is limk→∞wV (xk)1/k which, by Möller’s formula, is the scale of x. Since
the spectral radius is defined algebraically and is independent of the norm,
s(x) is equal to the spectral radius of the translation operator on L1

cw(G).
(Although not an element of the algebra L1

cw(G), this translation operator
is a multiplier of the algebra.)
Compact, open, normal subgroups. It is immediate from the definition
of conjugation weights that, if U ∈ B(G) is normal, then wU (x) = 1 for every
x ∈ G. That the converse also holds is a theorem, an early version of which
was proved by G. Schlichting in [27], and which, in the version equivalent to
the following statement, was proved by G. Bergmann and H. Lenstra in [2].

Theorem 3.10. Suppose that there is V ∈ B(V ) such that the set of indices{
[xV x−1 : xV x−1 ∩ V ] | x ∈ G

}
is bounded. Then there is a compact, open subgroup U / G.

It follows that L1
cw(G) = L1(G) if and only if G has a compact open

normal subgroup, that is, G is an [IN]-group.
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3.3. Non-quasianalyticity of conjugation weights and amenability
of L1

cw(G). Example 2.2 presents a submultiplicative weight on Z that is
quasianalytic, and the Gel’fand transform of `1(Z, w) for this weight con-
sists of functions that are indeed analytic on an annulus. Algebras of analytic
functions do not satisfy spectral synthesis, thus indicating why a condition
like non-quasianalyticity is needed to establish regularity of weighted convo-
lution algebras. A group G that has non-quasianalytic conjugation weights
must also satisfy a quite restrictive condition.

Proposition 3.11. If the conjugation weight wV is non-quasianalytic for
any V ∈ B(G), then it is non-quasianalytic for all and G is uniscalar. Con-
versely, every conjugation weight on a uniscalar group is non-quasianalytic.

Proof. Since all conjugation weights are equivalent in the sense of Defini-
tion 2.3, if one weight is non-quasianalytic, all are.

If wV is non-quasianalytic, then the condition that
∞∑
n=1

n−2 logwV (xn) <∞

implies that {n−1 logwV (xn)} has a subsequence that converges to 0, whence

limn→∞wV (xn)1/n = 1 and x is uniscalar for every x ∈ G, by Theorem 3.9.
For the converse, suppose that G is uniscalar and let V be a compact, open
subgroup. Then, for any x ∈ G, there is U ∈ B(G) normalized by x and
wV (xn) = [xnV x−n : xnV x−n ∩ V ] is bounded by

[xnV x−n : xnV x−n ∩ V ∩ U ] =

[xnV x−n : xnV x−n ∩ U ][xnV x−n ∩ U : xnV x−n ∩ V ∩ U ],

where [xnV x−n : xnV x−n ∩ U ] = [V : V ∩ U ] because U is stable under x
and

[xnV x−n ∩ U : xnV x−n ∩ V ∩ U ] ≤ [U : U ∩ V ]

because the map

z
(
xnV x−n ∩ V ∩ U

)
7→

z(U ∩ V ) :
(
xnV x−n ∩ U

)
/
(
xnV x−n ∩ V ∩ U

)
→ U/(U ∩ V )

is injective. Hence wV (xn) ≤ [V : U ∩ V ][U : U ∩ V ] for all n ∈ Z and wV is
non-quasianalytic. �

Uniscalar groups need not have compact, open normal subgroups, as Ex-
ample 3.13 shows. Conjugation weights on such uniscalar groups will be
unbounded, by Theorem 3.10.
Amenability. A Banach algebra, A is amenable if the continuous cohomol-
ogy group H1(A, X∗) vanishes for every Banach A-bimodule X, see [26], and
is weakly amenable if H1(A,A∗) vanishes. The algebra `1(Z, w) in Exam-
ple 2.2 is not weakly amenable because the map

f 7→ d

dz

(∑
n∈Z

f(n)zn

)∣∣∣∣
z=1

is a derivation into C, and composition with the map C→ `∞(Z, 1/w) that
sends a to the constant sequence {a} is a derivation into `∞(Z, 1/w) ∼=
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`1(Z, w)∗ that is not inner. More generally, it was shown by N. Grønbæk
in [14, Theorem 0] that, for submultiplicative weights w that are bounded
below, L1(G,w) is amenable if and only if G is amenable and w is bounded.
Combining with Theorem 3.10 yields the following1.

Proposition 3.12. L1
cw(G) is amenable if and only if G is an amenable

[IN]-group.

Examples. This section concludes with some elementary examples of groups
that have unbounded conjugation weights.

Example 3.13. Any group, G =
⋃
λ Vλ, that is the union of compact, open

subgroups is uniscalar. It is seen in the next two paragraphs that such
groups may fail to have any compact, open, normal subgroups. Hence, by
Theorem 3.10, conjugation weights on G are unbounded in this case and
L1
cw(G) is a proper subalgebra of L1(G).
Let F be a finite group and H < F be a proper subgroup that is not

normal in F . For instance, F might be the symmetric group S3 and H
might be an order 2 subgroup. Then

G :=
{
g ∈ FZ | g(n) ∈ H for all but finitely many n

}
is a group with the pointwise group operations. The subgroup

{g ∈ G | g(n) ∈ H for all n}

may be identified with HZ and G equipped with a group topology such that
HZ is a compact, open subgroup with the product topology. Then

G =
⋃
N∈N
{g ∈ G | g(n) ∈ H unless |n| < N}

and G has no compact, open normal subgroups.
Let Xq, with q > 2, be the regular tree in which every vertex has degree

q + 1, and let ∞ be an end of Xq. (The ends of Xq are defined to be
equivalence classes of semi-infinite paths, ε = [v0, v1, . . . ), in Xq, where two
such paths are equivalent if they have infinite intersection.) Let G be the
fixator of ∞, that is,

G := {g ∈ Aut(X) | ∃ε ∈ ∞ such that g.v = v for every v ∈ V (ε)} ,
see [30] for this terminology. Then for any vertex v ∈ V (Xq), the stabilizer
stabG(v) is a compact, open subgroup of G and

G =
⋃

v∈V (Xq)

stabG(v)

but G has no compact, open, normal subgroup.

Example 3.14. Let G be a totally disconnected, locally compact that has
an element, x, and a compact, open subgroup, V , such that xV x−1 ≤ V .
Then V is clearly minimizing for x, s(x) = 1 and s(x−1) = [V : xV x−1]. If
xV x−1 is strictly contained in V , then s(x−1) > 1 and G is not uniscalar.
Hence conjugation weights on G are unbounded in this case and L1

cw(G) is

1I am grateful to Hung Le Pham for this remark.
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a proper subalgebra of L1(G). The next two paragraphs give a couple of
basic examples of such groups G.

Let p be a prime and G = Qp o Z where Z acts on the additive group of
p-adic numbers Qp by n.x = pnx. Then V := Zpo {0} is compact and open
in G and xV x−1 < V , where x = (0, 1) ∈ Qp o Z. We have s(x) = 1 and
s(x−1) = p in this case. Moreover, since Qpo{0} is abelian, V is minimizing
for every (y, n) ∈ G and

wV (y, n) = s(y, n) =

{
1 if n ≥ 0

p−n if n < 0
.

As in Example 3.13, let Xq, with q > 2, be the regular tree in which every
vertex has degree q + 1, and let ∞ be an end of Xq. Let G be the stabilizer
of ∞, that is,

G := {g ∈ Aut(X) | ε ∈ ∞ =⇒ g.ε ∈ ∞} .

Let λ = (. . . , v−1, v0, v2, v2, . . . ) be a doubly infinite path in Xq such that
[v0, v1, . . . ) ∈ ∞ and let x ∈ Aut(Xq) be a translation of Xq that has λ as
its axis and x.vj = vj+1 for every j ∈ Z. Let

H =
⋃
n∈Z

stabG(vn).

Then H is a normal subgroup of G and it may be shown that G = H o 〈x〉.
Put V = stabG(v0). Then xV x−1 < V , so that V is minimizing for x, and
s(x) = 1 and s(x−1) = q. Furthermore, although it is not the case that V is
minimizing for every element of G, we have

s(hxn) =

{
1 if n ≥ 0

q−n if n < 0

for any g = hxn ∈ G. Note that wV (hxn) is generally not equal to s(hxn)
for this group.

3.4. Questions. The rate of growth of a submultiplicative weight on a
group G influences whether the weighted convolution algebra L1(G,w) car-
ries an analytic structure or is amenable. At the same time, the rate of
growth of the conjugation weights, wV , V ∈ B(G), reflects the structure of
G. It can be expected therefore that properties of the algebra L1

cw(G) cor-
relate with the structure of the totally disconnected, locally compact group
G. Here are a few specific questions.

(1) For which groups is L1
cw(G) *-invariant? When does it satisfy the

Wiener property?
(2) Does the primitive ideal space of L1

cw(G) reflect the structure of G?
Does it carry analytic structure? Can this primitive ideal space be
related to values of the scale?

(3) Describe the closed L1
cw(G)-submodule of L∞cw(G) that is generated

by ϕcw. When G is uniscalar, ϕcw is constant and this submod-
ule is 1-dimensional. Can scale values on G be recovered from this
submodule?
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(4) Is L1
cw(G) weakly amenable in some cases, in particular, when G is

uniscalar? Should H1(L1
cw(G), L∞cw(G)) not vanish for some G, can

it be computed and interpreted in terms of G?

4. General locally compact groups

The relationship between L1
cw(G) and G could also be better understood

by extending, if possible, the definition of the weighted convolution algebra
from totally disconnected to general locally compact groups.

An elementary, and direct and comprehensive, way in which it might
be thought that that could be done would be to modify Definition 3.4 by
defining

wK(x) = m(xKx−1)/m(xKx−1 ∩K),

where K is a compact neighbourhood of the identity. However, that does
not seem to work as wK , so defined, is not usually submultiplicative. The
fact that V in Definition 3.4 is a compact, open subgroup appears to be
essential for the proof that wV is submultiplicative.

In a less elementary approach, submultiplicative weights may be defined
separately for connected Lie groups. Let G be a connected Lie group and
g be its Lie algebra. Let ‖ · ‖ be any algebra norm on L(g), the algebra of
linear operators on g. Then

w‖·‖(x) = ‖Ad(x)‖, (x ∈ G),

where Ad : G → L(g) is the adjoint representation, is a submultiplicative
weight on G. Since all algebra norms on the finite-dimensional space L(g)
are equivalent, all weights defined in this way on G are equivalent. Similarly
to the conjugation weights in totally disconnected groups, it may be seen
that:

• ρ(x) = inf
{
w‖·‖(x) | ‖ · ‖ an algebra norm on L(g)

}
, where ρ(x) de-

notes that spectral radius of Ad(x);
• there is no natural, or best, choice of algebra norm on L1

cw(G) (de-
fined analogously as for totally disconnected groups); and
• integration against ρ(x) is a natural bounded linear functional on
L1
cw(G);

• w‖·‖ is bounded if and only if G is an [IN]-group.

This definition of weight function can be extended to locally compact groups
by approximating the connected component by Lie groups. It may be seen
that the algebra obtained does not depend on which Lie group is used to
approximate G. Finally, an algebra L1

cw(G) may be defined for general
locally compact groups by defining particular conjugation weights w‖·‖, for
the conjugation action of G on its connected component G0, and wV , for
the action of G on G/G0, and setting w(x) = w‖·‖(x)wV (x).
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