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A LINEARIZED ELLIPTIC FREE BOUNDARY VALUE PROBLEM 

A,J, Pryde 

This is a report on joint work with John van der Hoek. We consider the 

flow of an irrotational inviscid and incompressible fluid under a thin body 

of convex plan form at a non-uniform small clearance from a plane ground 

surface. The problem is relevant to vehicle aero-dynamics, especially for 

racing cars. It was brought to our attention by E.O. Tuck who considered 

certain aspects of the problem in [3]. 

Following Tuck we take the body to be fixed and the flow to have a 

uniform velocity at infinity of U in the positive x-direction. The plan 

form of the body is assumed to be a bounded convex domain n in ~2 which 

is symmetric with respect to the x-axis and has a smooth boundary an . 

For each point q E an let 9 = 9(q) denote the angle measured in 

the anticlockwise direction between the positive x-axis and the outward 

unit normal V = V (q) at q , with -7T S 9 (q) S 7T • See the diagram. 

The leading and trailing edges of n determined by the transition 

points p = (a, b) and p = (a, -b) in an are the sets 

{q E an I e <q> I :o: I e <P> I , q t- p or P1 and 

{q E an I e <q> 1 s I e <P> 1 , q t- p or P1 

The distance between the body and the ground surface at the point 

(x, y) E IT is h(x, y) • We assume that h is a positive smooth function 
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on IT symmetric about the x-axis. Let ¢ be the velocity potential of 

the flow at the ground surface. 

The problem reduces to the study of the following mixed free-boundary 

value problem: 

Find 

(1) 

1-
p E an , ¢ E c em 

div (h grad ¢) 

such that 

0 in n 1 

(2) Ux on rL(p) I 

(3) lgrad ¢1 

~rith the supplementary condition 

(4) o Wx + ¢> 
av 

0 at p and p 

Under the assumption that this problem has a solution, Tuck investi-

gated the position of the transition points p, p relative to the lateral 

extremities of n . In the special case of an exponentially increasing 

clearance and a circular plan form, he found numerically that 
1T 

< ·-2 

In this paper we consider a corresponding linearized mixed boundary 

value problem. Indeed we set ¢ Ux + ~ and assume lgrad ~~ << U . Under 

this approximation, we must dispense with the supplementary condition (4) 

and treat p E an as a parameter. Equations (1) I (2) I (3) become 

(5) div (h grad ~) -u 0h in n 1 

ox 



(6) 

(7) 

0 on f L (p) , 

()':!' = 0 on 
Clx 
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We consider questions of existence, uniqueness and regularity of 

solutions of (5), (6), (7) in Sobolev spaces Hs(Q) For this and other 

notation, see for example Lions and Magenes [1] • 

Define a properly elliptic operator Au by Av = div (h grad u) . 

For real s let H~(Q) denote the space of u E Hs(Q) for which Au E L2 (Q), 

together with the graph norm. The ·trace maps [ a ·d 
av] 

on smooth functions on 

IT, j=O,l,2._., extend by continuity to bounded operators 

For u E H~(Q) let yLu denote the restriction to rL rL(pl of 

you ' yTu the restriction to rT = rTcpJ of ylu I and BTU the re-

striction ·to rT of YoClu 
Clx 

Related ·to the problem (5) , (6) , (7) is the operator 

for which we have the following result. 

THEOREM 1 If 1:1 + _!_I e Cpl I < s < 11:1 then (A yL, BT) is Fredholm of 
'IT 

index 0 If in addition I e <P> I s 'll then (A, YL' BT) is an isomorphism. 
2 

COROLLARY If 1:1 + !l8(p) I < s < 11:1 and l8(p) I< 'IT then problem (5), 
'IT 2 
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(6), (7) has a unique solution in Hs ($1) , 

The theorem is proved by constructing a homotopy from (A, YL' B,r) 

to in "the space of semi-Fx edholm operators from to 

'I'he index of (A, yL, is then equal to 

"the index of (A, y L, y T) vrhich can be calculated using the Lax-Milgram 

theorem and results of Sharnir [2]. Uniqueness ,,,hen I 8 (p) J S 1T is a conse-
2 

quence of the Hopf maximum principle" So is 'che following result, ~rrhich 

relates to a. conjecture of Tuck [ 3] tha"t for 'che linearized problem (5), 

solution, it is necessary that jB(p)j = 1T 
1 

(6), (7) to have a c~ 

2 
that is the transition points p, p must lie at the lateral extremities 

of Q . 

THEOREM 2 If (5), (6), (7) has a solution '!' E c1 (Q) , Clh =::: 0 

3x 
Q (or Clh S 0 on Q) 

dX 
and h tc 0 then I 8 (p) I > 1T 

2 

on 

Finally we have the following regularity theorem, proved by localizing 

the problem" Recall also tha'c, by the Sobolev imbedding theorem, if 

THEOREM 3 If 1 < s 

of (5) f (6) , (7) belongs 

< 11,; 

to 

and 

Hs+l(S"l) 

le (pl I 1T "then "the soltrtion '!' E l'l (S1) 
2 
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Diagram 
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