EFIT++ Equilibrium Reconstruction

Lynton Appel§
Michele Romanelli§
David Muir§
John Storrs§
Clive Michael§
Maarten de Bock§
Nicolas Mercadier – Ecole Centrale Paris
Martin David - Ecole Centrale Paris
Frederic Imbeaux – CEA
Gabriele Manduchi – Padua, Italy.
Jakub Urban – IPP Prague, Czech.
Giuseppe Calabro, Edmondo Giovanozzi - Frascati, Italy

§ EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon, UK
I. EFIT++ code
II. MSE
III. Flux Coordinates
IV. Induced Currents
V. Errors
VI. Running EFIT++
VII. Documentation
EFIT++ is a rewrite of Lang Lao’s original EFIT1 code

1996 Porting of EFIT to CCFE from GA.

2005 Machine independent EFIT; interface to ITM.

2006 New C++ driver.

2007 Development of documentation, test suite.

2008 Development of module to compute Boozer coordinates.

2009 Generalised MSE constraint, netCDF-4 file output

1Lao, L L et al, Nuclear Fusion 25 (1985) 1611.
EFIT++ solves the equation of equilibrium force balance in a tokamak in the presence of finite toroidal rotation, ω, and zero poloidal rotation:

$$\mathbf{j} \times \mathbf{B} = \nabla p + \rho_m \frac{d\mathbf{v}}{dt}$$

$$\approx \nabla p - \rho_m \omega^2 \mathbf{Re}_R$$

Resulting Grad-Shafranov equation is

$$\Delta^* \psi_p = -\mu_0 RJ (R, Z)$$

where

$$J_\phi (R, Z) = \frac{1}{\mu_0 R} \int f f'(\psi_p) + R p'(\psi_p, R)$$

in which

$$p(\psi_p, R) = p_0 (\psi_p) \exp \left[\left(\frac{\omega(\psi_p)}{c_s(\psi_p)} \right)^2 \frac{R^2}{2} \right]$$

$$f(\psi_p) = RB_\phi$$

and $c_s = \sqrt{T(\psi_p)/m}$ is the ion sound speed.
EFIT++ requires J_ϕ to be a linear function of the flux functions. This is possible in the limit $\omega R/c_s < 1$

$$p \approx p_1(\psi_p) + \left(\frac{R^2 - R_T^2}{R_T^2}\right)p_w(\psi_p)$$

where

$$p_w(\psi_p) = \frac{R_T^2 \rho_o(\psi_p)}{2} \left(\frac{\omega(\psi_p)}{c_s(\psi_p)}\right)^2$$

and

$$p_1(\psi_p) = \rho_o(\psi_p) - p_w(\psi_p)$$

yielding

$$J_\phi(R,Z) = \frac{1}{\mu_0 R} \frac{\partial f f'(\psi_p)}{\partial \psi_p} + \frac{\partial R p'(\psi_p)}{\partial \psi_p} + \left(\frac{R^2 - R_T^2}{R_T^2}\right)R p_w'(\psi_p)$$
EFIT++ Flux Functions

Users select either polynomial flux-functions

\[g(\tilde{\psi}) = \sum_{i=1}^{i=n} \alpha_i \tilde{\psi}^{i-1} - H \tilde{\psi}^n \sum_{i=1}^{i=n} \alpha_i \]

(with H=0 or H=1), or a tension spline\(^1\) representation:

\[g(\tilde{\psi}) = \frac{g''_i}{T^2} \left[\frac{\sinh \left(T(\tilde{\psi}_{i+1} - \tilde{\psi}_i) \right)}{\sinh \left(Th_i \right)} - \frac{1}{h_i} (\tilde{\psi}_{i+1} - \tilde{\psi}_i) \right] + \frac{g_i}{h_i} (\tilde{\psi}_{i+1} - \tilde{\psi}_i) + \frac{g''_{i+1}}{T^2} \left[\frac{\sinh \left(T(\tilde{\psi} - \tilde{\psi}_i) \right)}{\sinh \left(Th_i \right)} - \frac{1}{h_i} (\tilde{\psi} - \tilde{\psi}_i) \right] + \frac{g_{i+1}}{h_i} (\tilde{\psi} - \tilde{\psi}_i) \]

\[h_i = \tilde{\psi}_{i+1} - \tilde{\psi}_i \]

• Continuity in \(g' \) enforced at each internal knot.

• Users can prescribes \(g \) or \(g'' \) at any knot location.

\(^1\)Cline, A., K, ACM 17 (1974) 218
EFIT++ needs to solve a 2-D nonlinear elliptic equation of the form

$$\Delta^* \psi_p = F(ff'(\psi_p), p'(\psi_p), p'_w(\psi_p), R, \{I_{pf}\})$$

Algorithm uses a Picard's iteration scheme. Each iteration solves two separate problems:

- Given $\psi_p(R, Z)$ obtain $ff', p', p'_w, R, \{I_{pf}\}$
- Given $ff', p', p'_w, R, \{I_{pf}\}$ obtain $\psi_p(R, Z)$

Lynton Appel – ANU Faculty of Physics meeting May 2010
EFIT++ Picard Iteration

1) Given \(\psi_p(R,Z) \) obtain \(ff', p', p'_w, R, \{ I_{pf} \} \).

➢ Obtain chi-squared fit to spline coefficients and poloidal currents

\[
\chi^2 = \left| \sum_{i=1}^{N} \chi_i^2 \right|_{\text{Min}}
\]

\[
\chi_i^2 = \left(\frac{M_i - P_i}{\sigma_i} \right)^2
\]

- \(M_i \) is measured value of constraint \(i \) input by user
- \(\varepsilon_{\text{abs}} \) (absolute error) and \(\varepsilon_{\text{rel}} \) (relative error) input by user
- \(W_i \) (weight) input by user

Form linearised constraint equations, eg. for magnetic detectors:

\[
\sigma_i = \frac{\varepsilon_{\text{abs}}, \varepsilon_{\text{rel}} M_i}{W_i}
\]

\[
P_i(r_i) = \sum_j G(r_i; r_{pf(j)}) I_{pf(j)}^{(m+1)} + \int_{\text{plasma}} G(r_i; R, Z) J_\phi(R, \psi_p^{(m)}, \alpha_{1...p}^{(m+1)}, \beta_{1...q}^{(m+1)}, \gamma_{1...r}^{(m+1)}) dRdZ
\]

Lynton Appel – ANU Faculty of Physics meeting May 2010
2) Given \(f f', p', p'_w, R, \{ I_{pf} \} \) obtain \(\psi_p(R,Z) \).

Field solution by solving linearised Grad-Shafranov equation

\[
\Delta^* \psi_p = -\mu_o R J_\phi
\]

using Finite Difference Grid with boundary-integral to represent external fields.
Configurable constraints

• Flux and saddle loops.
• Magnetic pick-up coils.
• Pf circuits.
• q_0
• Plasma current
• Diamagnetic flux and Bphi.
• Total pressure
• Rotational pressure
• B-poloidal
• Position of Separatrix
• Iso-flux surfaces
• Faraday Rotation
• MSE
• p' proportional to ff'
• Relational constraints: p', ff', p_{rot}, fcoils.
I. EFIT++ code
II. MSE
III. Flux Coordinates
IV. Induced Currents
V. Errors
VI. Running EFIT++
VII. Documentation
MSE principle:
Measure polarisation angle Stark lines parallel (p) or perpendicular (s) to (local) electric field

• \(E = E_s + v_{beam} \times B \)

where

\[E_s = -v_{plasma} \times B + \frac{1}{qn} \nabla p + \frac{m}{q} v_{plasma} \cdot \nabla v_{plasma} \]

• if \(v_{beam} \) and \(E_s \) are known, B can be determined:

eg for an infinitesimal collection volume,

\[\tan \gamma = \frac{A_0 B_z + A_1 B_R + A_2 B_\phi}{A_3 B_z + A_4 B_R + A_5 B_\phi} \]

MSE on MAST operates routinely intershot with

• 35 channels close to mid-plane.
• Spatial resolution: 2.5cm
• Time-resolution 0.5ms.
• RMS noise \(\Delta \gamma \leq 0.5^\circ. \)
• Reliable MSE-controlled EFIT++ reconstructions.
Generalised MSE constraint requires full description of Neutral beam and MSE optics. Entire system is implemented with 21 object classes.

MSE constraint

- **MSE hardware**
 - MseChannels
 - MseChannel
 - OpticalFibreBundle
 - OpticalFibreBundles
 - OpticalLens
 - OpticalLenses
 - OpticalFibre
 - OpticalFilter
 - OpticalFilters

- **Neutral Beam systems**
 - NeutralBeam
 - NeutralBeamlet
 - NeutrallInjectorBox
 - NeutrallInjectorBoxes

- **Time-slice structures**
 - TimeSliceMseChannel
 - TimeSliceMseChannels
 - TimeSliceOpticalFibreBundle

- **Code-specific data**
 - DataSelection
 - EfitMseChannel
 - EfitMseChannels
 - EfitNeutrallInjectorBoxes

- **Time-dependent signal:** $f(t)$
 - TimeTrace

Lynton Appel – ANU Faculty of Physics meeting May 2010
Tokamak data structures MSE-system

- mseChannels
 - mseChannel
 - id
 - name
 - neutralBeamIds
 - opticalFibreBundleId
 - opticalFilterId
 - timeTrace

- opticalFibreBundles
 - opticalFibreBundle
 - id
 - name
 - opticalLensId
 - diameter
 - collectionEndCoordinates
 - detectorEndCoordinates

- opticalLenses
 - opticalLens
 - id
 - name
 - diameter
 - opticalAxis
 - opticalPlaneVector

- opticalFilters
 - opticalFilter
 - id
 - name
 - filterModel
 - wavelengthValues
 - transferFunctionValues
 - fullWidthHalfMaximum
 - centralWavelength
 - T
 - order

array of pairs of {NIB, neutralBeam}Id's
Tokamak data structures representing neutral beams

Example system, JET with 2 Neutral Injector Boxes (NIBS), each with 8 Positive Ion Neutral Injectors (PINIS), each PINI being composed of many beamlets.
Inconsistencies in MSE data

- Fit to MSE data typically best near magnetic axis on outboard size
- Poorest fits for MSE channels
 - inboard of magnetic axis.
 - near outer edge of plasma.

- Analysis of constraint matrix (S) reveals cause of inconsistency close to outer edge.
- Construct SS^{-1} (S^{-1} is the SVD psuedo-inverse)
- Large off-diagonal values of SS^{-1} indicate covariance between outer MSE channels and inboard magnetic signals.
Example MAST reconstruction constrained with 35 MSE channels, pressure measurements, and magnetics.

- Evidence of hollow current and reversed q-profiles.
I. EFIT++ code
II. MSE
III. Flux Coordinates
IV. Induced Currents
V. Errors
VI. Running EFIT++
VII. Documentation
Flux coordinates

- **EFIT++** solves Grad Shafranov equation in cylindrical \((R,\phi,Z)\) coordinates whereas **HAGIS** code uses flux-coordinates.

- Originally, flux-coordinates were computed by HELENA.
 - Particles could not be followed outside the separatrix.

- **EFIT++** now extended:
 - Flux coordinates computed directly from the unbounded EFIT++ equilibrium.
 - Flux coordinates continuous over both interior and exterior domains.
Flux coordinates: implementation

- HAGIS coordinates are

\[B = \delta(\psi_p, \theta) \nabla \psi_p + I(\psi_p) \nabla \theta + g(\psi_p) \nabla \zeta \]

\[B = \nabla \zeta \times \nabla \psi_p + q \nabla \psi_p \times \nabla \theta \]

\[J = \frac{I + gq}{B^2} \quad q = \frac{d\zeta}{d\theta} = \frac{B \cdot \nabla \zeta}{B \cdot \nabla \theta} \]

- Interior plasma EFIT++ region uses HAGIS coordinates.

- But singularity problem at separatrix due to x-point!
Singularity avoided in \textit{EFIT++}

- For $0 < \psi_p < 0.95$ construct straightfield line coordinates.
- For $\psi_p > 0.95$ construct Boozer coordinates on open flux surface between $z_{\text{min}} < z < z_{\text{max}}$
- In exterior region, $I(\psi_p)$ and $q(\psi_p)$ are arbitrary functions.

\[I = I_{\text{edge}} + \left. \frac{\partial I}{\partial \psi_p} \right|_{\text{edge}} \psi_N \left(1 - e \frac{\psi_p - \psi_{\text{edge}}}{\psi_N} \right) \]

and maximal variation of θ on a surface ψ_p:

\[\Delta \theta = \Delta \theta_{\text{edge}} + \left. \frac{\partial \Delta \theta}{\partial \psi_p} \right|_{\text{edge}} \psi_N \left(1 - e \frac{\psi_p - \psi_{\text{edge}}}{\psi_N} \right) \]
• EFIT++-generated flux surfaces interfaced to HAGIS code.

➢ Now possible to tracking energetic particle motion across the separatrix.

Hagis simulation of a 200keV Deuteron travelling across the separatrix
I. EFIT++ code
II. MSE
III. Flux Coordinates
IV. Induced Currents
V. Errors
VI. Running EFIT++
VII. Documentation
Induced Currents

- Induced currents are included with a separate programme.

INDUCTION

- Solves induction equation on all passive structures.
- Plasma current contribution modelled as a distributed current source scaled to the measured plasma current signal.
- Option exists to run **INDUCTION** iteratively using **EFIT++**-generated plasma current distribution.
I. EFIT++ code

II. MSE

III. Flux Coordinates

IV. Induced Currents

V. Errors

VI. Running EFIT++

VII. Documentation
Treatment of errors

- EFIT++ obtains ‘optimum’ solution of currents and plasma function coefficients by solving linearised constraint equation

\[AX = B \]

- In case where all flux functions are polynomials, solution is obtained using SVD of \(A \),

\[
A = U \begin{bmatrix} w_1 & \cdots & \cdots & w_n \end{bmatrix} V^T
\]

- Least squares solution and covariances are

\[
X = V \begin{bmatrix} 1/w_1 & \cdots & \cdots & 1/w_n \end{bmatrix} U^T ; \quad \sigma_{jk} = Cov(X_j, X_k) = \sum_{i=1}^{n} \frac{V_{ji}V_{ki}}{W_i^2}
\]

- Errors of derived parameters, eg \(q = f(X) \) given by

\[
\sigma_q^2 = \sum_i \sum_j \frac{\partial f(X_o)}{\partial X_i} \frac{\partial f(X_o)}{\partial X_j} \sigma_{ij}
\]

where \(X_o \) denotes optimal solution
I. EFIT++ code
II. MSE
III. Flux Coordinates
IV. Induced Currents
V. Errors
VI. Running EFIT++
VII. Documentation
Running EFIT++

Four ways to run EFIT++:

1. Invoke EFIT++ executable directly *(for the expert only).*

2. Execute EFIT++ using efit++ shell command:

   ```
   efit++ [-h] [-d] [-e<executable>] [-pN] [-f<hostFile>] [-g] [-i<plasmaCutoffCurrent] [-o<dir>] [shotBegin] [shotEnd]
   ```

3. Execute EFIT++ using IDL controller `efit4idl`

 ➢ A range of pre-configured run configurations.
 ➢ Group-settings of run parameters.
 ➢ Run-time
 ➢ Output plots generated.

4. Execute EFIT++ using MC3.

 ➢ Integrated analysis package
 ➢ Sophisticated visualisation and run-time control.

• Parallelisation implemented using MPI
User-interface mirrors underlying OO code. Two generic types of data

- **Tokamak data**: data specific to tokamak device.
- **Code-specific data**: data specific to EFIT++.

Data input

- Using IDAM from JET/COMPASS/MAST/FTU data repositories including via MDS+ database.
- XML data files.

Input XML can be split into multiple files as desired by user.

Most code parameters configurable as time-dependent or time-independent, eg:

```xml
<numericalControls
  interpolationMethod=3
  timeMargin=0.2
  times ="0.1 0.2 0.3 0.4" />
<pp ndeg ="2 3 6 7" edge="1" func="0" />
</numericalControls> </Top>
```
• Example tokamakData.xml file.

```
<Top>
  <include file="tokamakDataSource.xml" />
  <include file="debug.xml" />
  <include file="outputOptions.xml" />
  <include file="times.xml" />
  <include file="numericalControls.xml" />
  <include file="relationalffprime.xml" />
  <include file="relationalpprime.xml" />
  <include file="relationalRotationalpprime.xml" />
  <include file="grid.xml" />
  <include file="current.xml" />
  <include file="efitOptions_submse.xml" />
  <include file="boundary.xml" />
  <include file="pressure.xml" />
  <include file="cx.xml" />
  <include file="efitOptions_subpf.xml" />
  <include file="efitOptions_submp.xml" />
  <include file="efitOptions_subfl.xml" />
</Top>
```
Output written to **HDF5** and/or **netCDF4** data files.

- Interpreters for both formats widely available eg in Mathematica, Matlab, IDL…
- EFIT++-specific data visualizers available within **IDL4EFIT** and **MC3**.
I. EFIT++ code
II. MSE
III. Flux Coordinates
IV. Induced Currents
V. Errors
VI. Running EFIT++
VII. Documentation
EFIT++ documentation

- Extensive user’s documentation and programmer’s documentation
 https://mastweb.fusion.org.uk/svndocs/efit++/index.html
- EFIT++ code maintained in ‘open-access’ SVN repository
- Extensive benchmark tests run prior to each code release.
 ➢ Specific tests for JET, MAST, FTU, COMPASS.
- All previous releases maintained online.
 https://mastweb.fusion.org.uk/svnroot/efit++/development/
- Current information and views in EFIT WIKI
 http://fusweb1/culham.CCFE.org.uk/fusionwiki/index.php/EFIT
access to EFIT++

- **EFIT++ svn repository**, and **WEB documentation** located at
 https://mastweb.fusion.org.uk/svndocs/

- **Read access** available to anyone with a **JETNET** domain or **FUSION** domain account.
Conclusions

• **EFIT++** computes equilibrium reconstruction to provide
 - Routine reconstructions.
 - Tailored reconstructions.
 - Operation as a module of the **ITM**
 - Flexible XML-based input removes ‘requirement’ to introduce short-term *hacks*.

• Code implementation is machine independent
 - **EFIT++** in use on **MAST, JET, COMPASS** and **FTU tokamaks**.

• **Integral test-suite** run routinely.

• Comprehensive web-based documentation.

• International project team.
Tokamak data structure representation of one timeSlice

- timeSliceMseChannels
 - timeSliceMseChannel
 - value
 - weight
 - sigma
 - neutralBeamIds
 - opticalFilter
 - timeSliceOpticalFibreBundle
 - opticalLens
 - diameter
 - collectionEndCoordinates
 - detectorEndCoordinates
 - opticalFibre
 - neutralLens
 - id
 - name
 - diameter
 - opticalAxis
 - opticalPlaneVector
 - neutralInjectorBoxes
 - neutralInjectorBox
 - id
 - name
 - neutralBeamlet
 - divergence
 - axialAttenuation
 - horizontalFocus
 - verticalFocus
 - origin
 - neutralBeam
 - id
 - name
 - massUnits
 - launchPlaneMidpoint
 - normalToLaunchPlane
 - voltageTrace
- Code-specific data structures

```
    efitMseChannels
        dataSelection
        efitMseChannel
            id
times
weights
polarisationStates
quantumNumbers
amplitudes
unshiftedSpectralWavelength
radialLensDiscretisation
angularLensDiscretisation
opticalVolumeDiscretisation
beamLaunchPlaneDiscretisation
```

dataSelection

interpolationMethod
timeWindow
timeMargin