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Problems with modern large scale
scientific experiments.

Drowning in data?

Solutions: Better data aquisition systems, databases etc.

Drowning in complexity.

Solutions: ?



How is scientific inference currently
S ~ handled?

! v
' /
. : Polarimetry « Interferometer ( A
Magnetics ’ MSE
l Code « Code
| R Code
: ~ A
: Thomson LIDAR
- Scattering . code
: Code Infrared
I cameras
' Code y

Neutron Camera

Equilibrium 4
I Code
Code = N
ECE
Code y
\
CX Reflectometry Further
Spectroscopy Code analysis codes:

Code mapping etc




A top-down view on our inference
problem.
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The Minerva analysis infrastructure seec

d

Minerva

* A fully modular inference infrastructure (separating diagnostic
models/combinations, physics assumptions, inversions, forward models etc)

* Based on Bayesian Graphical Models
(handles modularity of complex pdf:s)

* Handles all dependency management (keeps track of every single
parameter/option that can change), so user =
never needs to think about data flow, this also makes automatic caching Z}
possible.
* Can fully declare a scientific model in a complex experiment.

* Written in Java

* Machine independent
(used at JET, MAST, W7-X, H-1?)

observauic

J Svensson, A Werner, Large Scale Bayesian Data Analysis for Nuclear Fusion Experiments, WISP 2007



Probability Engineering:
Bayesian Graphical Models:
* A combination of graph theory and probability theory.
* Makes it easier to handle complex probabilistic systems (like our systems!).
* Nodes represent variables: stochastic or deterministic.

* Edges represent dependencies

p(a,b,c)=p(alc)*p(b|c)*p(c)

p(a,b,c,d)=p(d]|c)*p(c|a,b)*p(a)*p(b)

Ny
@ Generally: p(n, NNy, Ny ) = H p(n; | par(n;))
i=1




Minerva

KG1 (interferometry) Example graphs
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Minerva soed
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Minerva
Inversion

MAximum Posterior

Markov Chain Monte
Carlo

Linear Inversion

Model Inversion

Model Description/
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Bayes intro: An inference example

Extract temperature from Doppler broadening of spectral line:
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Bayes Theorem

! PN CILYI b

p(d)




Inference on toroidal current distribution

Plasma Model

Iron core

CT magnetics and MSE

CT magnetics and MSE and interf/polarim
2 Pulse No: 75050, t =625

Pulse No: 75050, t=62s
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* J Svensson, A Werner, Current Tomography for Axisymmetric Plasmas, Plasma Phys. Control. Fusion 50 No 8, 2008
* G von Nessi et al, forthcoming
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Maths for current tomography

Forward function: D' " =M1 +C

Likelihood: Gaussian noise

— Mag 1 1 Mag .+ — 1 — Mag

o(D" | 1) = —__exp(-=(MT1+C-D"*) Zo(MI+C-D""))
(27)"% 2[5 2

Prior: Multivariate Normal over free currents
(prior covariance imposes e.g. smoothing between nearby beams)
— 1 1 =-1 _ __
p(l) = — eXp(—E(l mi) e (I-my))
2z)M"? 1z

:> Posterior: Multivariate normal over free currents
MAP

- —Mag) 1 -t = (MAXimum Posterior)

p(l[D )= 1,26‘X|0(——(I m's (1-m))
(272_)N /2 /

—T=-1=— 1 =T=-1 _—Mag —

where m= (M ZDM-FZI) M Zp(D -C)

— T =1— =

S=(M oM+, )"



n, with uncertainty in mapping

Plasma Model

Iron core

Pickups Interferometer

CT with MSH inferferometry inversion on CT posterior,

CT with MSE MAP and inferferometry inversion,
Pulse No: 73050, t = 64s
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jior ,P,With force balance assumption
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Interim summary and outlook

* Summary:
* Uncertainties on flux surfaces, combined with inversions
* Bayesian exploration of uncertainties in equilibrium inference
 Greatly improved accuracy on ne and Te profile inference at JET

* In total about 10 diagnostic systems modelled in Minerva.

* Ongoing Minerva projects:
* ECE diagnostics (PhD of Stefan Schmuck, KTH, Sweden)
* Soft-X and Bolometry (PhD of Dong Li, Greifswald University)
* MAST modelling: Thomson scattering, CX, gen. force balance (with ANU, Australia).
* Reflectometry (with Antoine Sirinelli, JET),

* Bremsstrahlung and He-beam (with Maciej Krychowiak, IPP)



Excursion:
Inference on infinite dimensional functions

There are two quite different classes of inversion problems:

1. We have a real underlying parameterised physics-based model.
Example: fitting line spectra to (Gaussian, Voigt etc) line shapes.

2. We want to find an underlying, in principle infinite-dimensional, function, and we do

not really have any specific parameterisation we believe represent the underlying physics
process.

Example: tomographic inversion, density profiles etc

We tend to use methods developed for (1) also for problems belonging to class (2)!

... by choosing some “flexible” parameterisation such as grids, polynomials/splines etc.

then regularizing the solution. But what kind of “smoothness” does a polynomial of

A given order express in comparison to a set of Gaussian basis functions or something
else?




Difference between prior constraints and
parametric constraints.

Parameters “freeze” in or dictates the exact form of all possible functions we could observe,
at all positions.

Prior constraints, on the other hand, provide a “loose” probabilistic constraint that
can be overridden by the data.

.. so should we not prefer to “guide” the inference on infinite dimensional functions
by prior constraints rather than parametric constraints?

Could

+ prior on discrete beam currents

Be replaced by Jtor(R,Z) + prior directly on the function j,. (R,Z)



Can we do non-parametric tomography?

What happens if we let the density of beams, or density of profile points -> Infinity?

CT with MSE inferferometry inversion on CT posterior,
5 0Pulse No: 75050, t = 64s
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..the prior mean becomes a function over R,Z and the prior covariance matrix over
beams becomes a continous covariance function defining the prior covariance
between every pair of (R,Z):

k(R, Z)=...

... the posterior can be calculated directly and gives another posterior mean
and a posterior covariance function.

Both prior and posterior are now Gaussian random processes rather than
pdf:s over discrete parameters.

J Svensson, Non-parametric tomography using Gaussian processes, forthcoming



Non-parametric tomography
My, — My + K, (K, + E}-]_i (¥ —1L)
Efi—: — H$$ o E&:L-[HLL +E}']_1HL$

— k0
(K. ) = k(2 2x) k — prior covariance function

- f_— predicted observations at prior function mean
(Kp ) = k(x,x)dx X —points (R,Z) where we want to evaluate inferred function
e e y — los observations
"
— k
(Ko = | k(x;,x)dx
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J Svensson, Non-parametric tomography using Gaussian processes, forthcoming



Example: non-parametric interferometry
inversion

Samples from prior process 1 los observation 2 los observations
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J Svensson, Non-parametric tomography using Gaussian processes, forthcoming



Bramssirahlung diagnostic




E@ Thanks!



