Physics of high-current diode

Lie Liu

National University of Defense Technology Changsha, Hunan 410073, China

國防科學技術大學

National University of Defense Technology

NO:20100617135058086166

Content

- **1** Electron emission mechanisms and fabrication of cathode
- 2 Plasma formation and diagnostics in high-current diode
- **3** Experimental investigation of anode physics
- 4 Applications in different high power microwave (HPM) sources
- 5 On-going research

Schematic of high-current diode

1. Cathode emission physics

Time delay in plasma appearance
 Non-uniformity in plasma distribution

G. A. Mesyats, Explosive Electron Emission, URO Press (1998)

Low electric field threshold of electron emission (few kV/cm)
 Quasi-constant diode impedance behavior
 Csl coating superior diode operation

Before emission

After emission

Tracking of emission

- 1. Explosive electron emission
- 2. Surface flashover
- 3. Additional photo-electron emission with CsI coating

Lie Liu, et al., *High Power Laser and Particle beams*, Vol. **17**, pp. 1205-1209 (2005)

Hybrid emission mechanisms

Carbon Fiber Cathode

- 1. Explosive electron emission
- 2. Surface flashover
- 3. Additional photo-electron emission for CsI (good UV emitter) coating

Thus, we can conclude that an optimized cathode should have several electron emission mechanisms, and thus the uniformity of the whole electron emission surface of the cathode may be increased.

Property of carbon fiber

- Light weight, high strength, high modulus carbon fiber density: 1.6~2.15g/cm³ tensile strength: >2.2GPa modulus: >230GPa
- 2. Low coefficient of thermal expansion Room temperature: (-0.5~-1.6)×10⁻⁶/K, at 200~400°C: zero at <1000 °C: 1.5×10⁻⁶/K

Carbon unit cell

- 3. Electric property between metal and non-metal
- Boiling Point/Range: >3600°C
 Melting Point/Range: Not available
- 5. Excellent chemical resistance

Thickness of carbon fiber and hair

How to construct carbon fiber cathodes?

Robust (long life), easily shaped, and free-epoxy (Invention Patent No. 200310102051.7)

The advantages carbon-fiber cathode for electron emission:

olarger field amplification factor.

olower turn-on field and threshold field for emission.

ohigher intensity of electrical current.

obetter uniformity in emission

olower plasma expansion velocity .

ostronger to stand against the bombardment (long life)

Scanning electron microscope (SEM) image of carbon fiber cathode (side)

Scanning electron microscope (SEM) image of carbon fiber cathode (top)

Cathode with Csl coating

Scanning electron microscope (SEM) image of carbon fiber cathode (side) with CsI Coating

Energy distribution spectrum (EDS) of the materials on the carbon fibers with and without CsI coating

Without CsI coating

With Csl coating

Properties of ideal pulsed electron source

- Low electric field threshold for electron emission (<50 kV/cm)
- Nanosecond timescale turn-on
- Long life-time (>10⁷ pulses)
- High current densities (kA/cm²)
- Quasi-constant perveance of the diode, a slow plasma expansion rate
- Uniformity and arbitrary cross-section
- Vacuum (10⁻⁴ 10⁻⁵ Torr) compatibility, low outgassing rate
- Low power consumption

2. Diagnostics in diode

Testing system of optical assistant diagnostics

Lie Liu, et al., Chinese Physics B, Vol. 18, pp. 3367-3372 (2009)

Testing system of diagnostics

HSFC-PRO (High Speed Framing Camera)

A Mach-Zehnder interferometer was designed and used to measure the plasma density in the diode.

Expansion of Plasma in Diode

Gap distance 1.9cm

oCathode turn-on at t=0 ns

•Quasi-equilibrium process during t=0-400 ns

 \circ Inertial characteristic or anode plasma or both after t=400ns

High current densities (kA/cm²)

Emitting spots

Time-and-space resolved observations

X-ray imaging in time and space (Scintillator film (EJ-260) attach to anode)

Lie Liu, et al., *Chinese Physics B*, Vol. 19, No.3 (2010)

Spectroscopic diagnostics

V.Vekselman, J.Gleizer, D.Yarmolich, J.Felsteiner, Ya.Krasik, Lie Liu, and V.Bernshtam, *Appl. Phys. Lett.*, vol. 93, 081503, 2008.

"Cs plasma" remains at the vicinity of the cathode surface, Cs II (4603.8 Å) was obtained only at the distance of 2.5mm from the cathode surface.

Vacuum compatibility

Velvet cathode

Carbon fiber cathode

Velvet cathode, 20 Hz, 10 pulses

Carbon fiber cathode, 50 Hz, 10 pulses

3. Surface morphology of the stainless steel anode-grid irradiated by high-current electron beams

The anode grid is of 21 cm in diameter and 70% transparency. The square grid cell's inner length is about 2.5 mm with cylindrical single wire of 0.3 mm in diameter.

Surface morphology of a single wire observed by a SEM in increasing magnification

Question: Is it Rayleigh-Taylor-like interface instability?

4. A series of tufted carbon fiber cathodes designed for different high power microwave sources

Lie Liu, et al., Rev. Sci. Instrum. Vol. 79, P. 064701 (2008)

Carbon fiber-based cathodes for magnetically insulated transmission line oscillator (MILO) operation

Lie Liu, et al., Applied Physics Letters, vol. 91, p. 161504 (2007)

Large-Area uniformly emitting

Carbon fiber velvet cathode for MILO operation

5. On-going research: cathode with carbon nanotube (CNT) coating

Large-area uniformly CNT on cathode surface

Scanning electron microscope (SEM) image of CNT on cathode surface

U_d=318kV

l_d=84.5kA

Laser cladding (or by high-current electron beams)

Laser cladding to make carbon nanotube cathode

CNT cathode surface through laser cladding can generate field enhanced EEE and surface-flashover EEE.

What methods can been used to improve the cladding uniformity of carbon nanotube on a cathode?

Digging holes on the surface of cathode uniformly
 Fill carbon nanotube powder into these holes
 Apply laser cladding to combine them together

Recent research breakthroughs include novel methods to precisely fabricate new high current density cathodes and improved understanding of cathode emission physics.

90⁰

45⁰

00

Fig. 1. Experimental configuration for cathode tests.

Results from US Air Force Research Lab

D. Shiffler et al., IEEE transaction on Plasma Science, Vol. 32, pp. 2152-2154 (2004)

Voltage, Current, Current Density, and Shot Numbers for CNT Cathode. Note That Average Current Density Over Macroscopic Reaches 50 $\rm A/\,cm^2$

TABLE I

Voltage (kV)	Current (kA)	Current Density	Number of Shots
		(A/cm^2)	
137.5	0.8	12.5	5,000
165	1.3	20.3125	5,000
192.5	1.5	23.4375	5,000
220	1.7	26.5625	5,000
247.5	2.2	34.375	5,000
275	2.5	39.0625	5,000
302.5	3	46.875	5,000
330	3.3	51.5625	3,321

Results from China Academy of Engineering Physics & University of Science Technology Beijing

Image of CNT on cathode surface

Explosive field emission(1 MV) and plasma expansion

Q Liao et al., ACTA PHYSICA SINICA, Vol. 57, pp. 2328-2333 (2008)

What one can get from the Project

1. Paper ____physics and more discussion

(Comments from APL referees about my papers)

Paper Interesting: YesOriginal Paper: YesWell Organized: YesClear and Error Free: YesAppropriate Title: YesGood Abstract: YesAdequate References: YesClear Figures: Yes

Sufficient Physics: Yes Conclusions Supported: Yes Satisfactory English: No

2. Applications _____ fabrications and materials

The cathode material: Low electric field (<50 kV/cm) for electron emission, Nanosecond timesacle turn-on, Long life-time (>10⁷ pulses), High current densities (kA/cm²) a slow plasma expansion rate (coating technique), Uniformity and arbitrary cross-section Vacuum ($10^{-4} - 10^{-5}$ Torr) compatibility (low outgassing rate), Low power consumption The fabrication process and cathode structure: How to construct cathodes, Robust (long life), easily shaped, free-epoxy and surface treatment technique of cathodes

Overall rating —> **Something new and detailed**

Acknowledgement

- National Natural Science Foundation of China (No. 10975186).
- Some optical assistant diagnostics of plasma in diode were accomplished during the author's visit in Physics Department of Technion-Israel, collaborating with Prof. Krasik and his group!

