
WEIGHTED BMO SPACES ASSOCIATED TO OPERATORS

THE ANH BUI AND XUAN THINH DUONG

Abstract. Let X be a metric space equipped with a metric d and a
nonnegative Borel measure µ satisfying the doubling property and let
{At}t>0, be a generalized approximations to the identity, for example
{At} is a holomorphic semigroup e−tL with Gaussian upper bounds ge-
nerated by an operator L on L2(X). In this paper, we introduce and
study the weighted BMO space BMOA(X,w) associated to the the fa-
mily {At}. We show that for these spaces, the weighted John-Nirenberg
inequality holds and we establish an interpolation theorem in scale of
weighted Lp spaces. As applications, we prove the boundedness of some
singular integrals with non-smooth kernels on the weighted BMO space
BMOA(X,w).
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1. Introduction

The BMO (bounded mean oscillation) function spaces introduced by John
and Nirenberg on Euclidean spaces and by Coifmann and Wiess on spaces of
homogeneous type played an important role in modern harmonic analysis,
see [13, 6]. It is known that the BMO spaces are good substitutions to
L∞ spaces in studying the boundedness of Calderón-Zygmund operators
and in interpolation theory. Although Calderón-Zygmund operators are not
bounded on L∞, they map continuously from L∞ to BMO. Moreover, it is
also known that if a linear operator T is bounded on Lp, 1 ≤ p < ∞ and

2010 Mathematics Subject Classification. 42B20, 42B35, 47B38.
Key words and phrases. BMO spaces, Muckenhoupt weights, singular integrals.

7



8 THE ANH BUI AND XUAN THINH DUONG

bounded from L∞ to BMO then by interpolation T is bounded on Lq for all
p < q <∞.

In practical, there are large classes of operators which do not fall within
the scope of the Calderón-Zygmund theory of singular integral operators.
In these cases, the classical BMO space are no longer suitable spaces for
the study of the endpoint estimates at p = ∞ for such singular integral
operators. Note that the weighted estimates for singular integrals with non-
smooth kernels have been studied intensively by many authors, see for ex-
ample [3, 2, 7, 18, 19] and the references therein. Although the weighted
endpoint estimates at p = 1 have been investigated thoughtfully via the scale
of weighted Hardy spaces associated to operators, see for example [2, 18, 19],
the weighted endpoint estimates at p =∞ are less well-known and the aim
of this paper is to fill in this gap.

In this paper, given a family of operators {At}t>0 which is a generalized
approximations to the identity (See its definition in Section 2) and a suita-
ble weight w, we develop the theory of weighted BMO space BMOA(X,w)
associated to At. An important example of the family {At} is when {At} =
I − (I − e−tL)M for some positive integer M in which e−tL is a holomorphic
semigroup generated by an operator L on L2(X), assuming that L satis-
fies Gaussian heat kernel upper bounds and has a bounded L2 holomorphic
functional calculus. We show that the new weighted spaces BMOA(X,w)
retain some important properties, similarly to the classical weighted BMO
spaces. It turns out that the spaces BMOA(X,w) play an essential role in
obtaining the weighted endpoint estimates at p = ∞ for singular integrals
such as the spectral multipliers and holomorphic functional calculi. While
it is not clear whether or not the weighted endpoint estimates at p = 1 in
[2, 18, 19] can interpolate to obtain the weighted Lp estimates for singular
integrals, our interpolation theorem for the weighted spaces BMOA(X,w)
implies the weighted Lp norm inequalities for these operators, see Theorem
4.3. More precisely, the new results in this article are the following:

(i) The introduction of weighted BMO space associated to generalized
approximations of identity BMOA(X,w) (Section 3.1);

(ii) The weighted John-Nirenberg inequality (Lemma 3.6), and the equi-
valence of BMOp

A(X,w) for 1 ≤ p <∞ (Theorem 3.5);
(iii) An interpolation theorem concerning BMOA(X,w) (Theorem 4.3);
(iv) Applications to some singular integrals with non-smooth kernels (Section

5).

We note that under suitable conditions on the operator L and the weight
w, the dual space of the weighted Hardy space H1

L(X,w) associated to the
operator L introduced in [18] (see also [2, 19]) should be the weighted BMO
spaces BMOL∗(X,w) in this paper. However, we do not try to address this
issue in this article.

Throughout the paper, we shall write A . B if there is a universal con-
stant C so that A ≤ CB. Likewise, we shall write A ∼ B if A . B and
B . A.
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2. Preliminaries

We first recall the definition of the spaces of homogeneous type in [6]. Let
(X, d, µ) be a metric space with a metric d and a nonnegative Borel measure
µ satisfying the doubling property

µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞

for any x ∈ X and r > 0, where the constant C ≥ 1 is independent of x and
r and B(x, r) := {y : d(x, y) < r}.

It can be verified that the doubling property implies that there exist
c, n > 0 so that

(1) µ(B(x, λr)) ≤ cλnµ(B(x, r))

for all λ ≥ 1 and x ∈ X. The value of parameter n is a measure of the
dimension of the space. Moreover, there also exist c and N, 0 ≤ N ≤ n, so
that

(2) µ(B(y, r)) ≤ c
(

1 +
d(x, y)

r

)N
µ(B(x, r))

for all x, y ∈ X and r > 0. For further details on the spaces of homogeneous
type, we refer to [6].

To simplify notation, for a measurable subset E in X, we write V (E)
instead of µ(E). We will often use B for B(xB, rB). Also given λ > 0, we
will write λB for the λ-dilated ball, which is the ball with the same center
as B and with radius rλB = λrB and denote V (x, r) = µ(B(x, r)) for all
x ∈ X and r > 0. For each ball B ⊂ X we set

S0(B) = B and Sj(B) = 2jB\2j−1B for j ∈ N.

Recall that the Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
B3x

1

V (B)

ˆ
B
|f(x)|dµ(x).

We now give a simple covering lemma which states that we can cover a
given ball by a finite overlapping family of balls with smaller radii. This will
be used frequently in the sequel.

Lemma 2.1. For any ball B(xB, lr) in X, with l ≥ 1 and r > 0, then there
exists a corresponding family of balls {B(x1, r), . . . , B(xk, r)} such that

(a) B(xj , r/3) ⊂ B(xB, lr), for all j = 1, . . . , k;

(b) B(xB, lr) ⊂ ∪kj=1B(xj , r);

(c) k ≤ Cln;

(d)
∑k

j=1 χB(xj ,r) ≤ C, where C is independent of l and r.

The proof of this lemma is just a consequence of Vitali covering lemma
and doubling property (1). Hence we omit details here.
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2.1. Approximations to the identity. Let {At}t>0 be a family of linear
operators. Suppose that for each t > 0, the operator At has an associated
kernel at(x, y) in the sense that

Atf(x) =

ˆ
X
at(x, y)f(y)dµ(y)

for every function f ∈ ∪p≥1Lp(X).

Assume that the kernel at(x, y) of At satisfies the Gaussian upper bound

(3) |at(x, y)| ≤ C

V (x, t1/m)
exp

(
− cd(x, y)m/(m−1)

t1/(m−1)

)
,

for all t > 0 and x, y ∈ X where m is a positive constant, m ≥ 2.
The decay of the kernel at(x, y) guarantees that At is bounded on Lp(X)

for all p ∈ (1,∞). More precisely, we have the following proposition, see [9].

Proposition 2.2. For each p ∈ [1,∞], we have

|Atf(x)| .Mf(x)

for all t > 0 and f ∈ Lp(X), µ-a.e.

2.2. Muckenhoupt weights. We recall the definition and basic properties
of Muckenhoupt weights in [17]. Throughout this article, we shall denote
w(E) :=

´
E w(x)dµ(x) and V (E) = µ(E) for any measurable set E ⊂ X.

For 1 ≤ p ≤ ∞ let p′ be the conjugate exponent of p, i.e. 1/p+ 1/p′ = 1.
We first introduce some notation. We use the notation 

B
h(x)dµ(x) =

1

V (B)

ˆ
B
h(x)dµ(x).

A weight w is a non-negative measurable and locally integrable function on
X. We say that w ∈ Ap, 1 ≤ p <∞, if there exists a constant C such that
for every ball B ⊂ X,

(4)
( 

B
w(x)dµ(x)

)( 
B
w−1/(p−1)(x)dµ(x)

)p−1
≤ C.

When p = 1, (4) is understood that there is a constant C such that for every
ball B ⊂ X,  

B
w(y)dµ(y) ≤ Cw(x) for a.e. x ∈ B.

We set A∞ = ∪p≥1Ap.

For 1 < q ≤ ∞, we say that the weight w belongs to the reverse Hölder
class RHq if there is a constant C such that for any ball B ⊂ X,

(5)
(  

B
wq(y)dµ(y)

)1/q
≤ C

 
B
w(x)dµ(x).

When q =∞, (5) is understood that there is a constant C such that for any
ball B ⊂ X,

w(x) ≤ C
 
B
w(y)dµ(y) for a.e. x ∈ B.
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Let w ∈ A∞, for 1 ≤ p <∞, the weighted spaces Lpw(X) are defined by

Lpw(X) :=
{
f :

ˆ
X
|f(x)|pw(x)dµ(x) <∞

}
and we set

‖f‖Lpw(X) =
(ˆ

X
|f(x)|pw(x)dµ(x)

)1/p
.

We recall some of the standard properties of classes of Muckenhoupt weig-
hts in the following lemma, see for example [17].

Lemma 2.3. The following properties hold:

(i) A1 ⊂ Ap ⊂ Aq for 1 < p ≤ q <∞.
(ii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q <∞.

(iii) If w ∈ Ap, 1 < p < ∞, then there exists 1 < r < p < ∞ such that
w ∈ Ar.

(iv) If w ∈ RHq, 1 < q < ∞, then there exists q < p < ∞ such that
w ∈ RHp.

(v) A∞ = ∪1≤p<∞Ap ⊂ ∪1<q≤∞RHq

Lemma 2.4. For any ball B, any measurable subset E of B and w ∈ Ap, p ≥
1, there exists a constant C1 > 0 such that

C1

(V (E)

V (B)

)p
≤ w(E)

w(B)
.

If w ∈ RHr, r > 1. Then, there exists a constant C2 > 0 such that

w(E)

w(B)
≤ C2

(V (E)

V (B)

) r−1
r
.

From the first inequality of Lemma 2.4, if w ∈ A1 then there exists a
constant C > 0 so that for any ball B ⊂ X and λ > 1, we have

w(λB) ≤ Cλnw(B).

3. Weighted BMO spaces associated to operators

3.1. Definition of BMOA(X,w). Throughout this paper, we assume that
the family of the operators {At}t≥0 satisfies the Gaussian upper bounds (3)
and these operators commute, i.e. AsAt = AtAs for all s, t > 0. Note
that we do not assume the semigroup property AsAt = As+t on the family
{At}t≥0.

Following [11], we now define the class of functions that the operators
{At}t≥0 act upon. A function f ∈ L1

loc(X) is said to be a function of type
(x0, β) if f satisfies

(6)
(ˆ

X

|f(x)|2

(1 + d(x0, x))βV (x0, 1 + d(x0, x))
dµ(x)

)1/2
≤ c <∞.

We denote M(x0,β) the collection of all functions of type (x0, β). If f ∈
M(x0,β), the norm of f is defined by

||f ||Mx0,β
= inf{c : (6) holds}.
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For a fixed x0 ∈ X, one can check that M(x0,β) is a Banach space under the
norm ||f ||Mx0,β

. For any x1 ∈ X, M(x0,β) = M(x1,β) with equivalent norms.
Denote by

M = ∪x0∈X ∪0<β<∞M(x0,β).

Definition 3.1. A function f ∈M is said to be in BMOA(w) with w ∈ A∞,
the space of functions of bounded mean oscillation associated to {At}t≥0 and
w, if there exists some constant c such that for any ball B,

(7)
1

w(B)

ˆ
B
|(I −AtB )f(x)|dµ(x) ≤ c,

where tB = rmB (m is a constant in (3)) and rB is the radius of B.
The smallest bound c for which (7) is satisfied is then taken to be the norm
of f in this space and is denoted by ||f ||BMOA(X,w).

Remark: The space (BMOA(X,w), ‖ ·‖BMOA(X,w)) is a seminormed vec-
tor space, with the seminorm vanishing on the space KA, defined by

KA = {f ∈M : Atf(x) = f(x) for almost all x and for all t > 0}.

In this paper, BMOA(X,w) space is understood to be modulo KA.

The following result gives a sufficient condition for the BMO(X,w) to be
contained in BMOA(X,w). The proof for the unweighted case was given in
[15] (see also [11]).

Proposition 3.2. Suppose that w ∈ A1 and At(1) = 1 for all t > 0, i.e.,´
X at(x, y)dµ(y) = 1 for almost all x ∈ X. Then the inclusion BMO(X,w) ⊂

BMOA(X,w) holds where

BMO(X,w) := {f ∈ L1
loc : ‖f‖BMO(X,w) := sup

B

1

w(B)

ˆ
B
|f − fB|dµ <∞}.

Proof. Let f ∈ BMO(X,w). For any ball B, due to At(1) = 1, we have

1

w(B)

ˆ
B
|f(x)−AtBf(x)|dµ(x)

=
1

w(B)

ˆ
B

∣∣∣f(x)−
ˆ
X
atB (x, y)f(y)dµ(y)

∣∣∣dµ(x)

=
1

w(B)

ˆ
B

∣∣∣ˆ
X
atB (x, y)(f(x)− f(y))dµ(y)

∣∣∣dµ(x)

=
1

w(B)

ˆ
B

ˆ
X

∣∣∣atB (x, y)(f(x)− f(y))
∣∣∣dµ(y)dµ(x).
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This, along with (3), gives

1

w(B)

ˆ
B
|f(x)−AtBf(x)|dµ(x)

≤ C

V (B)w(B)

ˆ
B

ˆ
X

exp
(
− cd(x, y)m/(m−1)

t
1/(m−1)
B

)
× |f(x)− f(y)|dµ(y)dµ(x)

=
C

V (B)w(B)

ˆ
B

ˆ
2B
. . .+

∑
j≥2

1

V (B)w(B)

ˆ
B

ˆ
Sj(B)

. . .

= I +
∑
j≥2

Ij .

Let us estimate I first. We have

I .
1

V (B)w(B)

ˆ
B

ˆ
2B
|f(x)− fB|dµ(y)dµ(x)

+
1

V (B)w(B)

ˆ
B

ˆ
2B
|f(y)− f2B|dµ(y)dµ(x)

+
1

V (B)w(B)

ˆ
B

ˆ
2B
|f2B − fB|dµ(y)dµ(x)

. ‖f‖BMO(X,w).

For the term Ij , j ≥ 2, we have

Ij .
1

V (B)w(B)

ˆ
B

ˆ
2jB

∣∣∣ exp(−c2jm/(m−1))(f(x)− f(y))
∣∣∣dµ(y)dµ(x)

.
exp(−c2jm/(m−1))

V (B)w(B)

( ˆ
B

ˆ
2jB
|f(x)− fB|dµ(y)dµ(x)

+

ˆ
B

ˆ
2jB
|f(y)− f2jB|dµ(y)dµ(x)

+

ˆ
B

ˆ
2jB
|f2jB − fB|dµ(y)dµ(x)

)
. ‖f‖BMO(X,w).

These estimates on I and Ij , j ≥ 2 give ‖f‖BMOA(X,w) ≤ ‖f‖BMO(X,w). This
completes our proof. �

Proposition 3.3. For t > 0,K > 1 and w ∈ A1 we have for a.e. x ∈ X

|(Atf(x)−AKtf(x))| . (1 + logK)
w(B(x, t1/m))

V (x, t1/m)
‖f‖BMOA(X,w).

Before coming to the proof, we would like to mention that the same esti-
mates as in Proposition 3.3 was obtained in [11] under the extra assumption
of semigroup property on the family {At}. While the argument in [11] relies
on Christ’s covering lemma, our argument uses Lemma 2.1.

Proof. For any s, t > 0 such that t ≤ s ≤ 2t, we have

|Atf(x)−Asf(x)| ≤ |At((I −As)f(x))|+ |As((I −At)f(x))| := I1 + I2.
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We first estimate I1. The Gaussian upper bound (3) of At and the fact that
t ≈ s gives that

I1 .
1

V (x, t1/m)

ˆ
X

exp
(
− cd(x, y)m/(m−1)

t1/(m−1)

)
|(I −As)f(y)|dµ(y)

.
1

V (x, s1/m)

ˆ
B(x,s1/m)

exp
(
− cd(x, y)m/(m−1)

s1/(m−1)

)
|(I −As)f(y)|dµ(y)

+
∑
j≥2

1

V (x, s1/m)

ˆ
Sj(B(x,s1/m))

exp
(
− cd(x, y)m/(m−1)

s1/(m−1)

)
|(I −As)f(y)|

= I11 +
∑
j≥2

I1j .

For the term I11, since t ≈ s and w ∈ A1, we have

I11 ≤ ‖f‖BMOA(X,w)
w(B(x, s1/m))

V (x, s1/m)
≤ C‖f‖BMOA(X,w)

w(B(x, t1/m))

V (x, t1/m)
.

For j ≥ 2, using Lemma 2.1 we can cover the annulus Sj(B(x, s1/m)) by a

finite overlapping family of at most C2jn balls B(xjk, s
1/m). Using w ∈ A1,

we can dominate the term I1j as follows.

I1j .
1

V (x, s1/m)

ˆ
Sj(B(x,s1/m))

exp
(
− cd(x, y)m/(m−1)

s1/(m−1)

)
|(I −As)f(y)|dµ(y)

.
1

V (x, s1/m)

ˆ
Sj(B(x,s1/m))

e−c2
j/(m−1) |(I −As)f(y)|dµ(y)

.
∑
k

1

V (x, s1/m)

ˆ
B(xjk,s

1/m)
e−c2

j/(m−1) |(I −As)f(y)|dµ(y)

.
∑
k

w(B(xjk, s
1/m))

V (x, s1/m)
e−c2

j/(m−1)‖f‖BMOA(X,w)

.
w(B(x, 2js1/m))

V (x, s1/m)
e−c2

j/(m−1)‖f‖BMOA(X,w)

. 2jn
w(B(x, 2js1/m))

V (x, s1/m)
e−c2

j/(m−1)‖f‖BMOA(X,w)

. 2jne−c2
j/(m−1)‖f‖BMOA(X,w)

w(x, t1/m)

V (x, t1/m)
.

This implies

I1 ≤ C‖f‖BMOA(X,w)
w(B(x, t1/m))

V (x, t1/m)
.

A similar argument also gives

I2 ≤ C‖f‖BMOA(X,w)
w(B(x, t1/m))

V (x, t1/m)
.

Therefore, we have

(8) |(Atf(x)−At+sf(x))| . ‖f‖BMOA(X,w)
w(B(x, t1/m))

V (x, t1/m)



WEIGHTED BMO SPACES ASSOCIATED TO OPERATORS 15

for all t ≤ s ≤ 2t.
In general case, taking l ∈ N such that 2l ≤ K < 2l+1, we can write

(9)

|(Atf(x)−AKtf(x))| ≤
l∑

k=1

|A2l−1tf(x)−A2ltf(x)|+ |A2ltf(x)−AKtf(x)|

.
l∑

k=1

‖f‖BMOA(X,w)
w(B(x, 2l−1t1/m))

V (x, 2l−1t1/m)
.

Since w ∈ A1, we have

w(B(x, 2kt1/m))

V (x, 2kt1/m)
≤ Cw(B(x, t1/m))

V (x, t1/m)

for all k ≥ 0.
This together with (9) gives

|(Atf(x)−AKtf(x))| . (1 + logK)‖f‖BMOA(X,w)
w(B(x, t1/m))

V (x, t1/m)
.

This completes the proof. �

3.2. John-Nirenberg inequality on BMOA(X,w). In this section, we
will show that functions in the new class of weighted BMO spaces BMOA(X,w)
satisfy the John-Nirenberg inequality. The unweighted version was obtai-
ned in [11]. Here, we extend to the weighted BMO spaces associated to the
family of operators {At}t>0.

Definition 3.4. For w ∈ A1 and p ∈ [1,∞), the function f ∈M is said to
be in BMOp

A(X,w), if there exists some constant c such that for any ball B,

(10)
( 1

w(B)

ˆ
B
|(I −AtB )f(x)|pw1−p(x)dµ(x)

)1/p
≤ c.

where tB = rmB and rB is the radius of B.
The smallest bound c for which (10) holds is then taken to be the norm of f
in this space and is denoted by ||f ||BMOpA(X,w)

.

Similar to the classical case, it turns out that the spaces BMOp
A(X,w) are

equivalent for all 1 ≤ p <∞. More precisely, we have the following result.

Theorem 3.5. For w ∈ A1 and p ∈ [1,∞), the spaces BMOp
A(X,w) coin-

cide and their norms are equivalent.

Before coming to the proof Theorem 3.5 we need the following result.

Theorem 3.6. For w ∈ A1 and f ∈ BMOA(X,w), there exist positive
constants c1 and c2 such that for any ball B and λ > 0 we have
(11)

w{x ∈ B : |(f(x)−AtBf(x))w−1(x)| > λ} ≤ c1w(B) exp
(
− c2λ

‖f‖BMOA(X,w)

)
.

Proof. Let us recall that if w ∈ A∞, there exist C > 0 and δ > 0 such that
for any ball B and any measurable subset E ⊂ B we have

w(E)

w(B)
≤ C

(µ(E)

µ(B)

)δ
.
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So, to prove (11), it suffices to show that
(12)

µ{x ∈ B : |(f(x)−AtBf(x))w−1(x)| > λ} ≤ c1µ(B) exp
(
− c2λ

‖f‖BMOA(X,w)

)
.

The proof of (12) is similar to that of Theorem 3.1 in [11] in which Propo-
sition 2.6 in [11] is replaced by Proposition 3.3. However, for the sake of
completeness, we sketch out the proof here.

Without the loss of generality, we may assume that ‖f‖BMOA(X,w) = 1.
Then we need to claim that for all balls B, we have

(13) µ{x ∈ B : |(f(x)−AtBf(x))w−1(x)| > λ} ≤ c1e−c2λµ(B).

If α < 1, (13) holds for c1 = e and c2 = 1. Hence, we consider the case
α ≥ 1.

For any ball B ⊂ X, we set

f0 = [(f(x)−AtBf(x))w−1(x)]χ10B.

Then, using the fact that w ∈ A1, we have

‖f0‖L1 ≤
ˆ
10B
|(I −AtB )f(x)|w−1(x)dµ(x)

≤ V (10B)

w(10B)

ˆ
10B
|(I −AtB )f(x)|dµ(x)

. V (B)‖f‖BMOA(X,w) = V (B).

Taking β > 1, we set

F = {x : M(f0)(x) ≤ β} and Ω = X \ F.
Then we can pick a family of balls {B1,i}∞i=1 so that

(i) ∪iB1,i = Ω;
(ii) there exists κ > 0 so that

∑
i χB1,i ≤ κ;

(iii) there exists c0 such that c0B1,i ∩ F 6= ∅ for all i.

See [6, Chaptier].
For x ∈ B \ [∪iB1,i], by (i), we have

|(I −AtB )f(x)|w−1(x) = |f0(x)|χF (x) ≤M(f0)(x)χF (x) ≤ β.
Moreover, from (ii)-(iii) and the fact that the Hardy-Littlewood maximal
function M is of weak type (1, 1), we have∑

i

µ(B1,i) . µ(Ω) .
1

β
‖f0‖L1

≤ c3
β
V (B).

By using argument as in [11, pp. 24-25], we can prove that for B1,i ∩B 6= ∅,
we have

|(AtB1,i
−AtB )f(x)|w−1(x) ≤ c4β

for all x ∈ B1,i.
On each B1,i, repeat the argument above with the function

f1,i = [(I −AtB1,i
)f(x)w−1(x)]χ10B1,i
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and the same value β. Then we can pick the family of balls {B2,m}∞m=1 such
that

(a) for any x ∈ B1,i \ [∪mB2,m], |(I −AtB1,i
)f(x)|w−1(x) ≤ β;

(b)
∑

m µ(B2,m) ≤ c3
β V (B1,i);

(c) for any B2,m ∩ B1,i 6= ∅, |(AtB2,m
− AtB1,i

)f(x)|w−1(x) ≤ c4β, for all

x ∈ B2,m.

We now abuse the notation {B2,m} for the family of all families {B2,m}
corresponding to different B′1,is. Then, for all x ∈ B \ [∪mB2,m] we have

|(I −AtB )f(x)|w−1(x) ≤|(I −AtB1,i
)f(x)|w−1(x)

+ |(AtB1,i
−AtB )f(x)|w−1(x)

≤2c4β

and ∑
m

µ(B2,m) ≤
(c3
β

)2
V (B).

In the consequence, for eachK ∈ N+ we can find a family of balls {BK,m}∞m=1

so that

|(I −AtB )f(x)|w−1(x) ≤ Kc4β for all x ∈ B \ [∪mBk,m]

and ∑
m

µ(BK,m) ≤
(c3
β

)K
V (B).

If Kc4β ≤ α ≤ (K + 1)c4β for all K ∈ N+, we have

µ{x ∈ B : |(f(x)−AtBf(x))|w−1(x) > λ} ≤
∑
m

µ(BK,m) ≤
(c3
β

)K
V (B)

≤
√
β exp

(
− α log β

4c4β

)
V (B)

provided β > c23.
If α < c4β, then

µ{x ∈ B : |(f(x)−AtBf(x))|w−1(x) > λ} . e−
α
c4β V (B).

Hence, this completes our proof. �

Proof of Theorem 3.5: For f ∈ BMOp
A(X,w), using Hölder’s inequality,

we have, for all balls B,
(14)

1

w(B)

ˆ
B
|(I −AtB )f(x)|dµ(x)

≤ 1

w(B)

( ˆ
B
|(I −AtB )f(x)|pw1−p(x)dµ(x)

)1/p( 1

w(B)

ˆ
B
w(x)dµ(x)

)1/p′
≤ ‖f‖BMOpA(X,w)

.

This implies that BMOp
A(X,w) ⊂ BMOA(X,w).



18 THE ANH BUI AND XUAN THINH DUONG

Conversely, by Lemma 3.6, we have for any f ∈ BMOA(X,w), the ball B
and p ∈ [1,∞),

1

w(B)

ˆ
B
|(I −AtB )f(x)|pw1−p(x)dµ(x)

=
1

w(B)

ˆ
B
|(I −AtB )f(x)w−1(x)|pw(x)dµ(x)

=
p

w(B)

ˆ ∞
0

λp−1w{x ∈ B : |(I −AtB )f(x)w−1(x)| > λ}dλ

≤ cp
1

w(B)

ˆ ∞
0

λp−1w(B) exp
(
− c2

λ

‖f‖BMOA(X,w)

)
dλ

≤ cp‖f‖pBMOA(X,w)
.

The proof is complete.

2

4. An Interpolation Theorem

In this section, we study the interpolation of the weighted BMO space
BMOA(X,w) in general setting of spaces of homogeneous type. Firstly, We

review the concept of the sharp maximal operator M ]
A associated to the

family {At}t>0 defined on Lp(X), p > 0 as well as its basic properties in
[15],

M ]
Af(x) = sup

x∈B

( 1

µ(B)

ˆ
B
|(I −AtB )f(x)|dµ(x)

)
,

where tB = rmB .
We recall the following results in [15].

Theorem 4.1. Let 0 < p < ∞ and w ∈ A∞. For every f ∈ L1
0(X) with

Mf ∈ Lpw(X), we have

(i) M ]
Af(x) ≤ CMf(x).

(ii) ||Mf ||Lpw(X) ≤ C||M
]
Af ||Lpw(X) if µ(X) =∞.

(iii) ||Mf ||Lpw(X) ≤ C(||M ]
Af ||Lpw(X) + ||f ||L1) if µ(X) <∞.

In what follows, the operator T is said to be bounded from wL∞ to
BMOA(X,w) if there exists c such that for all f ∈ L∞(X),

‖T (fw)‖BMOA(X,w) . ‖f‖L∞ .

We recall an interpolation theorem for the classical weighted BMO in [5].

Theorem 4.2. Let T be a linear operator which is bounded on L2(Rn).
Assume that T and T ∗ are bounded from wL∞ to BMO(X,w) for all w ∈ A1.
Then T is bounded on Lpw(Rn) for all 1 < p <∞ and w ∈ Ap.

It is interesting that our weighted BMOA(X,w) can be considered as a
good substitution the classical weighted BMO in the sense of interpolation.
By adapting the arguments in [5] to our situation, we will establish an in-
terpolation theorem concerning the our weighted BMO spaces BMOA(X,w)
which generalizes Theorem 4.2 to the range of weights and to the weighted
BMO spaces associated to the family {At}t>0.
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Theorem 4.3. Assume that T is a linear operator which is bounded on
L2(X). Assume also that T is bounded from wL∞ to BMOA(X,w) and
T ∗ is bounded from wL∞ to BMOA∗(X,w) for all w ∈ A1 ∩ RHs with
1 ≤ s <∞. Then T is bounded on Lpw(X) for all s < p <∞, w ∈ Ap/s.

Proof. For the sake of simplicity we assume that µ(X) = ∞, the case that
µ(X) <∞ can be treated in the same way. When w ≡ 1, the operator T is
bounded from L∞ to BMOA(X,w). Due to [11, Theorem 5.2], T is bounded
on Lp(X) for p ∈ (2,∞). By duality, one gets that T is bounded on Lp(X)
for p ∈ (1,∞).

Now for w ∈ A1 ∩RHs and f ∈ L∞(X), we have

w−1(x)M ]
A(T ∗(wf))(x) = sup

B3x

1

V (B)

ˆ
B
|(I −AtB )T ∗(wf)(y)|dµ(y)w−1(x)

≤ sup
B3x

1

w(B)

ˆ
B
|(I −AtB )T ∗(wf)(y)|dµ(y)

≤ c‖T ∗(wf)‖BMOA(X,w) ≤ c‖f‖L∞

for all x ∈ X. This implies that the operator w−1M ]
A,T ∗w is bounded on

L∞(X), where M ]
A,T ∗w is defined by M ]

A,T ∗wf = M ]
A(T ∗(wf)). On the

other hand due to Proposition 4.1 and the L2-boundedness of T ∗, M ]
A,T ∗ is

bounded on L2(X). This together with the interpolation, see for example
[4], gives

u2/p−1M ]
A(T ∗u1−2/q) : Lq → Lq,

where 1
p + 1

q = 1.

This implies

M ]
A,T ∗ : Lq(w2−q)→ Lq(w2−q).

Using Theorem 4.1, we have

T ∗ : Lq(w2−q)→ Lq(w2−q).

Let g ∈ Lq(w2−q) and f ∈ Lp(w2−p). We haveˆ
X
|(Tf)g|dµ =

ˆ
X
|fw1−2/q(T ∗g)w2/q−1|dµ ≤ ‖T ∗g‖Lq(w2−q)‖f‖Lp(w2−p).

By duality, T : Lp(w2−p)→ Lp(w2−p), or, w2/p−1Tw1−2/p : Lp → Lp.
On the other hand, for f ∈ Lp and g ∈ Lq, we haveˆ

X
|T (fw2/q−1)w1−2/qg|dµ =

ˆ
X
|f×w2/q−1T ∗(w1−2/qg)|dµ ≤ c‖f‖Lp‖g‖Lq ,

and hence w1−2/qTw2/q−1 : Lp → Lp.
Since we can interchange T and T ∗, we can show that for 1

p + 1
q = 1, p

near 1, and w, v ∈ A1,

w1−2/qTw2/q−1 : Lp → Lp and v2/q−1Tv1−2/q : Lq → Lq.

By interpolation, we obtain

wα(t)vβ(t)T (w−α(t)v−β(t)) : L1/t → L1/t for
1

q
≤ t ≤ 1

p

for all v, w ∈ A1 ∩RHs, where α(t) = t− 1
q and β(t) = t− 1

p .
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This gives T : Lp0(u)→ Lp0(u) whenever

(15) u = wp0α(1/p0)vp0β(1/p0), w, v ∈ A1 ∩RHs and p < p0 < q.

Take p0 = (q + s) − qs/p and r0 = pq
q−p . For any u ∈ Ap0/s, by Jones

Factorization, there exist u1, u2 ∈ A1 such that u = u1u
1−p0/s
2 , see [14].

Setting u1 = ws1 and u2 = ws2, then w1, w2 ∈ A1 ∩ RHs. Hence, we can

pick δ > 0 so that u1+δ1 , u1+δ2 ∈ A1. For p close enough to 1, r0 < 1 + δ
and hence ur01 = wr0s1 , ur02 = wr0s2 ∈ A1. This implies wr01 , w

r0
2 ∈ A1 ∩ RHs.

Due to (15), T is bounded on Lp0(v), here v = (wr01 )p0α(1/p0)(wr02 )p0β(1/p0) =

ws1w
s(1−p0)
2 = u. Applying Theorem 4.9 in [3], T is bounded on Lpw(X) for

all s < p <∞ and w ∈ Ap/s. This completes our proof. �

5. Applications to boundedness of singular integrals

Let X be a space of homogeneous type (X, d, µ). Let T be a bounded
linear operator from L2(X) to L2(X) with kernel k such that for every f in
L∞(X) with bounded support,

Tf(x) =

ˆ
X
k(x, y)f(y)dµ(y),

for µ-almost all x /∈ suppf . We will consider the following conditions:
(H1) There exists a class of approximation to the identity {At}t>0 sa-

tisfying (3) such that the operators (T−AtT ) and (T−TAt) have associated
kernels K1

t (x, y) and K2
t (x, y) respectively and there exist positive constants

α and c1, c2 such that

max{|K2
t (x, y)|, |K1

t (x, y)|} ≤ c2
1

V (x, d(x, y))

tα/m

d(x, y)α

when d(x, y) ≥ c1t1/m.
(H2) There exists a class of approximation to the identity {At}t>0 sa-

tisfying (3) such that the operators (T−AtT ) and (T−TAt) have associated
kernels K1

t (x, y) and K2
t (x, y) so that there exist 1 < p0 < ∞ and δ > 0

such that for any ball B ⊂ X we have

(16)
(ˆ

Sj(B)
|Ki

rmB
(z, y)|p0dµ(y)

)1/p0
. 2−jδV (2jB)1/p0−1

for all z ∈ B, all j ≥ 2 and i = 1, 2.
It was proven in [7] that if T is an operator satisfying (H1) or (H2) above,

then T bounded on Lp(X) for 1 < p < 2. Note that condition (H2) does
not require the regularity assumption on space variables. This allows us to
obtain Lp-boundedness of certain singular integrals with nonsmooth kernels
such as the holomorphic functional calculi and spectral multipliers of L, see
Subsections 5.1 and 5.2.

We now prove the following theorems:

Theorem 5.1. Let T be an operator satisfying (H1). Then for any w ∈ A1,
T and T ∗ are bounded from wL∞(X) to BMOA(X,w) and from wL∞(X)
to BMOA∗(X). Then, by interpolation, T is bounded on Lpw(X) for all
p ∈ (1,∞) and w ∈ Ap.
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Proof. For f ∈ L∞, we claim that

1

w(B)

ˆ
B
|(I −AtB )T (fw)(x)|dµ(x) ≤ C‖f‖L∞

for any ball B ⊂ X.
Set f = f1 + f2 where f1 = fχcB with c = max{c1, 4}. We have

1

w(B)

ˆ
B
|(I −AtB )T (fw)(x)|dµ(x) ≤ 1

w(B)

ˆ
B
|(I −AtB )T (f1w)(x)|dµ(x)

+
1

w(B)

ˆ
B
|(I −AtB )T (f2w)(x)|dµ(x)

= I1 + I2.

Let us estimate I1 first. Since w ∈ A1 then there exists r > 1 such that w ∈
RHr. Using the Lp boundedness of T and the Hardy-Littlewood maximal
function, we have

I1 ≤ c
1

w(B)

ˆ
B
M(T (f1w))(x)dµ(x)

≤ c 1

w(B)
‖T (f1w)‖LrV (B)1/r

′

≤ c‖f‖L∞
1

w(B)

( ˆ
cB
wr(x)dµ(x)

)1/r
V (B)1/r

′

≤ c‖f‖L∞
1

w(B)

w(B)

V (B)
V (B)1/rV (B)1/r

′
= c‖f‖L∞ .

For the second term, by (b) we have

I2 ≤
1

w(B)

ˆ
B

ˆ
X\cB

K1
tB

(x, y)(f2w)(y)|dµ(y)dµ(x)

≤ 1

w(B)

ˆ
B

ˆ
X\cB

1

V (x, d(x, y))

rαB
d(x, y)α

(f2w)(y)|dµ(y)dµ(x)

≤ c‖f‖L∞
1

w(B)

ˆ
B

ˆ
X\cB

1

V (x, d(x, y))

rαB
d(x, y)α

w(y)|dµ(y)dµ(x).

Since c > 4, we have

I2 ≤ c‖f‖L∞
∑
j≥2

1

w(B)

ˆ
B

ˆ
Sj(B)

1

V (x, d(x, y))

rαB
d(x, y)α

w(y)|dµ(y)dµ(x)

≤ c‖f‖L∞
∑
j≥2

2−jα
V (B)

w(B)

ˆ
B

w(2jB)

V (2jB)

≤ c‖f‖L∞ .

The boundedness of T ∗ can be treated similarly. This completes our proof.
�

Theorem 5.2. Let T be an operator satisfying (H2). Then for any w ∈
A1∩RHp′0

, T and T ∗ are bounded from wL∞(X) to BMOA(X,w) and from

wL∞(X) to BMOA∗(X). Then, by interpolation, T is bounded on Lpw(X)
for all p ∈ (p′0,∞) and w ∈ Ap/p′0.



22 THE ANH BUI AND XUAN THINH DUONG

Proof. For f ∈ L∞ and w ∈ A1 ∩RHp′0
, we will claim that

1

w(B)

ˆ
B
|(I −AtB )T (fw)(x)|dµ(x) ≤ C‖f‖L∞

for balls B ⊂ X.
Using the decomposition f =

∑
j≥2 fj + f0 where f0 = fχ2B and fj =

fχSj(B), We have

1

w(B)

ˆ
B
|(I −AtB )T (fw)(x)|dµ(x) ≤ 1

w(B)

ˆ
B
|(I −AtB )T (f0w)(x)|dµ(x)

+
∑
j≥2

1

w(B)

ˆ
B
|(I −AtB )T (fjw)(x)|dµ(x)

= I0 +
∑
j≥2

Ij .

Since w ∈ RHp′0
, using the Lp boundedness of T and the Hardy-Littlewood

maximal function, we have

I0 .
1

w(B)

ˆ
B
M(T (f0w))(x)dµ(x)

.
1

w(B)
‖T (f1w)‖

Lp
′
0
V (B)1/p0

. ‖f‖L∞
1

w(B)

(ˆ
2B
wp
′
0(x)dµ(x)

)1/p′0
V (B)1/p0

. ‖f‖L∞
1

w(B)

w(B)

V (B)
V (B)1/p0V (B)1/p

′
0 = c‖f‖L∞ .

For j ≥ 2, by (H2) and Hölder’s inequality, we have

Ij ≤
1

w(B)

ˆ
B

ˆ
Sj(B)

|K1
tB

(x, y)(fjw)(y)|dµ(y)dµ(x)

≤ 1

w(B)

ˆ
B

(ˆ
Sj(B)

|K1
tB

(x, y)|p0dµ(y)
)1/p0(ˆ

Sj(B)
|fj(y)w(y)|p′0dµ(y)

)1/p′0
dµ(x)

.
V (B)

w(B)
2−jδV (2jB)1/p0−1‖f‖L∞

(ˆ
2jB)
|w(y)|p′0dµ(y)

)1/p′0
.
V (B)

w(B)
2−jδV (2jB)1/p0−1‖f‖L∞

w(2jB)

V (2jB)
V (2jB)1/p

′
0

. 2−jδ
V (B)

w(B)

w(2jB)

V (2jB)
‖f‖L∞ .

Since w ∈ A1,

V (B)

w(B)

w(2jB)

V (2jB)
≤ C.

Therefore, ∑
j≥2

Ij .
∑
j

2−jδ‖f‖L∞ . ‖f‖L∞

provided δ > 0.
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This yields that T is bounded from wL∞(X) to BMOA(X,w). The boun-
dedness of T ∗ can be treated similarly. This completes our proof. �

5.1. Holomorphic functional calculi. We now give some preliminary de-
finitions of holomorphic functional calculi as introduced by A. McIntosh [16].
Let 0 ≤ ν < π. We define the closed sector in the complex plane C

Sν = {z ∈ C : | arg z| ≤ ν}
and denote the interior of Sν by S0

ν .

Let H(S0
ν) be the space of all holomorphic functions on S0

ν . We define
the following subspaces of H(S0

ν):

H∞(S0
ν) = {b ∈ H(S0

ν) : ||b||∞ <∞},
where ||b||∞ = sup{|b(z)| : z ∈ S0

ν}, and

Ψ(S0
ν) = {ψ ∈ H(S0

ν) : ∃s > 0, |ψ(z)| ≤ c|z|s(1 + |z|2s+1)−1}.
Let L be a linear operator of type ω on L2(X) with ω < π/2; hence L

generates a holomorphic semigroup e−zL, 0 ≤ |Arg(z)| < π/2 − ω. Assume
the following two conditions.
Assumption (a): The holomorphic semigroup e−zL, 0 ≤ |Arg(z)| < π/2−
ω, is represented by the kernel pz(x, y) which satisfies the Gaussian upper
bound

(17) |pz(x, y)| ≤ cθ
1

V (x, |z|1/m)
exp

(
− d(x, y)m/(m−1)

c|z|1/(m−1)
)

for x, y ∈ X, |Arg(z)| < π/2− θ for θ > ω.
Assumption (b): The operator L has a bounded H∞-calculus on L2(X).
That is, there exists cν,2 > 0 such that b(L) ∈ L(L2, L2), and for b ∈
H∞(S0

ν),

||b(L)f ||2 ≤ cν,2||b||∞||f ||2
for any f ∈ L2(X).

We have the following result.

Theorem 5.3. Let L satisfy conditions (a) and (b) and let f ∈ H∞(S0
ν).

Then for any w ∈ A1, f(L) and [f(L)]∗ are bounded from wL∞(X) to
BMOA(X,w) and from wL∞(X) to BMOA∗(X) where At = e−tL. Then,
by interpolation, g(L) is bounded on Lpw(X) for all p ∈ (1,∞) and w ∈ Ap.

Note that in the similar condition, it was proved in [7] that the functional
calculus f(L) is of weak type (1, 1) and hence bounded on Lp(X) for all 1 <
p < ∞. Moreover, the weighted estimates for the functional calculus f(L)
were investigated in [15] in which the author proved that f(L) is bounded
on Lpw(X) for all 1 < p < ∞ and w ∈ Ap. Here, in Theorem 5.3, we prove
the weighted endpoint estimates for the functional calculus f(L) and then
by the interpolation theorem we regain the weighted estimates for f(L).

Proof. By the convergence lemma in [16], we can assume that f ∈ Ψ(S0
ν).

Then, it was proved in [7] that g(L) and [g(L)]∗ satisfy (H1) withAt = e−tL.
Hence, the desired result follows directly from Theorem 5.1. �
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5.2. Spectral multipliers. Let L be a non-negative self-adjoint operator
on L2(X) and the operator L generates an analytic semigroup {e−tL}t>0

whose kernels pt(x, y) satisfies Gaussian upper bound:

(18) |pt(x, y)| ≤ C

V (x, t1/m)
exp

(
− cd(x, y)m/(m−1)

t1/(m−1)

)
for all x, y ∈ X and t > 0.

By the spectral theorem, for any bounded Borel function F : [0,∞)→ C,
one can define the operator

(19) F (L) =

ˆ ∞
0

F (λ)dE(λ)

which is bounded on L2(X). We have the following result.

Theorem 5.4. Let L be a non-negative self-adjoint operator satisfying (GE).
Suppose that n > s > n/2 and for any R > 0 and all Borel functions F such
that suppF ⊂ [0, R],

(20)

ˆ
X
|KF ( m

√
L)(x, y)|2dµ(x) ≤ C

V (y,R−1)
‖δRF‖2Lq

for some q ∈ [2,∞]. Then for any Borel function F such that

sup
t>0
‖ηδtF‖W q

s
<∞,

where δtF (λ) = F (tλ), ‖F‖W q
s

= ‖(I − d2/dx2)s/2F‖Lq , the operator F (L)

and F (L)∗ = F (L) is bounded from wL∞ to BMOA(X,w) for all w ∈
A1 ∩ RHr′0

, where At = I − (I − e−tL)M for M > s
m and r0 = n/s. Hence

by interpolation, F (L) is bounded on Lpw(X) for w ∈ Ap/r0 and p ∈ (r0,∞).

Note that under the condition as in Theorem 5.4, it was proved in [8]
that the spectral multiplier F (L) is of weak type (1, 1) and hence bounded
on Lpw(X). The weighted estimates for F (L) was studied in [1, 10]. The
main contribution in Theorem 5.4 is the weighted endpoint estimates for
the spectral multipliers F (L).

Proof. From the proof of Theorem 4.5 in [1], we get that (H2) holds for
T := F (L) and the family At := I− (I−e−tL)M for M > s

m and all p0 < r′0.
Hence, using Theorem 5.2 and letting p0 → r′0 , we get the desired result. �
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