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ABSTRACT. The remodeling conjecture recasts all genus Gromov-
Witten theory of a toric Calabi-Yau 3-fold in terms of complex ge-

ometry of its mirror curve. We illustrate how to construct a family
of mirror curves, over the global moduli of the toric Calabi-Yau 3-

fold’s stringy Kähler moduli space. With this construction, the re-

modeling conjecture then reveals many properties of the Gromov-
Witten invariants, such as the modularity and the crepant trans-

formation property.

1. INTRODUCTION

1.1. Mirror symmetry for a toric Calabi-Yau 3-orbifold. Let X be a
toric Calabi-Yau 3-orbifold. The mirror symmetry predicts its Gromov-
Witten invariants from its mirror B-model. Usually the mirror of X
is a non-compact Calabi-Yau hypersurface, which can be further re-
duced to an affine curve in (C∗)2, called the mirror curve. In this
survey we only consider the mirror curve as its B-model.

The mirror B-model of X predicts both closed and open Gromov-
Witten invariants [2, 3, 6–8, 16]. In [16], the B-model for the closed
higher genus invariants is from the BCOV holomorphic anomaly
equation [5]. The Bouchard-Klemm-Mariño-Pasquetti’s remodeling
conjecture [6,7,17] predicts all genus open-closed Gromov-Witten in-
variants from another viewpoint on the B-model, the Eynard-Orantin’s
topological recursion [9]. This prediction from the topological recur-
sion is called the remodeling conjecture. This conjecture is proved later
in [10, 13, 14].

More precisely, there is a certain type of Lagrangian submanifolds,
the Aganagic-Vafa branes in X . In case such branes are not gerby, they
are all homeomorphic to S1 × R2. We fix such a Lagrangian L ⊂ X ,
and consider the open Gromov-Witten potential

FX ,L
g,n(τ; X̃1, . . . , X̃n),

which is a generating function parametrizing the number of holo-
morphic maps from a genus g bordered Riemann surface with n
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boundary components to X while the boundary lands on L. The
Kähler parameter τ records the extended Kähler class of X . In case
that X is a smooth manifold, by the divisor equation the power of eτ

records the homology class of the image of this map, while the power

of X̃i records the winding number of each boundary component into
L ≅ S1 ×R2.

The mirror curve of X is an affine curve Cq = {Hq(X,Y) = 0} in
(C∗)2. Here Hq(X,Y) = 0 is the equation for Cq. The conjecture of
Aganagic-Klemm-Vafa [2, 3] predicts

F
X ,L
0,1 (τ; X̃) = ∫

X
logY

dX

X
,

under certain explicit open-closed mirror map

τ = logq +O(q), X̃ = X(1 +O(q)).
One should understand this integral as anti-derivative and logY is a
function of X near a particular point on C̄q with X = 0, where C̄q is a
compactification of Cq.

The Eynard-Orantin’s topological recursion starts from a choice of
Lagrangian subspace of H1(C̄q;C) where the symplectic pairing is
the cohomology pairing (α,β)→ ∫C̄q

α∪β. Then one can recursively

and uniquely constructs a meromorphic and symmetric n-formωg,n

on (C̄q)n. Then the BKMP remodeling conjecture says under the
same open-closed mirror map

FX ,L
g,n(τ; X̃1, . . . , X̃n) = ∫

X1

. . .∫
Xn

ωg,n.

1.2. String Kähler moduli and global mirror symmetry. The topo-
logical recursion on the mirror curve as the B-model automatically
carries many interesting properties. For example, the modularity of
the recursion algorithm was already addressed in [9] when such al-
gorithm was proposed.

There are many “phases” of A-model theories. If X is a smooth
manifold, then the Gromov-Witten theory of X is a theory at a large
radius limit. In general there are many limit points on the stringy
Kähler moduli space MK of X . When X is a toric Calabi-Yau 3-
fold,MK can be identified with its secondary toric variety. Around
each torus fixed point si ofMK, we can associate a toric Calabi-Yau
3-orbifold Xi depending on the GIT stability condition. To one of
these torus fixed point s0, X0 = X itself, while at other points they
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are McKay equivalent toric Calabi-Yau 3-orbifolds, related by being
a partial crepant resolution pairs of a same singular toric variety.

The A-model theory around each torus fixed point si inMK is the
orbifold Gromov-Witten theory of the toric Calabi-Yau 3-fold Xi. A
priori there is no reason these theories about Xi could patch together
globally over MK. However this desired global behavior is more
accessible from the B-model.

The mirror B-model considered in this paper is an affine curve Cq

together with its compactification C̄q, where q is the complex param-
eter. We will see that q ∈ MK and construct a family of mirror curves
C, inside a family of toric surfaces S , overMK. At each q the fiber of
this family is indeed C̄q while Cq = C̄q ∖ (∂Sq).

The global mirror curve C implies the existence of a global B-model
over the stringy Kähler moduli spaceMK. The modularity of the B-
model generating function is automatic given such a global mirror
curve C. The B-model theory near each limit point si are related by
analytic continuation, since at every point inMK the B-model theory
is well-defined. Translated back into the A-model Gromov-Witten
theory, one obtains the modularity of the Gromov-Witten theory and
the crepant resolution conjecture.

1.3. The structure of this paper. We will illustrate the construction
of C and discuss its implication by a main example X = OP2(−3). In
Section 2 we state the BKMP remodeling conjecture for both X and
its orbifold phase X ′ = C3/Z3. Then we explain how to construct a
global mirror curve C for this example in Section 3, and we will also
explain the crepant resolution conjecture and the modularity of the
Gromov-Witten theory from mirror symmetry.

1.4. Acknowledgement. The author would like to thank Chiu-Chu
Melissa Liu and Zhengyu Zong for the wondrous collaboration in
[13, 14] and several current ongoing projects – this paper’s goal is to
explain some of which. The author would also like to thank Bai-Ling
Wang for a fantastic workshop at Kioloa in Jan 2016, without which
this paper would not be possible.

2. THE REMODELING CONJECTURE FOR X = OP2(−3)
2.1. A toric Calabi-Yau 3-fold X = OP2(−3). A toric Calabi-Yau 3-
fold is given by a triangulated defining polytope. Let N = Z3 and
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FIGURE 1. The triangulated defining polytope of X = OP2(−3)

M = N∨. We also choose e∨3 = (0, 0, 1) ∈M and let M ′ =M/⟨e∨3⟩ ≅ Z2

andN ′ = ker(e∨3) ⊂N.
For X = OP2(−3), let

P = Conv((0, 0), (3,−1), (0, 1)) ⊂N ′,
and its triangulation is given in the Figure 1.

The 1-(resp. 2-, 3-)cones in the fan data of X are cones from the
origin in NR over vertices (resp. edges, faces) of the triangulated
P × {1} ⊂ N ′

R
× {1} ⊂ NR. We write down the generators of 1-cones

here:

b1 = (0, 0, 1), b2 = (1, 0, 1), b3 = (0, 1, 1), b4 = (3,−1, 1).
By toric geometry, the fan data prescribes a torus action G ≅ C∗ on
C4:

t ⋅ (Z1,Z2,Z3,Z4) = (tZ1, tZ2, tZ3, t
−3Z4).

The smooth variety X is defined as the following quotient

X = (C4 ∖ ((0, 0, 0) ×C))/G.

The moment map µ̃ for action of the maximal compact subgroup GR

is

(Z1,Z2,Z3,Z4) ↦ ∣Z1∣
2 + ∣Z2∣

2 + ∣Z3∣
2 − 3∣Z4∣

2.

Then X is also obtained as a symplectic quotient

X = µ̃−1(r)/GR, r > 0.
The parameter r is the Kähler parameter, which is the symplectic
area of the base P2.

We denote the 3-dimensional torus T =N⊗ZC
∗, which acts on and

is also open and dense in X . Let T ′ be the 2-dimensional subtorus
which acts trivially on its canonical bundle. Let T ′

R
the maximal

compact subgroup of T ′ one may consider its moment map µ ′ ∶
X → M ′

R
≅ R2. The one-dimensional T ′-invariant subvariety X 1 of

X = OP2(−3) is the union of three P1 in P2 and the fibers over three
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a

FIGURE 2. The toric graph of X and the image of an
outer Aganagic-Vafa brane L.

torus fixed point in P2. The image of X 1 under µ ′ is the toric graph,
shown in Figure 2.

An Aganagic-Vafa brane is an Lagrangian submanifold in the pre-
image of a non-vertex point in the toric graph. Precisely, we define
an Aganagic-Vafa brane L below.

∣Z1∣
2 − ∣Z2∣

2 = ∣Z1∣
2 − ∣Z3∣

2 = c > 0, Arg(Z1 . . .Z4) = const.

This Lagrangian brane L is homeomorphic to R2×S1. It is outer since
its image under µ ′ is the point a on a non-compact leg of the toric
graph, which is also illustrated in Figure 2. We label the unique T-
fixed point on the 1-dimensional T-invariant subvariety that L inter-
sects by p0. Let ι0 ∶ p0 ↪ X be the embedding.

2.2. The Gromov-Witten theory ofX . We define the closed Gromov-
Witten primary correlators where γ1, . . . ,γn ∈ H∗(X ;C)

⟨γ1, . . . ,γn⟩
X
g,n,β = ∫

[M̄g,n(X ;β)]vir
ev∗1γ1 ∪ ⋅ ⋅ ⋅ ∪ ev

∗
nγn.

Here M̄g,n(X ;β) is the moduli space of stable maps from genus g, n-
marked points toX in homology classβ ∈ H2(X ;Z) ≅ Z, [M̄g,n(X ;β)]vir
is its virtual fundamental class, and evi is the i-th evaluation map.

Similarly the notion ⟨γ1, . . . ,γn⟩X ,T

g,n,β is for the equivariant Gromov-

Witten theory where γi ∈ H∗T(X ;C). Replacing T by other groups
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acting on X is self-evident. In the rest of this section, we only fix no-
tations in the non-equivariant setting while the equivariant invari-
ants are completely parallel. The descendant correlators are

⟨τa1
(γ1), . . . ,τan(γn)⟩Xg,n,β = ⟨γ1ψ

a1

1 , . . . ,γnψ
an
n ⟩Xg,n,β

=∫
[M̄g,n(X ;β)]vir

ev∗1γ1 ∪ψ
a1

1 ∪ ⋅ ⋅ ⋅ ∪ ev
∗
nγn ∪ψ

an
n .

The psi-class ψi is the first Chern-class of the i-th tautological line
bundle on M̄g,n(X ;β).

The double brackets are

⟪γ1ψ
a1

1 , . . . ,γnψ
an
n ⟫Xg,n = ∑

β≥0,ℓ≥0

1

ℓ!
⟨γ1ψ

a1

1 , . . . ,γnψ
an
n ,τ, . . . ,τ⟩Xg,n+ℓ,β.

So whenever double brackets appear they are functions of τ ∈ H2(X ;C).
In the equivariant setting the notion ⟪. . .⟫X ,T

g,n is a function of τ ∈
H2

T
(X ;C). Here we do not need to introduce Novikov variables to

deal with the issue of convergence (see [14, Remark 3.2]).
We define the genus g free energy of X as

FXg (Q) = ⟪⟫Xg,0.
This is a power series in Q = eτ.

Open GW invariants for (X ,L) count holomorphic maps

u ∶ (Σ,x1, . . . ,xℓ,∂Σ = n

∐
j=1

Rj)→ (X ,L)
where Σ is a bordered Riemann surface with interior marked points
xi and Rj ≅ S1 are connected components of ∂Σ. These invariants
depend on the following data:

● the topological type (g,n) of the coarse moduli of the domain,
where g is the genus of Σ and n is the number of connected
components of ∂Σ,
● the degree β ′ = u∗[Σ] ∈ H2(X ,L;Z),
● the winding numbers µ1, . . . ,µn ∈ H1(L;Z) ≅ Z,
● the framing f ∈ Z of L.

We call the pair (L, f) a framed Aganagic-Vafa Lagrangian brane. We
write µ⃗ = (µ1, . . . ,µn). Let M̄(g,n),ℓ(X ,L ∣ β ′, µ⃗) be the compactified
moduli space parametrizing stble maps described above. Evaluation
at the i-th marked point xi gives a map evi ∶ M̄(g,n),ℓ(X ,L ∣ β ′, µ⃗) →
X.
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The framing f specifies a subtorus T ′f = ker((0, 1) − f(1, 0)), where(0, 1), (1, 0) ∈M ′ are characters for T ′. For γ1, . . . ,γn ∈ H∗T ′
f
(X ;C), we

define by localization

⟨γ1, . . . ,γℓ⟩X ,(L,f)
g,β,µ⃗ ∶= ∫

[M̄(g,n),ℓ(X ,L∣β ′,µ⃗)
T ′
R ]vir

∏ℓ
i=1 ev

∗
iγi

eT ′
R
(Nvir) ∣

(T ′
f
)R

∈ Cv∑ℓ
i=1(

degγi
2
−1)

where T ′
R

and (Tf)R are the corresponding real sub-torus of T ′ and
Tf that preserves the Lagrangian L, H∗

T
′
f
(pt) = C[v], β ∈ H2(X ;Z) ≅ Z

and β ′ = β +∑µi ∈ H2(X ,L;Z).
Then we define the open Gromov-Witten potential by

F
X ,(L,f)
g,n (τ; X̂1, . . . , X̂n) = ∑

µ⃗=(µ1,...,µn),µi>0

∑
β≥0,ℓ≥0

⟨τℓ⟩X ,(L,f)
g,β,µ⃗

ℓ!
X̂µ1

1 . . . X̂µn
n .

This potential does depend on the choice of f, and is in degree 0 of v.

Mirror symmetry predicts these FX ,(L,f)
g,n from the mirror curve of X .

The free energy FXg is the special case for n = 0, involves only closed
invariants and does not depend on f.

2.3. Mirror curve as the B-model. The mirror curve of X is the fol-
lowing

{U1U2U3U
−3
4 = q, U1 +U2 +U3 +U4 = 0}/C∗.

Here q is the complex parameter. The overall C∗ action rescales
U1, . . . ,U4 simultaneously.

One can rewrite the mirror curve in an equation

(1) Cq = {Hq(X,Y) = X + Y + 1 + qX3Y−1 = 0} ⊂ (C∗)2.
We will see that these specific choice of coordinates are related to
the phase (location) of L. Each term of Hq corresponds to an integer
point in the defining polytope P.

When ∣q∣ is small, the curve Cq is a genus 1 curve with three punc-
tures (see Figure 3). The affine curve Cq allows a natural compact-
ification C̄q in SP, the toric surface associated to the defining poly-
tope. In this particular example SP ≅ P2/Z3, which is a singular toric
Fano surface. The curve C̄q is a compact Riemann surface of genus
1. There are three puncture points in Cq, which are the intersection
C̄q ∩ SP. When q = 0, C̄q degenerates into a compact nodal curve C̄0,
while the curve Cq also denegerates into a nodal curve C0 ⊂ C̄0. We
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xq

A

FIGURE 3. The mirror curve Cq of X = OP2(−3).
denote a very small ball B containing 0 such that when q ∈ B ∖ {0}
the curve Cq and C̄q are smooth.

One of the punctures in Cq for q ∈ B has coordinates (X,Y) =(0,−1). We label this point as a open large radius limit xq, which corre-
sponds to the large radius in the open parameter.

The choice of framing in the A-model is interpreted of changing
coordinates in the B-model. Let

X = X̂Ŷ−f, Y = Ŷ.,
The mirror curve equation becomes

Hq = X̂Ŷ−f + Ŷ + 1 + qX̂3Ŷ−1−3f.

We introduce the Seiberg-Witten form

Φ = log Ŷ dX̂
X̂

.

This form is multi-valued – it is well-defined on the universal cover
of Cq. The B-model genus 0 disk potential is defined as

F̌X0,1(q;X)“ = ”∫
X̂
log Ŷ

dX̂

X̂
.

Let Uq be a small neighborhood of xq in C̄q. We should understand

this integral as an anti-derivative, where log Ŷ is expanded in terms

of X̂ in Uq. One should discard the anti-derivative from the degree 0

term in the expansion of log Ŷ, and obtain a power series in X̂ with
no degree 0 term. There is a constant ambiguity while taking log –
however it is in the discarded part and does not contribute. We use

the notation “ = ” to denote that the degree-0 term in X̂ is discarded.
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The higher genus B-model theory is defined via the Eynard-Orantin
topological recursion. It starts from a spectral curve, which contains
the following data

● an affine curve Cq and its compactification C̄q;

● two holomorphic Morse functions X̂ and Ŷ on Cq and mero-
morphic on C̄q – their critical points do not coincide;
● a fundamental bidifferential formω0,2 (Bergman kernel), which

is a meromorphic symmetric form on C̄2
q.

We explain ω0,2 a little bit here. It is uniquely determined by a La-
grangian subspace A ⊂ H1(C̄q;C). The symplectic pairing on this
space is the cohomology pairing (PD is Poincarè pairing)

(a,b) = ∫
C̄q

PD(a) ∪PD(b).
The fundamental form ω0,2 is uniquely characterized by A and its
pole behavior:

● For any cycle A ∈ A,

∫
z2∈A

ω0,2(z1,z2) = 0.
● The only pole of ω0,2 is the double pole at the diagonal and

normalized at

ω0,2 = dz1dz2(z1 − z2)2 + holomorphic part.

We let X = e−x,Y = e−y, X̂ = e−x̂, Ŷ = e−ŷ. Near each ramification
point of x̂, we denote p̄ to be the point such that x̂(p̄) = x̂(p) and
p̄ ≠ p.

The Eynard-Orantin’s topological recursion produces a meromor-
phic symmetry n-form on C̄n

q recursively as below.

ωg,n(p1, . . . ,pn) = ∑
dx̂∣p ′=0

Resp=p ′
∫ p̄

ξ=pB(pn,ξ)
2(Φ(p) −Φ(p̄))(ωg−1,n+1(p, p̄,p1, . . . ,pn−1)

(2)

+
′

∑
g1+g2=g, I⊔J={1,...,n−1}

ωg1,∣I∣+1(p,pI)ωg2,∣J∣+1(p̄,pJ)).
Here the sum symbol

′∑ excludes the case (g1, ∣I∣) = (0, 1), (0,n −
1), (g, 1) or (g,n − 1).

The resulting formωg,n (for 2g−2+n > 0) is smooth away from the
ramification point dx̂ = 0. In particular they are holomorphic in Un

q ,
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where Uq is the small open neighborhood around xq in each copy of
C̄q.

We still need to specify A as a Lagrangian subspace of H1(C̄q;C)
to completely write down the mirror curve as a spectral curve and
produce higher genus invariants.

2.4. The remodeling conjecture. The BKMP remodeling conjecture

[6, 7, 17] predicts FX ,(L,f)
g,n by ωg,n. Both sides are related by a change

of variables called the mirror map.
We explicitly write down the mirror map here for X . The coho-

mology H∗
T ′
f
(X ;C) is a 2-dimensional C-vector space – the equivari-

ant parameter v and any lift of the hyperplane class form a basis. We
let H be the equivariant lift of the hyperplane class such that ι∗0H = 0.
(Recall that ι0 ∶ p0 → X is the embedding of the T-fixed point “clos-
est” to L)

τ = (logq − 3∑
d>0

(−1)d−1(3d − 1)!
(d!)3 qd)H,(3)

log X̃ = log X̂ +∑
d>0

(−1)d−1(3d − 1)!
(d!)3 qd.

These mirror maps have geometric interpretation. There exists an
cycle A ∈ H1(Cq;Z) such that

τ = τH = ( 1

2π
√
−1
∫
A
Φ)H.

We denote the image of this cycle in H1(C̄q;Z) by Ā. It spans a La-
grangian subspace of H1(C̄q;C). Therefore the mirror curve is then
equipped with a spectral curve structure.

We define B-model open potentials

F̌X0,2(q; X̂1, X̂2) = ∫
X̂1

∫
X̂2

(ω0,2 −
dX̂1dX̂2

(X̂1 − X̂2)2) ,
F̌Xg,n(q; X̂1, . . . , X̂n) = ∫

X̂1

. . .∫
X̂n

ωg,n, 2g − 2 +n > 0.
Similarly to F̌X0,1, we consider the expansion of ωg,n in Un

q , and the

resulting integrals (anti-derivatives) are power series in X̂1, . . . , X̂n

with no degree 0 term. Notice ω0,2 has diagonal pole so we need to
subtract the principal part first.

Theorem 2.1. We have the following mirror symmetry statements, where

q ∈ B and X̂ ∈ Uq:
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● Disk mirror theorem [2, 3], proved in [15]:

F
X ,(L,f)
0,1 (τ; X̃) = F̌X0,1(q; X̂).

● Higher genus mirror symmetry, a.k.a. the BKMP remodeling con-
jecture [6, 7, 17], proved in [10, 14]:

F
X ,(L,f)
g,n (τ; X̃1, . . . , X̃n) = F̌Xg,n(q; X̂1, . . . , X̂n).

● For g > 1, the free energy

FXg (τ) = 1

2 − 2g
∑

dx̂(p0)=0

Resp=p0
ωg,1(p)∫ Φ(p).

Here ∫ Φ is the anti-derivative of Φ, which we regard as a local
function around each ramification point (the ambiguity does not
affect the residue).

2.5. The remodeling conjecture for C3/Z3. We let X ′ = C3/Z3, the
quotient stack. The orbifold X ′ is obtained by the same polytope P
in Section 2.1 while there is no further triangulation inside the poly-
tope. It is given by the GIT quotient at a different stability condition.

X ′ = (C3 ×C∗)/G,
where the torus G ≅ C∗ acts by

t ⋅ (Z1, . . . ,Z4) = (tZ1, tZ2, tZ3, t
−3Z4).

It is also a symplectic quotient

X ′ = µ̃−1(r)/GR,

where r < 0. The Aganagic-Vafa brane L ′ is in the pre-image of the
point a ′ for the moment polytope µ ′

R
in the toric graph as in Fig-

ure 4. We should consider the Chern-Ruan orbifold cohomology
H∗CR(X ′;C) for the extended Kähler classes. In particular,H2

CR(X ′;C)
is generated by an age 1 element. The open-closed Gromov-Witten
potentials are defined as

F
X ′,(L ′,f)
g,n (τ ′; X̂ ′1, . . . , X̂ ′n) = ∑

µ⃗=(µ1,...,µn),µi>0

∑
ℓ≥0

⟨τ′ℓ⟩X ′,(L ′,f)g,µ⃗

ℓ!
X̂
′µ1

1 . . . X̂′µn
n ∈ Q

for τ
′ ∈ H2

CR,T ′
f
(X ′;C). When n = 0, this is usually written as FXg ,

and it involves only closed Gromov-Witten invariant which do not
depend on f.

The mirror curve is also explicitly given by

(4) H ′q(X ′,Y ′) = 1 +X ′3Y ′−1 + Y ′ + q ′X ′;
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a ′

FIGURE 4. The toric graph of X ′ = C3/Z3.

while the framed mirror curve equation is also given by a simple
change of variables as below.

X ′ = X̂ ′Ŷ ′−f, Y ′ = Ŷ ′,
H ′q = 1 + X̂ ′3Ŷ ′−1−3f + Ŷ ′ + q ′X̂ ′Ŷ ′−f;

We denote this mirror curve by C ′q ′ and its compactification by C̄ ′q ′ .
When ∣q ′∣ is very small, C ′q ′ is also a 3-punctured curve of genus 1,

while C̄ ′q ′ is a compact Riemann surface of genus 1. When q ′ = 0, C̄ ′0
is not singular, unlike the mirror curve of X = OP2(−3). We denote a
small neighborhood B ′ of 0 such that when q ′ ∈ B ′, C ′q ′ and C̄ ′q ′ are
smooth.

There is also a distinguished point s ′q ′ in C ′q ′ ⊂ C̄ ′q ′ given by X ′ = 0
and Y ′ = −1 for q ′ ∈ B ′. We use U ′q to denote an small open neighbor-

hood of x ′q ′ in C̄ ′q ′ . Then we define open B-model disk potential as
below

F̌X
′

0,1“ = ”∫
X̂ ′
Φ ′,

where Φ ′ = log Ŷ ′dX̂ ′
X̂ ′

. We consider this integral as an anti-derivative

of Φ ′ expanded in Uq ′ , and define F̌X
′

0,1 by discarding degree-0 terms

in X̂ ′.
To construct higher genus B-model open potential, one also runs

the Eynard-Orantin topological recursion. The cohomologyH2
T
′
f
(X ;C)



GLOBAL MIRROR CURVE AND ITS IMPLICATION 13

is a 2-dimensional C-vector space. Let 11 be the generator of the age 1
elements. We also have a cycle A ′ ∈ H1(C ′q;C) such that the integral

τ
′ = ( 1

2π
√
−1
∫
A ′
Φ ′)11 = q ′(∑

k≥0

Γ(2/3)3
Γ(2

3
− k)3(3k)!3q′3k)11.

The open mirror map is trivial for X ′ = C3/Z3:

X̃ ′ = X̂ ′.
The Lagrangian subspace A ′ spanned by Ā ′, the image of A ′ in

H1(C̄ ′q ′ ;C), is the last piece of information to make C ′q ′ and C̄ ′q ′ into
a spectral curve. Then the Eynard-Orantin topological recursion pro-
ducesω ′g,n. We define

F̌X
′

0,2(q ′; X̂ ′1, X̂ ′2) = ∫
X̂ ′1
∫
X̂ ′2

(ω ′0,2 − dX̂ ′1dX̂2

(X̂ ′1 − X̂ ′2)2) ,
F̌X

′

g,n(q; X̂ ′1, . . . , X̂ ′n) = ∫
X̂ ′

1

. . .∫
X̂ ′n

ω ′g,n, 2g − 2 +n > 0.

These integrals are understood as anti-derivatives for the relevant
differential forms in (U ′q ′)n ⊂ C̄′nq ′ .
Theorem 2.2. We have the following mirror symmetry statements under

the open-closed mirror map, where q ′ ∈ B ′ and X̂ ′ ∈ U ′q ′ :
● Disk mirror theorem, proved in [12]:

F
X ′,(L ′,f)
0,1 (τ ′; X̃ ′) = F̌X1

0,1(q ′; X̂ ′).
● Higher genus mirror symmetry, a.k.a. the BKMP remodeling con-

jecture [7], proved in [13]:

F
X ′,(L ′,f)
g,n (τ; X̃ ′1, . . . , X̃ ′n) = F̌X1

g,n(q ′; X̂ ′1, . . . , X̂ ′n).
● When g > 1, the free energy

FX
′

g (τ) = 1

2 − 2g
∑

dx̂ ′(p0)=0

Resp=p0
ω ′g,1(p)∫ Φ ′(p).

3. THE CONSTRUCTION OF THE GLOBAL MIRROR CURVE

3.1. Family of mirror curves. The mirror curve equations (1) and (4)
are the same after a simple change of variables:

q = q ′−3, X = X ′q ′, Y = Y ′.
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So Cq and C ′q ′ should form a family of affine curves. Here we give

a toric construction such that C̄q and C̄q ′ form a family of compact
curves over the weighted projective line P(1, 3).

Recall that X = OP2(−3). Its fan is the cone over the defining poly-
tope P, as shown in Figure 1.

Its secondary stacky fan S is a complete fan in R. The generators
of is 1-cones are

b1 = 1, b2 = 1, b3 = 1, b4 = −3.
The toric orbifoldMK ≅ P(1, 3) defined by S is the moduli space of
the B-model, or conjecturally, is the stringly Kähler moduli space of
the mirror A-model on X . Denote the stacky torus fixed point by sorb
and the non-stacky smooth torus fixed point by sLRL.

b1,b2,b3b4

FIGURE 5. The secondary fan of X = OP2(−3).
We now define the following extended secondary fan S̃ as a com-

plete fan in NK ⊗Z R ≅ R3, where NK = Z3. The generators of its
1-cones in NK are

b̃1 = (0, 0, 1), b̃2 = (−1, 0, 1), b̃3 = (0,−1, 1), b̃4 = (−1,−1,−3),
b̃5 = (1, 1, 0), b̃6 = (−2, 1, 0), b̃7 = (1,−2, 0).

The top dimensional cones are spanned by b̃i where i ranges from
the following index sets

{4, 5, 6}, {4, 6, 7}, {4, 5, 7}, {5, 1, 2}, {5, 1, 3},
{6, 1, 2}, {6, 2, 3}, {7, 2, 3}, {7, 1, 3}, {1, 2, 3}.

The 2-cones are faces of 3-cones. We denote the toric orbifold associ-
ated to the fan S̃ by M̃K.

There is an obvious fan map π ′ ∶ R3 → R2 that maps S̃ to S which

forgets the first two entries. It induces a toric map π ∶ M̃K → MK.
The fiber π−1(s) for s ≠ sLRL is a toric orbifold defined by the stacky

fan given by b̃5, b̃6, b̃7 (on R2). It is isomorphic to P2/Z3. Over the
smooth torus fixed point, the fiber π−1(sLRL) is three P2 intersecting
along three P1 with normal crossing singularities. If one intersects

the fan S̃ by a vertical plane, at different horizontal position, we get
the fan of each fiber toric surface. See Figure 7.
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b̃1
b̃2

b̃3

b̃4

b̃5

b̃6

b̃7

FIGURE 6. The extended secondary fan of OP2(−3).
The third coordinates of the generators b̃i are the same

if they are in the same color. The rays b̃5, b̃6, b̃7 form
the toric graph of C3/Z3. There is an obvious fan map

S̃→S.

One can also understand S̃ in the following way. The fan S lives
inside G∨

R
≅ R, and Xr = µ̃−1(r)/GR (here X ≅ Xr, r > 0 and X ′ ≅

Xr, r < 0). The intersection π−1(r)∩ (S̃(2)∪ S̃(1)∪ S̃(0)) is precisely
the toric graph of Xr.

We understand X,Y,q as characters in Hom(TK,C∗) = N∨K, where

TK is the open dense 3-torus in M̃K, andNK ≅ Z3 is the lattice that b̃i
belong to. Then X,Y,q corresponds to (1, 0, 0), (0, 1, 0) and (0, 0, 1) in
N∨K respectively. They are sections of a line bundle L = OM̃K

(∑6
i=1Di)

(here each Di is the toric divisor corresponding to each b̃i). We de-
fine a section H ∈ H0(L)

H = X + Y + 1 + qX3Y−1.

We define the compactified global mirror curve C = H−1(0) ⊂ M̃K. It
is parametrized over MK by πC = π∣C ∶ C → MK. For any s ∈ MK,
the fiber π−1C (s) is a compact (possibly singular) curve. LetMK,0 be
the part of MK where π−1

C
(MK,0) is smooth. As shown in Figure
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    genericsorb sLRL

FIGURE 7. OverMK, we have a family of toric surfaces
given by π. When s ≠ sLRL, the fiber π−1(s) ≅ P2/Z3,

given by the stacky fan spanned by b̃5, b̃6, b̃7. Over
sLRL, the toric surface degenerates to a normal crossing
of three P2, as shown by the “fan” and the polytope.
The first rows are polytopes and the second rows are
fans for fiber toric surfaces at different points inMK.

8, sLRL ∉ MK,0 since the fiber is a nodal curve (three P1 with nodal
singularities), while sorb ∉ MK,0 since itself is a stacky point. There
is another point other than sLRL not inMK,0, where the fiber has one
nodal singularity. This point is called the conifold point scon. Thus
MK,0 =MK ∖ {sLRL, sorb, scon}.

By our notation, C̄q and C̄ ′q ′ are identified with Cs when q = q ′−3,
where Cs = π−1C (s), q(s) = q, and q ′(s) = q ′.
3.2. Open crepant resolution conjecture for disk potentials. The
crepant resolution conjecture (CRC) for disk potentials is a direct
consequence of the global mirror curve C. A CRC result should relate
Gromov-Witten invariants around the large radius point to orbifold
Gromov-Witten invariants around the orbifold points. The CRC for

disk potentials, by its name, should relate F
X ,(L,f)
0,1 and F

X ′,(L ′,f)
0,1 .

We pick a path γ ∶ [0, 1] →MK,0 such that γ(0) = sLRL and γ(1) =
sorb. We also pick a lift of this γ to γ̃ ∶ [0, 1] → C such that γ̃(0) = x0,
γ̃(1) = x ′0, and π ○ γ̃ = γ.

The function log Ŷ = log Ŷ ′ is a well-defined analytic function from

a small tubular neighborhood of γ̃([0, 1]) in C to C/⟨2π√−1⟩. By the
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    generic

 

sorb sconifold sLRL

FIGURE 8. OverMK, we have a family of compactified
mirror curves C. At scon and sLRL the mirror curves
are singular. As before, the sharp ends in the mirror
curve picture are the punctures on the mirror curve.
After compactification, they become compact curves in
π−1(s). All puncture points are smooth.

disk mirror theorem

X̂
d

dX̂
F
X ,(L,f)
0,1 = log Ŷ, X̂ ′

d

dX̂ ′
F
X ′,(L ′,f)
0,1 = log Ŷ ′

up to degree-0 terms in X̂ or X̂ ′. Since we know the degree-0 term of

log Ŷ’s expansion in terms of X̂ is log(−1) (the deg-0 term of the ex-

pansion log Ŷ ′ in X̂ ′ is also log(−1)), one can analytically continuate

X̂ d

dX̂
F
X ,(L,f)
0,1 , considered as a function near x0, along γ̃. The resulting

holomorphic function near x ′0 differs with X̂ ′ d

dX̂ ′
F
X ′,(L ′,f)
0,1 by an inte-

gral multiple of 2π
√
−1.

3.3. Modular invariance of fundamental normalized differentials
of the second kind. The mirror curve Cq (and its compactification
C̄q) is a spectral curve. The genus of the compactified mirror curve
C̄q is 1. We fix two sets of Torelli markings (Ā, B̄), (Ā ′, B̄ ′) on C̄q,
such that

(Ā, B̄) = (Ā ′, B̄ ′) = 1, (Ā, Ā) = (B̄, B̄) = (Ā ′, Ā ′) = (B̄ ′, B̄ ′) = 0.
They differ by an SL(2;Z) transformation

(Ā
B̄
) = (a b

c d
)(Ā ′
B̄ ′
)
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and (a b

c d
) ∈ SL(2;Z). Letω be the non-trivial holomorphic form on

C̄q given by the Torelli marking (Ā, B̄), i.e.

∫
Ā
ω = 1.

The period θ is given by

θ = ∫
B̄
ω.

We know Imθ > 0. It depends on the choice of cycles A,B and the
parameter q. Similarly,

∫
Ā ′
ω ′ = 1, θ ′ = ∫

B̄ ′
ω ′.

We have

θ ′ = θa − c
d − θb

, ω ′ = Jω,

where J = (d − θb)−1.
Define the modified cycles

Ā(θ) = Ā − κB̄(θ), B̄(θ) = B̄ − θĀ,
Ā ′(θ ′) = Ā ′ − κB̄(θ ′), B̄ ′(θ ′) = B̄ ′ − θ ′Ā.

Here

κ(θ, θ̄) = 1

θ̄ − θ
is a function of θ (not holomorphic). As a convention, we denote the
fundamental differential associated to the A-cycle Ā byω0,2, and the
fundamental differential associated to the modified A-cycles Ā(θ)
by ω̃0,2. We also denote the fundamental differential associated to
Ā ′ by η0,2, while the fundamential differential associated to Ā ′(θ ′)
by η̃0,2.

By direct calculation, Eynard-Orantin show that in [9]

ω̃0,2 =ω0,2 + 2π
√
−1θκ(θ, θ̄)θ.

They also show that

η0,2 =ω0,2 + 2π
√
−1θκ̂(θ)θ,

where κ̂ = bJ.
The fact that

Jκ(θ ′, θ̄ ′)J + κ̂(θ) = 1

θ̄ − θ
implies

η̃0,2 = ω̃0,2.
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Proposition 3.1 (Eynard-Orantin). Given any Torelli marking (Ā, B̄),
the modified fundamental differential ω̃0,2 given by the modified Torelli
marking (Ā(θ), B̄(θ)) is independent of the choice of (Ā, B̄).

This property implies that given a fixed spectral curve, we have
a preferred choice of the fundamental differential ω̃0,2 independent
of the choice of the A-cycles. Moreover, under the limit Imθ → ∞,
ω̃0,2 → ω0,2. Notice the parameter θ and ω0,2 depends on the choice
of the A-cycle.

From the explicit expression of the Eynard-Orantin recursion (Equa-
tion (2)), for any spectral curve, we can define its modified B-model
invariants ω̃g,n based on this modified fundamental differential ω̃0,2,
with

lim
Imθ→∞

ω̃g,n =ωg,n.

3.4. Modularity. The monodromies of the Gauss-Manin connection
on the local system H1(Cs;C) ≅ H1(Cs;C) over MK,0 (as computed
in [1]) gives the modular group Γ of this local system. It is a normal
subgroup of the symplectic group SL(2;Z) of index 3.

Over MK,0, we have a smooth family of mirror curves, and the
coordinates X,Y are well defined. So X,Y are invariant under the
action of the modular group Γ . If we use the modified fundamental
differential ω̃0,2 to define the higher genus B-model invariants ω̃g,n,
then they are all well-defined global invariants on C∣MK,0

. In other
words, if one uses Torelli-marking-sensitive coordinate θ to express
these ω̃g,n, they are invariant under the action of the modular group
Γ .

Using the mirror map (3) we define the open potential in the holo-
morphic polarization under A-model flat coordinates when 2g − 2 +
n > 0.

F̃
X ,(L,f)
g,n (X̃1, . . . , X̃n,τ) = ∫

X̂1

. . .∫
X̂n

ω̃g,n.

The A-model coordinate Q = eτ is well-defined around the LRL
point, and is related to B-model coordiante q around the LRL point

under the closed mirror map. The open potential F̃
X ,(L,f)
g,n has non-

holomorphic dependence on s (q or θ), in contrast to the name “holo-
morphic polarization”. Under the holomorphic limit

lim
Imθ→∞

ω̃g,n =ωg,n.
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With the BKMP remodeling conjecture (Theorem 2.1), for 2g−2+n > 0
and n ≥ 1
(5) lim

Imθ→∞
F̃
X ,(L,f)
g,n = FX ,(L,f)

g,n .

If one defines

F̃Xg = 1

2 − 2g
∑

dx̂(p0)=0

Resp=p0
ω̃g,1(p)∫ Φ(p),

then for g ≥ 2
lim

Imθ→∞
F̃Xg = FXg .

The potential F̃X ,(L,f)
g,n and F̃Xg are globally defined overMK, although

their expansions in Q = eτ are only defined around sLRL since Q is
a flat coordinate around sLRL. Their dependence on s ∈ MK is not
holomorphic.

Theorem 3.2. The Gromov-Witten potential FXg can be completed into an

analytic function F̃Xg , which under the mirror map (3) is globally defined on

MK. When X = OP2(−3), MK is a modular curve, the function F̃Xg is a
function of θ and modular invariant.

Remark 3.3. In the unstable cases (g,n) = (0, 0), (0, 1), (0, 2), (1, 0), the
theorem also holds but we need to treat these cases separately. We did
not very clearly spell out what this “anti-holomorphic completion” is, as

it should be stronger than (5). Indeed, F̃Xg can be written as a polynomial in
1

Imθ
with holomorphic coefficients [9,11]. The lowest order of Imθ is 2−2g,

and each coefficient in non-holomorphic terms are given by combinations of
FXg ′, g

′ < g and their derivatives in a graph sum formula.

Remark 3.4. One could use the modularity property to compute higher
genus Gromov-Witten invariants for certain toric Calabi-Yau 3-(orbi)folds,
thanks to the complete structure theorem of almost holomorphic modular
forms. See [1, 4, 18] for numerical calculations and closed formulae for

some F̃Xg and FXg .
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