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Abstract. In the first part of this paper, we use symplectic cohomology to

construct partial symplectic quasi-states on symplectic manifolds with bound-
aries of contact type. We apply this partial symplectic quasi-states to the
study of symplectic cohomology itself. We prove that a variant of symplectic

cohomology S̃H(M) vanishes if M is displaceable in its symplectic completion

(M̂, ω̂). In the second part of this paper, we use finite coverings of closed
symplectic manifolds to give a criteria of (super)heavy sets.

1. Introduction

Entov and Polterovich introduced the notion of partial symplectic quasi-states
and derived remarkable applications in symplectic geometry, see [4, 5]. In this
note, we present some observations on partial symplectic quasi-states and their
consequences. Firstly, we recall the definition of a partial symplectic quasi-state on
a closed symplectic manifold. Let (M,ω) be a closed symplectic manifold and let
C(M) be the space of continuous functions on M . A partial symplectic quasi-states
on (M,ω) is a functional

ζ : C(M) −→ R
which enjoys the following properties ([4, 5]).

(1) (Lipschitz continuity) |ζ(F )− ζ(G)| ≤ |F −G|C0 .
(2) (Semi-homogenuity) ζ(λF ) = λζ(F ) (∀λ ∈ R≥0).
(3) (Monotinicity) F ≤ G =⇒ ζ(F ) ≤ ζ(G).
(4) (Additivity with respect to constants and Normalization) ζ(F + a) = ζ(F ) + a

holds for any a ∈ R. In particular, ζ(1) = 1.
(5) (Partial additivity) Let F1 and F2 be smooth functions on M . If F1 and

F2 Poisson commute, i.e., {F1, F2} = 0,

ζ(F1 + F2) ≤ ζ(F1) + ζ(F2).

If, in addition, Supp F2 is Hamiltonianly displaceable,

ζ(F1 + F2) = ζ(F1).

(6) (Invariance) ζ(F ) = ζ(F ◦ φ) holds for any Hamiltonian diffeomorphism φ.

Here we say a subset A ⊂M Hamiltonianly displaceable, if there is a Hamiltonian
diffeomorphism φ of (M,ω) such that φ(A) ∩ A = ∅. We also note that these
properties imply that ζ(F ) = 0 if Supp F is Hamiltonianly displaceable. Once a
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partial symplectic quasi-states ζ is defined, we have the notion of heavy sets and
superheavy sets ([4, 5]), see Definition 2.6.

Entov and Polterovich used quantum cohomology ring and spectral invariants
of Floer homology to construct partial symplectic quasi-state on closed symplec-
tic manifolds ([4]). And in [5], they studied properties of heavy sets and super-
heavy sets. In the first part of this paper, we consider symplectic manifolds with
boundaries of contact type and their symplectic cohomology. We use symplectic
cohomology to construct partial symplectic quasi-states on such symplectic man-
ifolds. There are desirable similarities between partial symplectic quasi-states in
Part I of this paper and partial symplectic quasi-states on closed manifolds. We
applied heaviness to the study of symplectic cohomology itself. In particular, we
proved that if a symplectic manifold with a boundary of contact type (M,ω) is

Hamiltonianly displaceable in its symplectic completion (M̂, ω̂), then a variant of

symplectic cohomology S̃H(M), which will be defined in Definition 2.4, vanishes.
This is a generalization of Ritter’s theorem [13] which states that if a Liouville
subdomain (V, λ) in a Liouville domain (W,γ) is Hamiltonian displaceable in W ,
then symplectic cohomology SH(V ) vanishes.

In the second part of this paper, we consider a finite covering of a closed sym-
plectic manifold and give a criteria of (super)heaviness by using this covering. We
also present a few examples of superheavy sets detected by this covering trick.

Part 1. Criterion using symplectic cohomology

2. Constructions and Main results

We first define symplectic manifolds with boundaries of contact type and their
symplectic completions.

Definition 2.1. The boundary ∂M of a symplectic manifold (M,ω) is called contact
type if there is a vector field X which satisfies the following properties.

• X is defined on a neighborhood of ∂M
• LXω = ω
• X is outward pointing on ∂M

Such a vector field X is called Liouville vector field.

As in [17], we define the symplectic completion (M̂, ω̂) of (M,ω) by using above
Liouville vector field X.

M̂ = M ∪∂M [1,∞)× ∂M

ω̂(x) =

{
ω(x) (x ∈M)

d(rα) (x = (r, y) ∈ [1,∞)× ∂M)

Here α is a 1-form on ∂M defined by α = ιXω|∂M . We consider a family of pairs

of a periodic Hamiltonian function H ∈ (S1 × M̂) and a periodic almost complex

structure J ∈ C∞(S1,End(TM̂)).

H =

{
(H,J)

∣∣∣∣ H(t, (r, y)) = αr + β (α < 0), J(t, (r, y)) : contact type
for any (r, y) ∈ [R,∞)× ∂M (∃R ≥ 1)

}
Hreg = {(H, J) ∈ H|H : non-degenerate}
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For any relatively compact subset U ⊂ M̂ , we define subsets of H as follows.

H(U) = {(H,J) ∈ H | inf
(t,x)∈S1×U

H(t, x) > 0}

Hreg(U) = Hreg ∩H(U)

We consider the following forgetful map.

H(U) −→ C∞(S1 ×M)

(H, J) 7−→ H

Later, we often denote the image of this forgetful map by H(U), too.
For (H,J) ∈ H, we consider its contractible periodic orbits and its Novikov

covering.

P (H) = {x : S1 →M | ẋ(t) = XHt(x(t)), x : contractible}

P̃ (H) = {(x, u) ∈ C∞(D2,M)× P (H) | ∂u = x}/ ∼

(x, u) ∼ (y, w)⇔


x = y

ω̂(u♯w) = 0

c1(u♯w) = 0

The action functional AH is defined for P̃ (H) by

AH([(x, u)]) = −
∫
D2

u∗ω +

∫ 1

0

H(t, x(t))dt

The action spectrum and Hofer norm are defined as follows.

Spec(H) = {AH([(x, u)]) | [(x, u)] ∈ P̃ (H)}

||H|| =
∫ 1

0

max
x

H(t, x)−min
x

H(t, x)dt

For (H, J) ∈ Hreg, we consider Floer chain complex and its boundary operator

∂ as follows. (In the situation that M̂ is the completion of M with boundary of
contact type, an argument using maximum principle enables us to construct Floer
chain complex in a similar way to the case of closed symplectic manifolds, [6] in
monotone case, [7] in general.) The underlying module of Floer complex is defined
by

CF (H,J) = {
∑

ℓ̃∈P̃ (H),al∈Q

al · ℓ̃ ∥ ♯{ℓ̃ | al ̸= 0, AH(ℓ̃) < C} <∞ (∀C ∈ R)}.

Roughly speaking, the boundary operator ∂ of the complex CF (H, J) is defined
by counting isolated Floer connecting orbits, i.e., the solutions of the following
equation:

(2.1)
∂v

∂s
+ J(v)(

∂v

∂t
−XHt(u)) = 0

for v : R × R/Z → M so that lims→±∞ u(s, ·) = ℓ±, where ℓ̃± = (ℓ±, u±) ∈ P̃ (H)
and (ℓ+, u+) ∼ (ℓ+, v♯u−).
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Let n(ℓ̃−, ℓ̃+) ∈ Q be the weighted sign count of Floer connecting orbits from ℓ̃−
to ℓ̃+. Then the boundary operator is given by

∂(ℓ̃−) =
∑

ℓ̃+∈P̃ (H)

n(ℓ̃−, ℓ̃+) · ℓ̃+.

We denote the homology of (CF (H, J), ∂) by HF (H, J). For any a ∈ R or a < b,
we have a subcomplex and their quotient defined as follows.

CF<a(H, J) = {
∑

ℓ̃∈P̃ (H),AH(ℓ̃)<a

aℓ̃ · ℓ̃ ∈ CF (H,J)}

CF [a,b)(H, J) = CF<b(H, J)/CF<a(H, J)

We denote their homologies by HF<a(H,J) and HF [a,b)(H, J).

Definition 2.2. We define a partial order on H as follows.

(H, J1) ≤ (K,J2)⇐⇒ H ≥ K

Definition 2.3. For any relatively compact subset U ⊂ M̂ and −∞ ≤ a < b ≤ ∞,
we define a symplectic cohomology of M with respect to U by

SH [a,b)(M̂ : U) = lim−→
(H,J)∈Hreg(U)

HF [a,b)(H,J).

We write

SH [a,b)(M) = SH [a,b)(M̂ : M).

Remark 2.1. SH [−∞,∞)(M) is isomorphic to the ordinary symplectic cohomology
SH(M).

Next we consider the following type of symplectic cohomology which is appro-
priate for the construction of partial symplectic quasi-state.

Definition 2.4. For −∞ < b ≤ ∞ and U ⊂M , we define

S̃H
<b

(M : U) = lim←−
a→−∞

SH [a,b)(M̂ : U),

S̃H(M : U) = lim−→
b→∞

lim←−
a→−∞

SH [a,b)(M̂ : U).

We write

S̃H(M) = S̃H(M : M) = lim−→
b→∞

lim←−
a→−∞

SH [a,b)(M̂ : M).

We consider the following type of the spaces of continuous functions as in [10].

Cc(M) = {f : M → R | Supp f ⊂ Int(M)}
Ccc(M) = {f : M → R | ∃Cf ∈ R s.t. f − Cf ∈ Cc(M)}

We also use a similar class of functions on S1 ×M . For any continuous function
F ∈ Ccc(S

1 ×M), we define the following subspaces of H.

H(F ) = {(H,J) ∈ H | H|S1×M > F}
Hreg(F ) = H(F ) ∩Hreg
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We consider the following forgetful map.

H(F ) −→ C∞(S1 × M̂)

(H, J) 7−→ H

Later, we often denote the image of this forgetful map by H(F ), too.
We also define symplectic cohomology of M with respect to F as follows.

Definition 2.5. For continuous function F ∈ Ccc(S
1 ×M) and a < b, we define

the following cohomologies.

SH [a,b)(M ;F ) = lim−→
(H,J)∈Hreg(F )

HF [a,b)(H, J)

S̃H
<b

(M ;F ) = lim←−
a→−∞

SH [a,b)(M : F )

Remark 2.2. We can easily check that there is a canonical isomorphism

S̃H(M ;F ) := lim−→
b→∞

S̃H
<b

(M ;F ) ∼= S̃H(M).

The filtrations are different, in general. In particular, it is the case when F /∈
H(M).

For closed symplectic manifolds, spectral numbers are defined as Floer theoretical
min-max argument. We define the spectral number of F ∈ Ccc(S

1 ×M) associated

with e ∈ S̃H(M)\{0}.

ρe(F ) = inf{b ∈ R | e ∈ Im(S̃H
<b

(M : F )→ S̃H(M))}

Remark 2.3. The construction of S̃H(M) implies that

ρe(F ) > −∞

holds for any e ∈ S̃H(M) \ {0} and any such F .

First, we define a product structure on S̃H(M : U). The product structure on
symplectic cohomology was studied in [1] on cotangent bundles. The construc-
tion works in more general setting, see, e.g., [13]. We can define product struc-
ture on our symplectic cohomology. We take (H,J1), (K,J2) ∈ Hreg(U) such that
(H♯K, J3) ∈ Hreg(U). Here we set

(H♯K)(t, x) = H(t, x) +K(t, (ϕt
f )

−1(x)).

Then we have the ordinary pair of pants product of Floer chain complex as follows.

CF<a(H, J1)× CF<b(K,J2) −→ CF<a+b(H♯K, J3)

For any pairs a < b, c < d, above chain map induces the following map.

HF [a,b)(H, J1)×HF [c,d)(K,J2) −→ HF [b+d−min{b−a,d−c},b+d)(H♯K, J3)

By taking direct limit of such (H,J1) and (K,J2), we have a product structure

S̃H(M : U)× S̃H(M : U) −→ S̃H(M : U)
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Remark 2.4. S̃H(M : U) has the unit element 1U . In fact, 1U is the image of the
fundamental class [M,∂M ] under the composition of the following maps.

H∗(M,∂M)→ SH(M)→ S̃H(M : U)

¿From this observation, we can see that if U ⊂W ⊂M and S̃H(M : W ) = 0 holds,

then S̃H(M : U) = 0 holds.

Remark 2.5. Similar to the case of closed sympectic manifolds, ρe induces a map

ρe : H̃am
c
(M,ω) −→ R where H̃am

c
(M,ω) is the universal cover of Hamc(M,ω).

Theorem 2.1. Suppose that S̃H(M) ̸= 0. Let e ∈ S̃H(M), e ̸= 0, be an idempo-
tent. Then

ζe(f) = lim
k∈N,k→+∞

ρe(kf)

k

is well defined for f ∈ Ccc(M) and

ζe : Ccc(M) −→ R
becomes a partial symplectic quasi-state. In other words, ζe satisfies the following
properties.

• (Lipschitz continuity) |ζe(F )− ζe(G)| ≤ |F −G|C0 .
• (Semi-homogenuity) ζe(λF ) = λζe(F ) (∀λ ∈ R≥0).
• (Monotonicity) F ≤ G =⇒ ζe(F ) ≤ ζe(G).
• (Additivity with respect to constants and Normalization) ζe(F+a) = ζe(F )+
a holds for any a ∈ R. In particular, ζe(1) = 1.
• (Partial additivity) Let F1 and F2 be smooth functions in Ccc(M). If
{F1, F2} = 0, then

ζe(F1 + F2) ≤ ζe(F1) + ζe(F2).

If, in addition, Supp F2 is Hamiltonianly displaceable,

ζe(F1 + F2) = ζe(F1).

and Supp F2 is Hamc(M,ω)-displaceable, then ζe(F1 + F2) = ζe(F1) holds.
• (Invariance) ζe(F ) = ζe(F ◦ ϕ) (∀ϕ ∈ Hamc(M,ω))

Remark 2.6. If S̃H(M) ̸= 0 holds, we can construct partial symplectic quasi-states

by using the unit element 1M ∈ S̃H(M).

As in the closed case ([5]), we define heavy set and superheavy set as follows.

From now on, we assume that e ∈ S̃H(M)\{0} is an idempotent.

Definition 2.6. A closed subset A ⊂M is called e-heavy if

ζe(H) ≥ inf
A

H (∀H ∈ Ccc(M))

holds and is called e-superheavy if

ζe(H) ≤ sup
A

H (∀H ∈ Ccc(M))

holds.

Remark 2.7. A closed subset A ⊂M is e-heavy if and only if ζe(f) ≥ 0 holds for
any f ∈ Ccc(M) such that f |A = 0. A closed subset A ⊂M is e-superheavy if and
only if ζe(f) ≤ 0 holds for any f ∈ Ccc(M) such that f |A = 0. See Remark 5.1 (4)
for the case of closed symplectic manifolds.
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Definition 2.7. A subset A ⊂M is called Hamiltonianly displaceable if there is
φ ∈ Ham(M,ω) such that φ(A) ∩A = ∅ holds. Otherwise, A is called Hamiltonian
non-displaceable.

When A is compact and Hamiltonianly displaceable, we can take φ generated
by a compactly supported Hamiltonian function such that φ displaces A.

Next two propositions are important for the proof of theorem.

Proposition 2.1. A closed subset A ⊂ M is e-heavy if and only if e does not
vanish under the map

S̃H(M) −→ S̃H(M : A).

Proposition 2.2. If a closed subset A ⊂M is e-heavy, A is non-displaceable in
M .

The proof of Proposition 2.2 goes in the the same way as [5].
Using these two propositions, we prove the following vanishing theorem.

Theorem 2.2. If U is displaceable in (M̂, ω̂), then S̃H(M : U) = 0 holds. In

particular, if M is displaceable in (M̂, ω̂), then S̃H(M) = 0 holds.

Remark 2.8. Let (V, λ) be a Liouville domain and Let ι be an exact embedding of
V into another Liouville domain (W,γ) of the same dimension. Then we can prove
that

SH(V ) ∼= S̃H(V ) ∼= S̃H(W : ι(V )).

The first isomorphism follows from the fact that SH(V ) ∼= SH [a,∞)(V ) is satisfied
for any a < 0, since V is a Liouville domain. The second isomorphism follows from
the following arguments ([16]). We fix a ∈ R. It suffices to prove that there is a
canonical isomorphism between SH [a,∞)(V ) and SH [a,∞)(W : ι(V )). Without loss

of generality, we can assume that ι∗γ = λ. In the completion V̂ , a neighborhood of
∂V can be identified with the following domain

((1− ϵ, 1 + ϵ)× ∂V, rλ|∂V ).
Here r is the coordinate of (1− ϵ, 1 + ϵ). If we choose ϵ small enough, a neighbor-

hood of ι(∂V ) in Ŵ can be identified with the following domain

((1− ϵ, 1 + ϵ)× ι(∂V ), rγ|ι(∂V )).

So these two neighborhoods can be identified canonically. Note that we can take

outward collar neighborhoods V and ι(V ) to V̂ and Ŵ , respectively:

Vϵ = V ∪ [1, 1 + ϵ]× ∂V ⊂ V̂ ,

ι(V )ϵ = ι(V ) ∪ [1, 1 + ϵ]× ι(∂V ) ⊂ Ŵ .

Thus ι can be extended to Vϵ canonically. We construct HV ∈ H(V ) and HW ∈ H(W )
as follows.

• HV (t, x) = HW (t, ι(x)) holds on x ∈ Vϵ

• HV (t, (r, y)) = α(r) holds on (r, y) ∈ [1, 1 + ϵ]× ∂V
• There are no periodic orbits on [1, 1 + ϵ]× ∂V

Then, the periodic orbits P (HV ) and P (HW ) can be divided into the following four
types.

(1) x(t) ∈ P (HV ) contained in V .
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(2) x(t) ∈ P (HV ) contained in V̂ \ Vϵ.
(3) x(t) ∈ P (HW ) contained in ι(V ).

(4) x(t) ∈ P (HW ) contained in Ŵ \ ι(Vϵ).

Periodic orbits (1) and (3) are identified canonically. We can choose HV and HW

so that the action functional AHV (resp. AHW ) take values smaller than a fixed con-
stant a ∈ R for periodic orbits in (2) (resp. (4)). (Here we also used the assumption
that V and W are Liouville domains and V is an exactly embedded subdomain. ) So
CF [a,∞)(HV ) is generated by periodic orbits in (1) and CF [a,∞)(HW ) is generated
by periodic orbits in (3).　 This implies that CF [a,∞)(HV ) and CF [a,∞)(HV ) can

be identified as vector spaces. We choose almost complex structures JV̂ on V̂ and

J
Ŵ

on Ŵ as follows.

• JV̂ |Vϵ = ι∗(J
Ŵ
)|Vϵ

• JV̂ is contact type on [1, 1 + ϵ]× ∂V

Then the image of any Floer connecting orbit (2.1) between periodic orbits in (1)
(resp. (3)) is contained in V (resp. ι(V )) (see [1]). So, CF [a,∞)(HV , JV̂ ) and

CF [a,∞)(HW , J
Ŵ
) are also canonically identified as chain complexes. By taking

direct limit with respect to such HV and HW , there is the following canonical iso-
morphisms.

SH [a,∞)(V ) = lim−→
HV

HF [a,∞)(HV , JV̂ )

∼= lim−→
HW

HF [a,∞)(HW , J
Ŵ
) = SH [a,∞)(W : ι(V ))

3. Fundamental properties of ρe and ζe

In this section, we prove Theorem 2.1. We have the following subadditivity.

Lemma 3.1. For any two periodic Hamiltonian functions F,G, following inequality
holds.

ρe(F ) + ρe(G) ≥ ρe(F♯G)

Proof. We take (H,J) ∈ H(f), (K,J) ∈ H(g) so that (H♯K, J) ∈ H(F♯G) holds.
Then we have a map

HF<a(H, J)×HF<b(K,J) −→ HF<a+b(H♯K, J)

for any a, b ∈ R. By taking direct limit of such (H, J) and (K,J), we get a map

SH<a(M : F )× SH<b(M : G) −→ SH<a+b(M : F♯G)

This implies that subadditivity is satisfied. □

We also have the following lemma.

Lemma 3.2. Let F,G ∈ C∞
c (S1 ×M) be two Hamiltonian functions. Suppose that

the Hamiltonian diffeomorphism ϕG generated by G satisfies

ϕG(Supp F ) ∩ Supp F = ∅
holds. Then ρe(G♯F ) = ρe(G) holds.

Proof. Let G′ ∈ Hreg be a Hamiltonian function such that

• G′ ∈ Hreg(G)
• G′♯F ∈ H(G♯F )
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• ϕG′(Supp F ) ∩ Supp F = ∅.
From these assumptions, we have that G′♯tF ∈ Hreg(G♯tF ) for any t. We take G′

so that the restriction of G′ to M is a small perturbation of that of G. Let

{eb,G♯F ∈ SH [b,∞)(M ;G♯F )}b∈R ∈ S̃H(M ;G♯F )

{eb,G ∈ SH [b,∞)(M ;G)}b∈R ∈ S̃H(M ;G)

be representatives of e ∈ S̃H(M), cf. Remark 2.2. We choose a negative real
number a < 0 so that |a| > ||F || holds. We assume that G′ is sufficiently small
outside M so that we can choose

e0 ∈ HF [4a,∞)(G′, J)

e1 ∈ HF [4a,∞)(G′♯F, J)

which are representatives of e4a,G and e4a,G♯F . ¿From now on, we assume that
a < 0 also satisfies the following condition

(3.1) a < min{ρe(G♯F ), ρe(G)}.
We consider the following two constants for 4a ≤ d ≤ a.

τd(0) = inf{c ∈ R | ed0 ∈ Im(HF [d,c)(G′)→ HF [d,∞)(G′))}

τd(1) = inf{c ∈ R | ed1 ∈ Im(HF [d,c)(G′♯F )→ HF [d,∞)(G′♯F ))}

Here edt is the image of et (t = 0, 1). Then the condition (3.1) on a ∈ R implies
that τd(t) > a holds and it does not depend on the choice of d if 4a ≤ d ≤ a is
satisfied. We denote them by τ(0) and τ(1). For any d ≥ 3a, we have the following
one parameter family of maps induced by continuation homomorphisms (t ∈ [0, 1]).

κd
t : HF [4a,∞)(G′, J) −→ HF [d,∞)(G′♯tF, J)

Next, we compare τ(0) and τ(1). For any d ∈ [3a, 2a] and t ∈ [0, 1], we consider
the following quantity

τd(t) = inf{c ∈ R | κd
t (e0) ∈ Im(HF [d,c)(G′♯tF )→ HF [d,∞)(G′♯tF )}.

Then τd(t) ≥ 2a holds and τd(t) does not depend on the choice of 3a ≤ d ≤ 2a. We
denote them by τ(t). Note that above two definitions of τ(0) and τ(1) coincide,
because κd

0(e0) = ed0 and κd
1(e1) = ed1 hold for 3a ≤ d ≤ 2a. We have the following

commutative diagram for any s, t ∈ [0, 1].

HF [4a.∞)(G′)
κ3a
s−−−−→ HF [3a,∞)(G′♯sF )∥∥∥ y

HF [4a.∞)(G′)
κ2a
t−−−−→ HF [2a,∞)(G′♯tF )

Applying the standard argument on filtrations to this diagram, we find that

τ(t) ≤ τ(s) + |s− t| · ||F || for s, t ∈ [0, 1].

In particular, we obtain the following Lipschitz continuity.

|τ(s)− τ(t)| ≤ |s− t| · ||F ||.

The assumption ϕG′(Supp F ) ∩ Supp F = ∅ implies that

Spec(G′♯tF ) = Spec(G′),



10 KAORU ONO AND YOSHIHIRO SUGIMOTO

(Ostrover’s argument, see, e.g., [12]). Since G′♯tF ∈ Hreg(G♯tF ), we obtain
τ(t) ∈ Spec(G′♯tF ) = Spec(G′) (the spectrality for non-degenerate Hamiltonians).
Because Spec(G′) is nowhere dense, the continuity of τ(t) implies that τ(t) is a
constant function. In particular, τ(0) = τ(1) holds. If we make the Hamiltonian
function G′ smaller and smaller, τ(0) converges to ρe(G) and τ(1) converges to
ρe(G♯F ). So ρe(G) = ρe(G♯F ) holds.

□

The ingredients of the proof of the fact that ζe(f) is well-defined are as follows.

• subadditivity
• Lemma 3.2
• Fragmentation Lemma [3]
• Let F ∈ C∞

c (S1 ×M) and set F = −F (t, ϕt
F (x)). Then, if Supp(F ) is

contained in U , which is Hamiltonianly displaceable, ρe(F ) + ρe(F ) ≤ CU

for some constant CU which depends only on U .

The rest of the proof of well-definedness is algebraic and this part is the same as in
the closed case ([4]). Lipschitz continuity, semi-homogenuity, monotonicity, additiv-
ity with respect to constants and normalization, partial additivity, and invariance
also goes in the same way as in the closed case.

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We first prove Proposition 2.1.

Proof of Proposition 2.1. Assume that e ∈ S̃H(M)\{0} be an idempotent andA ⊂M
is a subset such that e does not vanish under the map

ι : S̃H(M) −→ S̃H(M : A)

The condition that ι(e) ̸= 0 implies that

c(e : A) = inf{a ∈ R | ι(e) ∈ Im(S̃H
<a

(M : A)→ S̃H(M : A))} > −∞,

see Remark 2.3. Since e is an idempotent, we have that c(e : A) = c(e∗k : A) ≤
kc(e : A) for any k ∈ N. Hence we find that c(e : A) ≥ 0. Let f ∈ Ccc(M) be any
function such that f |A = 0. It suffices to prove that ζe(f) ≥ 0 holds. In this case,
since H(f) ⊂ H(A), we have the following map for any a ∈ R.

τ : S̃H
<a

(M : f) −→ S̃H
<a

(M : A).

So the fact that c(e : A) ≥ 0 implies that ρe(f) ≥ 0. Obviously, kf ∈ Ccc(M), thus
we have ρe(kf) ≥ 0. This implies that

ζe(f) = lim
k→∞

ρe(kf)

k
≥ 0

and A ⊂M is e-heavy.
Next, we assume that ι(e) = 0. We show that A ⊂M is not heavy. We fix a

constant c < 0 and let {ea ∈ SH [a,∞)(M)}a∈R be the representative of e ∈ S̃H(M).

We choose ec ∈ HF [c,∞)(H) (H ∈ H(M)), which represents ec. The assumption
that ι(e) = 0 implies that there exists HA ∈ H(A) such that

• H(t, x) ≥ HA(t, x).
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• ec vanishes under the following map

HF [c,∞)(H) −→ HF [c,∞)(HA).

We choose f ∈ Ccc(M) which satisfies the following conditions.

• f |A = 0
• f(x) ≤ HA(t, x) holds on (t, x) ∈ S1 ×M

Then HA ∈ H(f) holds and ec ∈ HF [c,∞)(H) vanishes under the composition of
the following maps.

HF [c,∞)(H) −→ HF [c,∞)(HA) −→ SH [c,∞)(M ; f)

This implies that ρe(f) ≤ c < 0 holds. In particular, subadditivity implies that
ζe(f) ≤ c holds and A ⊂M is not e-heavy. □

Next we prove Theorem 2.2.

Proof. We assume that U ⊂M is displaceable in (M̂, ω̂). For R ≥ 1, we define the

following subset of M̂ {
MR = M ∪∂M [1, R)× ∂M

ωR = ω̂|MR

For such (MR, ωR)we have the following natural isomorphism.

S̃H(M : U) ∼= S̃H(MR : U)

We assume that U is displaceable in MR. We divide the proof into the following
two parts.

(1) Assume that S̃H(MR) = 0 holds. Then the unit element 1MR ∈ S̃H(MR)
is zero. There is a canonical map

S̃H(MR) −→ S̃H(MR : U) ∼= S̃H(M : U)

and this maps the unit 1MR
to the unit 1U ∈ S̃H(M : U). So 1U is zero

and S̃H(M : U) = 0 holds.

(2) Assume that S̃H(MR) ̸= 0 holds. In this case we can use e = 1MR
to con-

struct partial symplectic quasi-state ζe. Because U is displaceable in MR,
Proposition 2.2 implies that U is not e-heavy. Then Proposition 2.1 implies

that 1U = 0. So 1U = 0 and S̃H(M : U) = 0 holds.

□

Appendix to Part 1.

This appendix is an extract from the master’s thesis of the second author [16]. A
similar result for wrapped Floer homology was obtained in [15]. In this appendix,
we explain that if (M,ω) is a weakly exact symplectic manifold (i.e. ω|π2(M) = 0)
with a contact type boundary, we can prove a stronger result than Theorem 2.2.
We explain the following theorem.
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Theorem 4.1. Let (M,ω) be a compact weakly exact symplectic manifold with
a contact type boundary and let U ⊂M be a subset of M such that U is Hamil-

tonian displaceable in M̂ . Let e(U) be its displacement energy. Then for any
−∞ < a < b ≤ ∞ and c > e(U), the canonical map

SH [a,b)(M : U) −→ SH [a+c,b+c)(M : U)

is zero.

Theorem 2.2 for weakly exact symplectic manifolds is a corollary of above the-
orem. We explain how to prove Theorem 4.1. A detailed arguments in a similar

situation in wrapped Floer homology can be found in [15]. Let K ∈ C∞
c (S1 × M̂)

be a Hamiltonian function which satisfies the following properties.

• ϕK(U) ∩ U = ϕ
• ||K|| < c

Let W be a open neighborhood of U such that ϕK(W ) ∩W = ϕ holds. We fix
R ≥ 1 so that

MR = M ∪∂M [1, R]× ∂M ⊃ (W ∪ Supp K)

We take a (non-smooth) Hamiltonian function h as follows.

• h|U > 0
• h|MR\W ≡ C
• h((r, y)) = αr + β, (r, y) ∈ [R,∞)× ∂M,α < 0
• |α| is sufficiently small with respect to |C|

For such h, we can perturb h to H ∈ C∞(S1 × M̂) so that

• H is smooth
• H is non-degenerate
• Spec(H♯K) ⊂ [−∞, a)

hold. Then we have the following commutative diagram. We omit almost complex
structures.

HF [a,b)(H) −−−−→ HF [a+||K||,b+||K||)(H)y x
HF [a+||K||+,b+||J||+)(H♯K) HF [a+||K||+,b+||J||+)(H♯K)

where ||K||+ is the positive part of Hofer norm

||K||+ =

∫ 1

0

max
x

K(t, x)dt

By the conditions of H and , we have

HF [a+||K||+,b+||J||+)(H♯K) = 0

and above commutative diagram implies that

HF [a,b)(H) −→ HF [a+||K||,b+||K||)(H)

is zero. By taking direct limit of such H, we can see that

SH [a,b)(M : U) −→ SH [a+||K||,b+||K||)(M : U)

is zero. Because we assumed ||K|| < c, we can see that Theorem 4.1 holds.
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Part 2. Covering tricks

In this part, we consider covering tricks. We consider a finite covering of a
closed symplectic manifold and give a sufficent condition for (super)heaviness by
using suitable covering spaces.

5. A brief review of (super)heaviness on closed symplectic manifolds

In this section, we briefly review the construction of symplectic quasi-states
on closed symplectic manifolds and the definition of heaviness and superheaviness
([4, 5]). Let (M,ω) be a closed symplectic manifold and let QH(M,ω) be the
quantum cohomology ring which is defined as follows. H∗(M : Q) is the singular
cohomology group of M and Λ is the Novikov ring of (M,ω)

QH(M,ω) = H∗(M : Q)⊗Q Λ

The quantum cohomology has a product structure which is known as quantum cup
product([14, 11])

∗ : QH(M,ω)×QH(M,ω) −→ QH(M,ω)

and there is a ring isomorphism between quantum cohomology ring and Floer ho-
mology.

Ψ : QH(M,ω) −→ HF (H,J)

For any pair of a Hamiltonian function and an almost complex structure (H,J)
and for any element e ∈ QH(M,ω), the spectral invariant is defined as follows.

ρe(H) = inf{a ∈ R | Ψ(e) ∈ Im(HF<a(H, J)→ HF (H,J))}
ρe(H) does not depend on the choice of J and it is Lipschitz continuous with respect
to the Hofer norm of H. So we can extend ρe(H) for any continuous function H.

Let e ∈ QH(M,ω) be an idempotent (i.e. e ∗ e = e holds). Then, symplectic
quasi-states ζe is defined as follows([4, 5]). Let H be an autonomous Hamiltonian
function on M .

ζe(H) = lim
k∈N,k→+∞

ρe(kH)

k

Then, heavy sets and superheavy sets are defined as follows.

Definition 5.1 (heavy set, superheavy set [4, 5]). We fix an idempotent e.

(1) A closed subset X ⊂M is called e-heavy if

ζe(H) ≥ inf
X

H (∀H ∈ C(M))

holds.
(2) A closed subset X ⊂M is called e-superheavy if

ζe(H) ≤ sup
X

H (∀H ∈ C(M))

holds.

Remark 5.1. (1) ζe satisfies Lipschitz continuity, semi-homogenuity, mono-
tonicity, additivity with respect to constants and normalization, partial ad-
ditivity, invariance as in Theorem 2.1.

(2) Let X ⊂M be a e-heavy set. Then X can not be displaced by any Hamil-
tonian diffeomorphism. In other words, X ∩ ϕ(X) ̸= ∅ holds for any Hamil-
tonian diffeomorphism ϕ.
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(3) Let X ⊂M be a e-superheavy set. Then X can not be displaced by any
symplecitc isotopy. In other words, X ∩ ϕ(X) ̸= ∅ holds for any symplecto-
morphism ϕ if ϕ is isotopic to the identity via symplectomorphisms.

(4) A closed subset X ⊂M is e-heavy (resp. e-superheavy) if and only if
ζe(f) = 0 for any continuous function f such that f |X = 0 and f ≤ 0
(resp. f ≥ 0), see Proposition 4.1 in [5]. The latter condition is equiva-
lent to the condition that ζe(f) ≥ 0 (resp. ζe(f) ≤ 0) for any continuous
function f such that f |X = 0.

6. Covering tricks

Let (M,ω) be a closed symplectic manifold and let

π : M̃ −→M

be a k-fold covering (k < +∞). M̃ has a symplectic form ω̃ = π∗ω. Let (H, J) be
a pair of a Hamiltonian function and an almost complex structure on M , then we

denote its pull-back to (M̃, ω̃) by (H̃, J̃).

H̃(t, x) = H(t, π(x))

J̃(t, x) = J(t, π(x))

Next, we take the average of CF (H̃, J̃) as follows.

av : CF (H̃, J̃) −→ CF (H̃, J̃)

[x, u] 7−→ 1

k

∑
π(ui)=π(u),ui ̸=uj

[xi, ui]

We denote the image of av by CF (H̃, J̃)av and its homology by HF (H̃, J̃)av. Note
that av preserves the filtration by the action functional.

Let πHF
∗ be the projection of Floer chain complexes as follows.

πHF
∗ : CF (H̃, J̃) −→ CF (H, J)

[x, u] 7−→ [π(x), π(u)]

Then we have the following lemma.

Lemma 6.1. The restriction of πHF
∗ to CF (H̃, J̃)av induces an isomorphism be-

tween HF (H̃, J̃)av and HF (H, J).

Remark 6.1. The arguments in the proof of Lemma 6.1 implies that av is a chain

map and CF (H̃, J̃)av is a subcomplex. So its homology is well defined. Lemma 6.1
also implies that the natural map

HF (H̃, J̃)av −→ HF (H̃, J̃)

is injective.

Proof. For any l = [x, u] ∈ P̃ (H), there is k discs u1, · · · , uk of M̃ which are the
lifts of u.

ui : D
2 −→ M̃

π(ui) = u
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We denote the boundary of ui by xi and [xi, ui] ∈ P̃ (H̃) by li. Then l̃ = 1
k

∑
1≤i≤k l

i

generates CH(H̃, J̃)av. So it suffices to compare the matrix coefficients n(l−, l+)

and n(l̃−, l̃+) for every l−, l+ ⊂ P̃ (H).
Let v : R× S1 −→M be a connecting orbit from l− to l+. Because v converges

to contractible periodic orbits in the ends, there are k cylinders v1, · · · , vk which
are the lifts of v. These lifts determine a permutation τ of {1, · · · , k} so that vi is a

connecting orbit from li− to l
τ(i)
+ . This implies that n(l−, l+) and n(l̃−, l̃+) coincide.

So, we can identify CF (H̃, J̃)av and CH(H, J). □

On the other hand, we define QH(M̃, ω̃)av using the transfer map for the finite
covering space. Namely, for any singular simplex σ : ∆ → M , there is k singular

simplices {σi : ∆→ M̃}i=1,...,k such that π ◦ σi = σ. Then, we set tf(σ) = 1
k

∑
σi,

which is a chain homomorphism and induces

tf∗ : H∗(M : Q) −→ H∗(M̃ : Q).

We set

av = tf∗ ◦ π∗ : H∗(M̃ : Q)→ H∗(M̃ : Q).

By identifying cohomology and homology via Poincaré duality, we can also define
av on singular cohomology and also on quantum cohomology.

av : QH(M̃, ω̃) −→ QH(M̃, ω̃)

QH(M̃, ω̃)av is the image of av. As in the case of Floer homology, the projection

πQH
∗ : QH(M̃, ω̃) −→ QH(M,ω)

induces an isomorphism betweenQH(M̃, ω̃)av andQH(M,ω). For any e ∈ QH(M,ω),

we denote the corresponding element in QH(M̃, ω̃)av by ẽ.

Proposition 6.1. (1) There is a following commutative diagram.

QH(M̃, ω̃)
∼=−−−−→ HF (H̃, J̃)

av

y av

y
QH(M̃, ω̃)av

∼=−−−−→ HF (H̃, J̃)av

πQHav

∗

y πHFav

∗

y
QH(M,ω)

∼=−−−−→ HF (H, J)

Here We denote πQH
∗ |

QH(M̃,ω̃)av by πQHav

∗ and πHF
∗ |HF (H̃,J̃)av by πHFav

∗ .

(2) πQHav

∗ is a ring isomorphism. In particular, e is an idempotent if and only
if ẽ is an idempotent.

Proof. For a closed symplectic manifold, the quantum cohomology and Hamiltonian
Floer homology are isomorphic. The isomorphism is constructed roughly as follows.
Pick a function ρ ∈ C∞(R) such that ρ(s) = 0 for s << 0 and ρ(s) = 1 s >> 0.
Then consider a family of Hamiltonian functions Ks = ρ(s) ·H and Ls = (1−ρ(s)) ·
H. The isomorphism is constructed using solutions of s-dependent analog of the
equation (2.1) for Floer connecting orbits using {Ks} and {Ls}. The asymptotic

condition for solution v when using {Ks} is lims→−∞ v(s, )̇ lies in a given chain in
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M and lims→+∞ v(s, ·) = ℓ for ℓ ∈ P (H). In the case using {Ls}, these asymptotic

conditions are switched. The projection π maps solutions in M̃ to those in M and

any solution in M is lifted to k solutions in M̃ . Therefore Claim (1) is a direct
consequence of the construction of the isomorphism between quantum cohomology
and Floer homology.

Claim (2) follows from the following observation. The quantum cup product ∗
is defined by using three points genus zero Gromov-Witten invariants. Note that

every genus zero stable map to M has k lifts to M̃ . Then, we can see that πQHav

∗
is a ring isomorphism. □
Lemma 6.2. (1) For any periodic Hamiltonian function H and any idempo-

tent e ∈ QH(M,ω),

ρe(H) = ρẽ(H̃)

holds.
(2) For any autonomous Hamiltonian function H and any idempotent e ∈ QH(M,ω),

ζe(H) = ζẽ(H̃)

holds.

Proof. (2) follows from (1). So it suffices to prove (1). Because we can identify

CH(H, J) and CH(H̃, J̃)av,

e ∈ Im(HF<a(H,J) −→ HF (H, J))

implies

ẽ ∈ Im(HF<a(H̃, J̃) −→ HF (H̃, J̃)).

This implies ρe(H) ≥ ρẽ(H̃) holds.

Let c̃ ∈ CF (H̃, J̃)av be a cycle which satisfies [c̃] = ẽ and let d̃′ ∈ CF (H̃, J̃) be
a chain which is not necessarily av-invariant. Then c = πHF

∗ (c̃) ∈ CF (H, J) is a

cycle which represents e. We take the average of d̃′ and we denote it by d̃ = av(d̃′).
Then we have the following equalities.

c+ ∂(πHF
∗ (d̃)) = πHF

∗ (c̃+ ∂d̃) = πHF
∗ (c̃+ ∂(av(d̃′)))

= πHF
∗ (c̃+ av(∂d̃′)) = πHF

∗ (av(c̃+ ∂d̃′))

So c̃+ ∂d̃′ ∈ CF<a(H̃, J̃) implies c+ ∂(πHF
∗ (d̃)) ∈ CF<a(H, J) holds. This implies

ρe(H) ≤ ρẽ(H̃) holds. □
The lemma above is the key of the following criterion for (super)heaviness.

Proposition 6.2. (1) A closed subset X ⊂M is e-heavy if and only if π−1(X)
is ẽ-heavy.

(2) A closed subset X ⊂M is e-superheavy if and only if π−1(X) is ẽ-superheavy.

Proof. We prove the claim (1). The proof of (2) is similar. Let X ⊂M be a e-heavy

subset. Let f be a continuous function on M̃ such that f ≤ 0 and f |π−1(X) = 0.
Let f be a continuous function on M which is defined as follows.

f(x) = min
z∈M̃,π(z)=x

f(z)

Note that f ≤ 0, f |X = 0 and f ≥ π∗(f). So we have the following inequality.

ζẽ(f) ≥ ζẽ(π
∗f) = ζe(f) = 0



NOTE ON (SUPER) HEAVY SUBSETS IN SYMPLECTIC MANIFOLDS 17

This implies that ζẽ(f) = 0, hence π−1(X) is ẽ-heavy.
Conversly, assume that π−1(X) is ẽ-heavy and let f be a continuous function

on M such that f ≤ 0 and f |X = 0. Then we have π∗f ≤ 0 and π∗f |π−1(X) = 0,
which imply that

ζe(f) = ζẽ(π
∗f) = 0.

Hence we find that X is e-heavy. □

LetX ⊂M be a closed subset and let Ui be a connected component of π−1(M\X).

π−1(M\X) =
⊔
i

Ui

Then we can prove the following theorem.

Theorem 6.1. Assume that each Ui is Hamiltonian displaceable. Then X is e-
superheavy.

Proof. It suffices to prove that π−1(X) is ẽ-superheavy. Let f be a continuous

function on M̃ such that f |π−1(X) = 0 holds. We approximate this function by

smooth function g on M̃ as follows. We fix ϵ > 0.

|f − g| < ϵ

g =
∑

gi

Supp gi ⊂ Ui

Note that gi Poisson commute, the partial additivity of ζẽ implies that

ζẽ(g) =
∑

ζẽ(gi) = 0.

Lipschitz continuity of ζẽ implies that |ζẽ(f)| < ϵ holds. So ζẽ(f) = 0 holds and
π−1(X) is ẽ-superheavy. □

7. Examples

In this section, we construct a few examples of superheavy sets by using the cov-
ering trick. We consider the following situation. Let (X,ω) be a closed symplectic
manifold such that the fundamental group Γ = π1(X) is residually finite group.
Moreover, any element of Γ acts on the universal covering of X by a Hamiltonian
diffeomorphism.

Definition 7.1 (residually finite group). A group Γ is residually finite if and only
if the intersection of all normal subgroup of finite index is trivial. In other words,
the following holds. ∩

N◁Γ,|Γ/N |<∞

N = {e}

Let π : X̃ → X be a universal covering and write ω̃ = π∗ω. Assume that D̃ ⊂ X
is a relatively compact open set which satisfies the following conditions.

• the restriction of π to D̃ is injective.

• D̃ is Hamiltonianly displaceable in (X̃, ω̃)
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We write D = π(D̃). Multiplying a suitable cut-off function to a displacing Hamil-

tonian for D̃, if necessary, we can pick a compactly supported 1-periodic Hamil-

tonian function H ∈ C∞
c ([0, 1]× X̃) such that ϕH satisfies ϕH(D̃) ∩ D̃ = ∅ and let

K ⊂ X̃ be a compact set such that Supp H ⊂ K holds.
Since Γ is residually finite, we can take a normal subgroup Γ′ ⊂ Γ of finite index

such that

(X̃, ω̃)
π′

−→ (X ′ = X̃/Γ′, ω′)
π′′

−→ (X,ω)

• π′′ is a finite covering.
• π′|K : K −→ X ′ is injective.

Namely, we choose elements γ1, · · · , γl ∈ Γ which satisfies the following condition.

For any x, y ∈ K with π(x) = π(y), there exists j, 1 ≤ j ≤ l such that γix = y.

Since Γ is residually finite,we can pick normal subgroups {Ni ◁ Γ}1≤i≤l of finite
index such that γi /∈ Ni Then we set Γ′ =

∩
1≤i≤l Ni , which enjoys the properties

mentioned above.
Set D′ = π′(D̃). Then we have that ϕH(D′) ∩ D′ = ∅. We find that each

connected component of π′′−1(D) ⊂ X ′ is Hamiltonianly displaceable in (X ′, ω′).
Then Theorem 7.1 implies that X\D is superheavy with respect to any idempotent
e ∈ QH(X,ω).

Example 7.1. Let M be a closed Kähler manifold of constant negative holomorphic
sectional curvature. Then there is a cocompact discrete subgroup Γ ⊂ PU(1, n : C)
such that M is Kähler isometric to Hn

C/Γ, where Hn
C is the complex hyperbolic

space. It is known that Γ is residually finite. Let D̃ ⊂ Hn
C/Γ be the interior of a

fundamental domain for Γ-action on Hn
C. We denote by D the image of D̃ by the

projection Hn
C → M . We pick g ∈ Γ such that the closure of g(D̃) is disjoint from

the closure of D̃. Since g belongs to the identity component of the group of Kähler

isometres, D̃ is Hamiltonianly displaceable in Hn
C. Then we can apply the above

arguments to D. Hence M \D is superheavy.
The same argument works for symplectic tori R2n/Γ, where Γ is a lattice of rank

2n. See also, the work of Kawasaki [9].

Example 7.2. First of all, we recall the construction by Fine and Panov [8]. Let
SO(2n, 1) be the set of orientation preserving linear automorphism which preserves
the following Minkowski metric.

x2
0 − x2

1 − · · · − x2
2n

Then Z2n = SO(2n, 1)/U(n) is realized as a coadjoint orbit of SO(2n, 1), so Z2n

has a symplectic form ([8]). Z2n fibers over the real hyperbolic space H2n.

H2n ∼= SO(2n, 1)/SO(2n)

Z2n is the twistor space of H2n. Let Γ ⊂ SO(2n, 1) be a fundamental group of
a closed hyperbolic manifold X. Then Γ action on Z2n preserves the symplectic
form on Z2n. So the symplectic form on Z2n induces a symplectic form on Z2n/Γ.
Z2n/Γ is the twistor space of X = H2n/Γ.

Z2n −−−−→ Z2n/Γy η

y
H2n π−−−−→ X = H2n/Γ
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Let D̃ ⊂ H2n be a fundamental domain for the Γ-action on H2n. We write D =

π(D̃). Pick an element g ∈ SO(2n, 1), which displaces D̃ from itself in H2n. Since
g induces an action on Z2n/Γ preserving the symplectic form and Z2n is simply

connected, D̃ is Hamiltonianly displaceable in Z2n. Then the above arguments imply
that (Z2n/Γ) \ η−1(D) ⊂ Z2n/Γ is superheavy.
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