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THE HILBERT TRANSFORM ON LIPSCHITZ CURVES'

Ronald Cotfman, Alan MeIntosh

and Yves Meyer

Our aim is to prove the following theorems.

THEOREM A. Let vy be a curve in the complex plane parametrized by
x + ih(x) , ¥ e R, where h is a real-valued absolutely continuous
function with derivative h' € Lm(lR) . Let I-IY denote the Hilbert

transform on vy , defined, for u € L2('~{) , by

Y1+ih' (x) V1+ih' (y)
(x+ih(x)) = (y+ih(y))

{oe]
(H u) (x) = = p.v. J u(y)dy .
Y T p = Y
Then (Hyu) (x) is defined for almost all x € IR, and HYu € LZ(]R) .
Indeed, there exists a constant c , depending only on |lh'[l_ , such

that
”HYuHZ < c||u||2 for all u e Ly(R) .

THEOREM B. Let £ ¢ LW(IU , with Re £ 21 , and let M denote

the maximal accretive operator in L2(1R) defined by Mu = - a%{- (£ %%) ,
. . 1 du 1

with domain D(M) = {u e H (R) | £ 3 < H (R)} = (where

Hl(]R) = {u € L2(IR) l %1{- € L2(]'R)} ) . Then the domain of the square root,

M? , is Hl(IR) , and, if u € Hl(JR) '

1 6 du % d
Lo1E12008%), < Il u

6
eoll£lllgl, -
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Moreover, if £ = fz depends analytically on a parameter 2z € Q , where
Q is an open subset of € , and M = MZ is the corresponding operator,

1
then, for all u e Hl(EU ’ Mﬁu depends analytically on 2z .

The first theorem solves a conjecture of Calderon. It has already
been proved by Calderon in the case when ||h'|  ~is sufficiently small
[c21 . The second theorem answers a question of Kato in the special case
of ordinary differential operators defined on the whole real line. Both
theorems have applications in the study of partial differential operators

with non-smooth data. However such applications will not be given here.

Theorem A follows easily once it is shown that, given b € Lw(nu .

the operators Cn(b) are Lz—bounded, with norms growing as a power of n ,

where
. «® n
_ -
€_(p)uw) (x) = = p.v. f L9 =g &)y (yyay ,
n il n+
- (%X-Y)
g being a function satisfying g' =Db a.e. The L2—boundedness of
Cl(b) was first shown by Calderon in [Cl] , and that of Cn(b) by

Coifman and Meyer in [CMLl] and [CM2]. However, the methods used in these
and other papers have not been strong enough to give the required
dependence of ch(b)H on n . This paper is based on the following

formula for Cn(b) :

(o]
_ i n_dt
Cn(b)u =7 pP.V. I_w Rt(BRt) uT u € Lz(nﬁ B
: . -1 1 d R .
where Rt = (I+itD) s D= T ax and B denotes multiplication by b .

We use this formula to show that
4
e yull, < o@m 4o 2al,

and thus to prove theorem A.
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1
Theorem B is proved somewhat similarly, for the operators M:

defined there can be written as a sum of operators somewhat similar to

Cn(b) .

The paper splits naturally into "Hilbert space methods" and
"harmohic analysis methods”. In section 2 a new concept concerning
Hilbert space operators is developed, namely that of a set B of bounded

operators in a Hilbert space K being (qj)—compatible with a given,

possibly unbounded, operator A from a Hilbert space H to K . In
the case when qj = O(jm) ; M < o, estimates similar to the one above
are obtained when B € B and Rt = (I+itA)_l . The required results

then follow from the "harmonic analysis result" that
M={B ¢ L(LZ(IU) |Bu=5bu, be L _(R)} is (qj)—compatible with D,

with qj = c(1+3) .

Section 10 on the square-root problem can be read independently

of §§5-9 on Calderon's problems. Section 4 contains some basic
terminology.
1. Preliminaries. Throughout this paper H and K denote complex

Hilbert spaces and A denotes a closed operator from H +to K with
domain D(A) dense in H . We denote the range of A by R(A) and the
kernel by N(d) . For t > 0 , operators Q, € L(H,K) and P, € LK)
are defined by
* -
Qt = tA(I+t2A A) 1

and

Pt =1I - tQtA (where denotes closure) .
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THEOREM 1.1

@ @ ol =%
(i) 0= (Pu,u) < a2, wek ;

(3ii) el <1 ”I-ZPtH <1

. * _ _ * R
(b) (1) P =p =1-taQ ;
.. _ PR * _ *P
(ii) Q. = tPA; Q =tA e
N B * 2 -1 a0 ot
(iid) (TP = Q0 (I-2p )" =1 - Q9 -
30 op
t t %
(@)t gy =- @220 R
9 * 5 _ * * *
t5g (Q(I-2P ) = -0 + 8000 .

(The fact that Q, € L(H,Ky and P« L(K) follows from the proofs of
(a) (i) and (dii). For most of the paper we only use this theorem in

*
the special case when H =K and A =a . In this case, the proof of

(a) is much simpler.)

L e L(H) ana

* * * -
Proof. A A is self-adjoint, A A >0, (I+A A)
* -1 * .
R((I+A A) ™) =D(@A) < D@) , so Qt is everywhere defined. Also note

that D(@*M% =0@) , anda || % = [au] Vu e Dia) .

*
@ @ Ryt -3

1+t"A A A20 "1+t

-1

Sl = sup (leac+e®a™) R | ufl = 1)

sup {||t/A*A(x+t2A*A)'1u” [ lu] = 1} < -é- .
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(ii) Let A=VIA| where |A| =/ﬁ and V is a partial

*
isometry. Then, if u e D(a") ,

(P u,u) = lall® - (£2v|a] ; 5 la|viu,u)  (as A" = IA]V*)
(1+t%|a]%)
21,12
= HUHZ - "—‘:"L—A—lT V*u,V*u .
(1+t°|a]%)
S = IVl s e -l <o

.
[}
A

2 * 12 2
all® = lvial® < eu,u) < full® .

* s 0
Now D(A ) is dense in K , so OSPtSI.

(iii) This follows from (ii).

2

2. %
(b) (i), (i) If u e D(A*A) ¢+ P tAu = (tA—QttZA*A)u = tA[I - _E_é_i_]u =Qu.

*
1+t"A A

S P tA=9Q

t t°

The other parts of (i) and (ii) are straightforward.
(. . o) : P *
iii t(I—Pt) =P tAaQ =0

°

*
tQt

2 _ - 2_= _ _
(1 2Pt) =1 4Pt+4pt I 4Pt(1 Pt)
=1 4 *
=1I-400 .
Q
1+t"A A
2*
=Qt-2tA t“A A

1 * 1
Q=2 |tA —S——tA [[thA —5—
2 2 *
1+t°A A 1+t“A'A

O - 2(I-PQ, = - (1-28)Q, .
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P 5 .
(ii) t—=—=1t e (I—tAQt)

i

- tAQZ + tAQ (1-2P,)

* *
- 2tAQ P, = - 2(I-P )P, = - 20,0, .

s 9 *
(iii)  t gy (Q (I-2P)))

* 5 * *
- Q. (1-2P) (I-2P,) + 40,00,

i

* * % *
- 0, (1-40,0,) + 40,0,0

*® * *
- Q. + 82,00 - f

The next lemma will be used often. Note that integrals of operators

are always taken in the sense of strong convergence.

LEMMA 1.2 Suppose Hj are Hilbert spaces, J = 1,...,4 , and

T e L(Hl’Hz) r € L(HZ,H3) and S

£ € L(H4,H3) are operators depending

t

continuously (in the strong topology) on T . Suppose

o 5 3
Is 0 = oo { | lIsgal®ae | Jall = 2} <o,
0 7/

and

AN

. “ *
(i) Jo StZtTtdt € L(Hl,H4) and

« *
HJ s,z m.atl < sup [z llis Mz I s
. Sup 1BLMIS () T )
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(ii) in the case when Zt =T and St = Tt B
00 * 2
1] sisearl < s i1
Proof
(i) Let wueH , and 0< ty < t; <® . Then
ty . ty .
HJt S¢Z,Tpudtl = ”:ﬁzl ljt (S.2,T u,v)dt]
0 0
€
< o | Iz linulis vlat
loli=1 /e,
Y , %
s s lizglls 1 {]  egac)
t>0 . t
o
61 .
e j StZtTtudt -+ 0 as 60,61 + 0, and
§
0
My .
j StZtTtudt + 0 as MO,Ml - oo
M
0
e *
So Jo Stthtudt exists and
*® *
HI S .z, Tudt| < sup [z _[lIIs, T, |l .
o Ett 0 BT (.)
had *
(ii) Aas J S S.dt is self-adjoint,
o tt

sup
fluf=1

I

2
”S(.)” °

*
(S.S,u,u)dt]
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As a first application of this lemma, we present the following

result.
LEMMA 1.3
. T % gt . 1
(i) 2 QtQt < is the orthogonal projection on N(a)™ ;
o}
. %4t — —
(ii) 2 QtQt = is the orthogonal projection on R(a) ;
[¢]
© a 2
(iii) I ”Qtu”2 ?t Hlall®, uweH ;
0
Tk 2 a 2
. t
G| Iofl® S sulul? wek
¢}
Proof
* 1 2 % 1 2A*A
(i) Q0 = —5 5 tAR—o— = t2*2
1+t"A A 1+t"A A (1+t"A A)
00 % 2] 2. % a
So2 J 0.0, £=2 f ;12“:‘—2-3 . and this is the
0 0 (1+t"A n)
. . L * L
orthogonal projection on N(A)” = N@&a a)~ .
* 1 * 2A*A
(ii) If u e DAa) , QtQtAu = A ——Zﬁ t2A Au = A %-5 u
(1+t°A A) (1+t“A A)

00 % = 2A*A
Seo2 J QtQtAu dt—t = 2A J —tz*-—é- d?t u = Au .
0 0 (1+t°A A)

00

L * * at
If we R(A)” = N@A) , then 2 JO 00w =0 .

So (ii) is proved.

(iii) and (iv) These follow from (i) and (ii) on using part (ii) of

lemma 1.2.

The following technical lemma will be needed later.
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LEMMA 1.4 Suppose v(t),uk(t) e H depend continuously on t € (0,®) ,

k=20,1,2,..., and

N
(1) forall 0<&<M<w®, sup [} uw -vw+0 v+,
te [§,M] k=0

00
(ii) - J uk(t)dt exists in H for all k , and

0
(=]
(iii) there exists S > 0 such that 2 Cx < ® . and, for all
k=0
M
0<8§<M<w, HJ uk(t)dt” S .
8
Then
o 00
(a) v = z I uk(t)dt exists in H ,
=0 0
0
00
e vl s I woadl <o, ma
k=0 0
CO (>+]
(c) I v(t)dt exists in H , and J v(t)dt = V .
0 0
Proof

(a) By (ii) and (iii), § HJ uk(t)dtll < ) o <@, sO
k=0 0 k=0

o 00
v = 2 J uk(t)dt exists in H .
k=0 /0

(b) This is now clear

-]

(c) et € >0 . Choose N such that z Cp < e . Then
k=N+1

N o
II z J u, (t)dt - vl < e, and,
k=0 /0

® M
for all 0<§ <M<o , | 2 J uk(t)dtH < e , and hence by (i),
k=N+1 /¢
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M M N
nJ v(t)at - j I woat] <e .
§ § k=0

Now choose 0 < 60 < M0 < « guch that

IA
Or

N M ©
) {Ja uk(t)dt—JOuk(t)dt}||<s, 0<3$§ g SMysSM<e,

A

3e 0< 3¢

IA
Or
A
=
IA
=
A
8

M
||J v(tydt - v||
8

The result follows. Il

2. Compatibility. et B < L(K) , and let A : H~+ K be closed and

densely defined. Let Bl {AB! BeB, A 20, [aB]] €1} . rLet

_ B _ _ 1
q = (qk) = (qo,ql,qz,...) where 0 < q £, k= 0/1,ecer gy = 73 -
DEFINITION B is g-compatible with A if,

VBl""Bk € Bl , Yue K ,

00
* 2 4t 212
Jo ”Qt(BthBk_lPt. . .BlPt)u” = < qk||u|| .

. , . _ 1
(Lemma 1.3 gives the reason for taking 9y = 73 2)

THEOREM 2.1

'
)

(a) B is g-compatible with A if and only if, Vi,k

such that qj,qk < o, VBl,...,Bk , Cl,...Cj € Bl . VZt e L(H)

A

depending continuously on t ¢ (0,®) , with HZtH 1,

< * % * at
0 (PtClPt...Cj)QtZtQt(Bth...BlPt) T € LK)

and has noxrm < qjqk .
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Let (rk) be a sequence of positive real numbers,

' . 1
=0,1,..., with ry = T3 and q = .Z rj . Suppose,
VBl,...Bk € Bl , HZt e L(H) and Y, € L(K,H) depending

continuously on t € (0,) , such that ”Zt” <

*
Q Bk e = ZtQt + Yt , and

00
2 dt 2,2
[0 ||3zt(13k_11>t13k_2 £ BP )uI] < rkllull Yu e K .

Then B is g-compatible with A .

If B is g-compatible with A , q; < Py < o,

and Bl,BZ,...,Bk € Bl , then

® at
Jo Qt(Bth...B P e LIKH)

and

dt ot
HJ Qt(BthBk 1--+BP) o < [ zo qa. +4qk] .

Moreover, if 0 < § < M < «» , then

k-1
IIJ Q (B,P,...BJP,) -—-|| <1+ 7— [ 20 qj+4qk] .

If K=H, A=A , B is g-compatible with A ,
is= sup(j,k) , ql < °°,---:qi < ® , and
1""’Bk’cl""’c € B , then
*© * * dt ( )
o (PtClPt...Cj)Qt(Bth...BlPt) < € LKA
k-1 j-1

d h < q. + + .
and has norm < q 22 9+ g zz q, + 4q. 3%
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Proof
(a) This follows directly from lemma 1.2.
(b) Let B,,...B, € Bl , and for each j e {1,2,...k} 1let zj,t
and Yj £ be operators depending continuously on +t such that
v
Iz, I < . : a
el =1 Q.ByP, = Zy,Q * Yy o an

00
2 dt 2 2
nJO v, B P Bpl? S s 2 v e K

Then, for k =21 ,

*
Qu(B)P By 1P, ...BP,)

= Yk't(Bk_lPt...BlPt) + Zk,tYk_l’t(Bk_th...BlPt)
+ Zk'tzk_l’tYk_2't(Bk_3Pt...BlPt) + ... +
+z *
k,e2k-1,t 0 Z2,e%0,e t %k, e%k-1,t o0 Z1,¢% -

*
s HQt(Bth.,.BlPt)uH
<
< HYk,t(Bk_lPt...BlPt)u” + Hyk_l't(sk_zpt...Blpt)uH

*
1y By g oo BROul 4L ey gall + llgul .

{o]
. * 2 dat _ 1.2y 2
- JO log 2.2z ul? S < (xr by 4 )2l

(applying lemma 1.3 and the triangle inequality for L2(O,w)) .

(c) Suppose B is g-compatible with A , and Bl""Bk € Bl .

We apply part (c) of theorem 1.1.
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k-1

* * *
O (ByPy---ByPy) = 80,00, jEO (By_yP¢)
- 55'(Qt(1_2Pt)) ) (Bk_th)
j=0
= aots o kil 5 { N kﬁl
= 80000 T (B Py -t g (Q (TR T (B Py)
3=0 3=0
kil . k=2-2 . A1
+ Q. (1I-2p,) i) (B, .P,)B (=20,0.) I (B, .P))
Lo Tt t 5=0 k-3t T+l £t 50 =3t
-1
(where I Sj is defined to equal I for any Sj)
j=0
_ 3 . k-1
=-tsg Qt(I—2Pt) _]T (Bk_th)
j=0
k-1 k=1 2-1

* *
+ Q.7 0 on (B P + lzo 0%y 12 on (B,_s2,)

where ZQ e € L(H,K) depends continuously on t and satisfies
14

”Zz,t“ €1, £=0,...k"1, “Zk,t” <4 . Therefore if
0< 8§ <M<® ,
fMQ* kl;l (B P)dt‘ Q*(I 2P)k;[l (B, .P.)
5§ 4o KIE T M Mo, k-3 M
+ QL (I-2P,) T (B, .P,) + )i JM o'z, .o " (8, .p,) &
) s j=0 k-3 s gm0 gt RETE o TAeTE e

The first two terms on the right hand side each have norm < % ,
and converge strongly to zero as M > and 6§ - 0 . The last

term has norm <

koMo, -l w1
Zo ”Ja e, T By gP) T = 75 (Goraphe. gy g +iqy)
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as is seen on applying the triangle inequality and the definition
of g-compatibility. Moreover, it converges strongly in LK, H)y .

This completes the proof of (c).

(a) The proof is similar to that of (c). Il

REMARKS

1. If q, = 55 P9y = @ , 521, then L(K) is g-compatible
with A .

2. Iif q <=, then it is not always true that L(K) is
g-compatible with A . This can be seen, for example, by noting

that theorem 6.1 is not valid if there are no compatibility

assumptions on B [Mcl,Mc3].

3. If P commutes with B for all B e B and t >0, then B

is g-compatible with A when Q= —ET%IEET-. To see this,

. _ _ 2% -1
first note that PtQt = Qtst , where St = (I+t“A B) . So
0O
®.8% ...85 )00 (®.P ...B,p) S
o £B1 P B QR By Py- - By P %
* * ” 2k * d
= t
= (B)...B) Jo 0,8y 9 T (By---By) -
As in lemma 1.3, it can be shown that
” 2k, * d 1
k. * dty
“Jo %Sy % &I < zmamo -
The result follows.
4. The size of the e is in some sense a measure of the non-
*
commutativity of P, with B e B, or, in other words, of A A

t
. %
with ABA for B e B .
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5. Parts (c) and (d) of the above theorem are of vital importance.

The notion of compatability would be useless without them.

3. The Operator D . Throughout this section # = K = L,(R) ,

A=D=-}-£{-, M={B|3beLoo(]R)BBu=buVueLZ(JR)}CL(H) . Our

aim is to prove the following theorem.

THEOREM 3.1. Let g = (q) where q = L + 6k(1 + L ) , k=20 .
e S k /2 e/2

Then M is g-compatible with D .

We first prove an identity.
LEMMA 3.2. If b e L (R), fe L2(]R) , then

1) Pbobel (R, [[2ol, < b, , llo.pll, < libll, . and
(11) 0 (bR, £) = (0,b) (B ) - 0 ((Q.D) (D) + P ((PD)(Q. D)) .
Proof

(i)  Let ¢(x) =’/2e_|xl ;o v(x) =%e_lx'sgn(x)

et ¢, = 2B , Y () - .
Then Ptb = b*¢t B th = b*wt . So Ptb,th € L, and
bl < ol lIvl,, . loybll, < v llylbll, . Now

o M, = llo, =1 ana v ll, = Ilell, =1 . The resuit

follows.

(ii) On noting (i), we see that it suffices to prove this for

fe S(R) . By scaling, we see that it also suffices to
prove it for t =1 . Write Ql =Q , Pl =P . Let
B= ()b e S (R, g= (0D lE e S(m) .

On operating on both sides of (ii) with (I+D2) ; Wwe see that

it suffices to prove
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D(((I+D2)B)g) = (I+D2)((DB)9) - D((pg) (Dg)) + B(Dg) .

i.e. D(Bg) + D((D°B)g) = (DB)g + D2((DB)g) - D((DR) (Dg)) + B(Dg) .

This makes sense in S'(R) , and is easily verified. ||

Proof of Theorem 3.1. We shall apply (b) of theorem 2.1, with
1

= 6(1L + =7 jo=1,2,... Let b,...b € L (R) with ||bj|]°° <1,
j=1,2,...k , and let Bl""Bk be the corresponding multiplication
operators. By the preceding lemma

QBPL = 2.9 *+ Yy o

where

th = Pt((Ptbk)f) ’

and

YE = (QDBIPE - 0 ((QDb) QD) .

Now ”Ptbk“m < 1 (by the preceding lemma), and HPtH <1, so Hzt” <1.

So what remains to be proved is that, if u € LZ(IU , then

o
2dt _ 2 2
Jo v, B _1P.By P, ...BiPul® 5= < rflull® .

This will follow from the above formula for Yt once we have shown

that, Vu € LZ(IR),

2 2 dxdt
” 2[QtBk_lPtBk_z...BlPtu(x)I lo b, (x) | .

R
+

<16(1 + elw)z’nunz

and
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2 2 dxdt
JJ |P.By 1P By - BP0 [© |oub o) [© ==

16(1 + E§5a2nuu2 .

To prove these estimates, we first prove three lemmas.

LEMMA 3.3 Let be L_(R) with [b]| <1 . fThen du-= Ith(x)|2 9§§3

. 1.2 2 .
defines a Carleson measure of norm ¢ < (1 + on R”, That is
. 1 o ThaR IS

u  is the completion of a Borel measure on IR_Z,_ = {(x,t)] t > 0} satisfying,
for all x0€IR,d>0,

1.2
w(T(x_,d)) = Jj dp £ (1 + —x) 724 ,
0 T o'd) e/2

where T(x,d) = {(x,t) |0 < t+ |x=x;] <a} .

LEMMA 3.4 If u is a Carleson measure of norm c}J on ;le and

+ ’
if g is a u-measurable function on IRf_, then M|g| is a Borel

measurable function on R, and

IJ lg(x,t) | %an < c, J Mlgh2ax ,
2 -

R
+
where M|g|(x) = sup |gly,t)].
y-x|$t
LEMMA 3.5 For all integers k > 1 and functions bl'b2""bk—l € L,

with |lbgll, <1, 3 =1,...k1,

.B.P < 2u™ (x)

MIPyBy 1P By p---ByPiul (0 <

and

*
MIQBy 1P By 5. BPpu| (x) < 20" ()
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for all u € Lz(nn and x € IR, where ij = bjf , and u*¥  is the

Hardy-Littlewood maximal function defined by

. 1 x+d
u (x) = sup == I Iu(y)ldy .
da>o x-d

COMPLETION OF PROOF OF THEOREM 3.1 The estimates stated before the

lemmas follow directly from the lemmas, and the fact [H] that
* <
la*ll, < 2lul,

We now prove these lemmas. We remark that Lemma 3.3 is a
result of Fefferman and Stein. However a proof is included here for

completeness. Lemma 3.4 is also well-known.

PROOF OF LEMMA 3.3 Let b = bl + b2 , where

b(x) ., !x-xo| < 24
bl(x) =

o, Ix—xol > 24 .

Define vy and U, using b1 and b2 respectively. Then

00
2
[ = oyl
T (xg,, ) 17y e
2 dt
<} —_—
% Hbl”Z T (from lemma 1.3)

IN

%« 4a sup |b|? < 2a .

Also
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lop, @ | = lugs,|

0O
- k| oyl

=00

sgn(x-y)bz(y)dyl

A O
Iy-xolzzd
= %L' sf e_‘S|/tds (s=y-x)
tdza
= "4/t .
9 _sa/t at 1
du2 < 24 e T (s = E)
T(x75d) 0
0
00
< 23° J o 2484
1/4
= de_2 .

We conclude that

[|

T(xo,d)

IA

2a(1 + E%E’Z . |

PROOF OF LEMMA 3.4 If S 1is a u-measurable subset of Eﬁ B

define
S'={xe R | 3(y,t) € S such that |x-y| <t} .

Note that S' is a countable disjoint union of intervals Ik and

therefore a Borel set, and that S c U T, . where T = {(x,t)i [x-t,x+t] © Ik} .
k

Also note that u(Tk) < cu X length (Ik) , even if Ik is not open, so

that u(s) < cum(s') , where m denotes Lebesgue measure.
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If ae (0, and S = {(x,t) | |g(x,8)] > 0} , then

s' ={x ¢ R | M|g](x) > a} . This shows that M|g| is Borel measurable
and also that u{(x,t) I ]g(x,t)| > o} < cum{x[Mlgl (x) > a} . The result
follows.

PROOF OF LEMMA 3.5 Since ¢_= 0 and |V

£ tl = ¢t , we see that if

g,h € L2(IR) and |g(x)| < h(x) for all x , then

leygtal < @ [n) =)
and
lo,.g | < e nh e .
Consequently,
P.B_.D P B.P ulx)| < 2X(|u]) (=)
tk-1"t °°° Tt lt t ’
and

k
<
lo. B 1P, --- Bt | < 2E(ful) () .
So, it suffices to prove that, for k = 1,2,...,

M(Pt(|u|)) < 2u* .

Let Pt_1(|u|) =V . Then v =2 0 .

s = HeE, v)
1 x-h
= sup (¢ *v) , where ¢ (x) == ¢(=)
ctener Dt h,t t "t

IA

2 sup (6, *v) where 6, (x) =
t>0 € £
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) A .
S MEZ(Ju])) < 2 sup (8, %¢, *...%¢ *|ul) .
t £0 t 't t

We need one final lemma, stated below, to conclude that

M(P§|u|) < 2|u|* = 20" .

This follows directly from part (v) of lemma 3.6, with g = ‘u| P

= * *
and f et ¢t vee ¢t .
LEMVA 3.6  Let F={feL (R | £20, £ isa bounded even decreasing

00
function, and J f(x)dx = 1} . Then
00

(1) ¢t,et e F for all t e (0,®) .

(ii) F is a convex subset of Ll(nn ,

(iii) FO = co{xd |a> o0} is L,-dense and L, -dense in F , where
Xd = (2d)—l X[-d ap and "co" denotes the convex hull,
7

(iv) if £ ,f e F, then f *fzeF ,

2 1

(v) if geLy(R) and feF, then [(g*f)(x)| < g*(x) , where g*
is defined in lemma 3.5.
Proof Parts (i), (ii) and (iii) are readily verified.

(iv) On noting parts (ii) and (iii), we see that it suffices to prove

(iv) when £ = Xa for some d . This is easily checked.

(v) Let g e Lz(BU . If f = Xg then, for all x e IR,
1 d *
[(g*E) (x) | = 2 IJ glx-y)dy| < g*(x) .
-d

Thus the inequality holds when f € FO . Finally, if f ¢ F , there

exists a sequence £ e FO such that an—fH2 >0 . So, if x e R,
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[(g*2) (x) = (g%f) (x| Ijg(x-t)(fn-f)(t)dtl

I

lsliZle ~£lZ ~ o .
The result follows. H

4, Facts about operators. By an operator T from a Hilbert space H

to a Hilbert space K is meant a linear mapping T : D(T) -+ K , where
the domain D(T) is a linear subspace of H . The range (or image) of
T is denoted by R(T) . Let us denote the set of all operators from

H to XK by OpH,K)y , orif H=K , by Opth . 1If T e OpH,K) ,

then |T|| is the (possibly infinite) number,
Izl = sup {f|Tull [u e D(D luf =1} .

The set of bounded linear operators from H to K is denoted L(H,K) .

That is,

LH,K) ={T € Op(H,K) | D(T) = H ,||T|| < =} .
Also

L(H

LH M) .

When new operators are constructed from old, the domains are taken

to be the largest for which the construction makes sense. For example,

D(s+T)

D(S) n (™) v

D(sT)

{ueD(D) |Tue DS} .

If S{t) € L(H,K) depends continuously on t € (0,®) , then
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Aad N
D[J S(t)dt} = {u € HI lim I S(t)u dt exists in K} .
20 e>0 ‘¢

N0

We write S ¢ T if 0(S) ¢ D(T) and Su = Tu for all u e D(S) .

So S =T if and only if S c T and Tc g . Note that

(ST)U = S(TU) .
S(T+U) o ST + SU

(S+T)U

SU + TU

Some care needs to be exercise owing to the fact that the above

relationships are not all equalities.

5. Facts about commutators. If G e L(H) , then the derivation

GG : Op(H) + Op(H) is defined by
6G(S) = - i(GS-SG) .

Note that D(sG(s)) = D(Gs) n D(sG) .

The following properties can be verified in turn. In them,

S,T,G € OP(H) ;, 8§ =28 ;, and A # 0 .

G
i) §(S+T) 2 §(S) + &(T)
ii) §(ST) > S8(T) + §(S)T

S6(T) > §(ST) - §(S)T

§(S)T 2 §(ST) - sS(T)

iii) § (AS+I)

A6 (S)



49

1

iv) If (AS+I) e L(H) , then

S(s+D) 1) 5> - as+1) Lo (s) s+ 7L,

and

s(s(s+D) ™) 5> (as+1) Yo (s) s+ 7L L

Moreover, if G(D(S)) < D(S) , then these inclusions can be

replaced by equality.

v) If S(t) € L(H) depends continuously on t ¢ (0,®) , then

6[J S(t)1dt c J s(s(t))at .
0 J 0

The proofs are straightforward. For example, the first member

of (ii) is proved as follows.

S§(T) + §(S)T

is(GT-TG) - i(GS-SG)T

= - iS(GT-TG) - iGST + iSGT

c - iS(GT-TG-GT) - iGST

c - is(0-TG) - iGST

§(sT) .

To prove (iv), note that

s+ " ros+n) =1 .

. §(OS+D) H (AS+I) 5 §(I) - (AS+I) 1§ (As+I)

_ -1
= o|D(G) - A(AS+I) T8 (S)

- A(s+1) L5 (s)

S(OS+D) ™h) 5 = A(s+1) Ls(s) s+ 7L .
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Sooss0sTh = el0s - 110 Th
= % §(1-(s+1) ™ h
= - 2s(0sn™h
> (as+I) ts(s) (s+n) L .
6. Bounds on commutators. If A is a self-adjoint operator in H ,
1
then |a| = a%)% . Note that
2 00
|a] = -—J a%(1+t%2?) lae
™
0
1 “ 14t
= = P.Ve. J iA(I+itA) < -
.00
Let us first prove the following theorem.
THEOREM 6.1 Suppose A is a self-adjoint operator in H , and
Ge L(H) . Suppose also that G(D(A)) < D(n) , that B = - i(GA-AG) € L(H) ,
*
and that {B} and {B } are g-compatible with A , with 9 <® . Then
Gla[-]afe € L) , and
2 p—
lelal - |alell = Z(1+av2q)) i8]l .
Proof Let § = 6G be defined as above, and use the properties already
developed. In particular,

1

S(A(I+ita) ™) 1

(T+ita) “ts (a) (T+ita)”

(Pt—iQt) B (Pt_iQt)

(as &(A) c B) .
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1 at

t

n
3 |-

s(|ah p.v. J i8 (A(T+ita) )

at

_1 R »
== pP.V. J—w :.(Pt th)B(Pt 1Qt) T

ERLN]

_2 (" at
= Jo (P,BQ, +Q,BP.) T -

as {B} and (B} are g-compatible with A , it follows from (d) of
theorem 2.1 that the right hand side is in L(Hy , and that it has norm

2 1,1 2
S 2. 5. gl s dg Bl = £+ 4/2q)) [I8]| .

Now D(8(|a])) = D(|a]) =D(@) , which is dense in H , so

S ( Al) e L(H) , and

Isclah ] < 2@ + 4/2q) (8] . I

We remark that, in the case when H = Lz(nu , A=D= %—é% , and
G is multiplication by an Lw-function g with Lw—derivative g'=b ,
s . . . 1 1
= < == —
then B is multiplication by b , [[B]| = |b|| ~ and G <7+ 6(1 + e/2) .

as is shown in §3 . Therefore

2 = 1
ls([pp Il = =(5 + 24/2(1 + ;75))]113]]

< 31lvll, -

So we have a new proof of the L_-estimate proved by Calderon [Cl],

2
together with an explicit bound on the norm. We leave comment on what
happens when g is not bounded to the next section, where we generalize

this result to the higher commutators.
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7. Higher Commutators. We now prove estimates for certain operators

which are related to the commutator integrals of Calderon. The
relationship of these operators with commutators is given in part (c)

of the next theorem, and their relationship with Calderon's integrals later
on. -Note however, that it is the fact that they satisfy the identity

(b) of theorem 7.1 which is important, rather than the fact that, under
suitable conditions, they are commutators. In fact, part (c) is not

used again.
Throughout this section A denotes a self-adjoint operation in H ,

and Pt and Qt are defined as before. We also let

. -1 .
Rt = (I+ita) = Pt - th ’ te®R, t#0,

and note that ”Rt” <1.

DEFINITION Given 13,131,132,...,13n e L(H) , define the operators

(B ,...By) , C(B,...,B)) and C,(B) Dby

(=]
i at
cB ,... =Lp.v. =
C(BreoesBy) = TRV J_w ReBRBn-1 RB\Re T v

C(Bn,...,Bl) = gymmetric part of g(Bn,...,Bl) ,

and

C,(B) =cC(B,...,B) = C(B,...B) .
When n =0, we take g(Bn,...,Bl) to be
i

0 00
_ at _ 2 dt
CO(B) =5 PV I—m Rt T = g5 PV J Qt T

= H = sgn(Ad) .
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THEOREM 7.1 Suppose B is g-compatible with A with Qprewerdy <.

*
Suppose Bj’Bj € Bl , J=1,...n . Let

5 § n—%—l
p, = qR{S a, +4q } .
n T 920 =0 j n-%

Then the following are true
(a) S(Bn,...,Bl),C(Bn,...,Bl) and Cn(Bl) e L(H)y , and have norms

<

_pn.
(b) If there exists G € L(H) such that B = Sn(A) , and

Gn(Bj) =0, j=1,2,...n-1 , where 6n = GGn , then

8, (C(B _y/---/B))A € L(H) , and

n
“/B)A + y CB,.--

nC(B_,...,B,) =6 (C(B
n 1 n kel

n-1’° BrarrByogre BBy -

(For n =1, this becomes C(Bl) = Gl(H)A + HB. .)

1
(c) If there exists Gl""'Gn e L(H) such that Bj = Gj(A) ,
j=1,...n , and 5k(Bj) =0, 1=<3j<k=<n, where

6, =8, . and if B, 0@ <A ,1<isn, 12ksn,

Proof

. {o]
1 dt
(a) C(Bl' e ,Bn) =T P.V. J_w RtBlRtBZ e RtBnRt <

L n n © 2 n-%
1 ] dt 1 ; dt
=—p.V.J I (P,B )P, — + — }‘ p.V‘.J' I (p.B)(-iQ,) I (B,,.P,) —
™ k't ot T 5 o k=] Tk oo Wkt ot

dt

n-%-1 I A n-j b
p.V. I I (p.B)(-iQ,)B T (rB,)(-iQ,) T (B
o k=1 T K T+l k=g42 E k o1

n—j+th)
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Now the first integral on the right hand side is zero, as P is

t
even in t . The others can be estimated using theorem 2.1. So

5 B n—%-l Zil - 5 § n—%—l

IIS(B,---,B)IIS—ZLq Q. +q q; + 4q _]+— Sl 9,4,
1 n Tkl kB qnf,j:O 3 29n-1, T oo 3k 2%
5 § n-§ 1
= = q {3 q. + 49 _ } .
LIS 2 j= 3 n-4%

The estimates for C(Bl,...,Bn) and Cn(Bl) follow.

(b) It is straightforward to show that
GnC(Bn_l,...,Bl) = - 1tnC(Bn,...,Bl) .
Moreover, on noting that (—it)RtA c Rt - I, it follows that

n
8,(C(B _1s--esB))A S NC(B ,...,B)) = ] C(B_,....,B

/By _1r--2sB)B, .
o1 k+1' k-1 1%k

Since D(A) 4is dense in H , the result follows.

(c) We first prove that, for 1 <m < n ,

n n-1
§_8 . Gl(HA ) = (8.6 _1...61(HA

m m-1 mm ))a

m
n-1
c jZl (e 85484090+, (EATT)B, (*)

When m =1 , this becomes

lB ,

n n-1 n-
él(HA ) - 61(HA JA c HA 1

which is valid. So assume (*) holds for m=%k - 1 , and

prove for m =k . Set S = HAn—l ; and note that, by the

assumption on domains,
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D(8,...8,(S)A) = D8, (8 _;...8,(S)A))

= _ n
= D(sk...él(SA)) =D& . (1)
Therefore
Gk . Gl(s)A = Gk(dk_l...él(s)A) + 6k—1 oo Gl(S)Bk . (2)
Also, note that, if k > j
6k(XBj) = Gk(X)Bj (3)

for all operators X . (Apply (ii) of §5)

We now prove (*)

Gk eee dl(SA) - (Sk...ﬁl(s))A

=8 ... §1(SR) = 8, (8 _1...8,(S))R) + (& _;...8,(8))By (by (2))
€ 8, (8 q-+-81(SR) = (8 _1...8)(S)IA) + (8, ;...8,(8))By
k-1
< 8y jzl (Bp g e +8540857--+81 (8B + (8 _;...8,(8)B  (by induction)
k=1
= jzl (8, 8y g v+ 85428501+ 8 (NBy + (By_...8, (8B (by (3))

and this equals the right hand side of (¥*).

As C(B_,...,B and 2§ ... 61(HAn) satisfy similar identities,

l) n! "n
it is now easy to see that they are equal. First note that, when n =0 ,
they both equal H . Now suppose they are equal for n =%k - 1 , and

prove for n =k .
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1 n
;1'—!- 6n6n-—l ceo Gl(HA )
1 n-1 B n-1
€ ar (8.8 1.8 mTTA + ) (Opee854185 - -8, BA"T))By

j=1
(by (*) and (1))

m
1 1
€5 8.CB s BA H.nzl C(Bm,...,Bj+l,Bj_l,...,Bl)Bj
(by induction)

S C(Bn,...,Bl) .

The result now follows from the fact that D(Gn...dl(HAn)) =p@" ,

which is dense in H . I

8. Calderon's Commutator Integrals. In this section f = L,(® ,

A=D= %—é%—, and M = {B ¢ L(H) lBu =bu, belL (R} . Recall that
s . . . 1 1

M is g-compatible with D with qk = 75 + 6k(1 + 5750 . For Bj e M,

the operators C(Bl,...,Bn) and Cn(B) ;, which are defined as in §7

with respect to A =D, belong to L(LZ(EU) , and
C(Bl,...,Bn) < anBlﬂ cee HBn“,

where P, is defined in theorem 7.1. Note that p, = 0(n4) .

If bll...,bn €L (R), and ue Lz(ﬂﬂ , define

. 00 n
C,,...,b == p.v. -1 -
by n)ux) = T p.v J_ TS .z (9;(x) =g  (y))u(y)dy ,
o (x=-y) j=1

where gj is absolutely continuous and satisfies g% = bj ;3 =1,.0.,n .

When n = 0 , this becomes

Hu(x) = “.' J ;%;—u(y)dy ’
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where H = sgn(D) is the Hilbert transform, appropriately normalized.
Our first theorem is the following. In it, Bj and Gj denote the
operators of multiplication by bj and gj , and Sj denotes

commutation by - igj . That is,
§.(S)u = - ig.(Su) + iS(g.u
3( ) g]( ) (gJ )

for operators S in L2(IR) , and u € D(st) n D(SGj) .

THEOREM 8.1 Let b,,...,b € L (R) . Then

(i) 4if wu € L2(]R) , ~then C(bl,...,bn)u is defined almost everywhere

and belongs to L2(]R) ’

(ii) C(bl""'bn) = C(Bl,...,Bn) '

(iii) ¢ (By,... ,bn)u”2 < pn”bl“°° cen IlanmHqu

for all u € L2(IR) B

(iv) if ¢ € C:(IR) , then, for n>1,
nC(bn,...,bl)¢ = §n(C(bn_l,...,bl))D¢

n
+ Z Clbysensbyyyiby seee,by) (bsd)
Proof When n = 0 , the equality (ii) becomes H = H (where H = sgn(D)) .
Let us assume (i), (ii) and (iii) are proved for n =k - 1 , and prove the
theorem for n =k . We first prove (iv). Let ¢ € C:(]R) . Then, for

almost all x ,
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8, (Clby_ys---sby))DO (x)

o x
- -—-p.V.J L = T (g, (x)-g, ()¢ (Vay
-0 (x-y) J=1 J J
, @ k
-1 d 1
="= p.v. J [—- {——————- il (g.(x)—g.(y))¢(Y)}
m o Y ey ® 5= T )
N x
- T (g.(x)-9.(¥))o(y)
) L 31 73 j
N k(-1 x
t— 1 {H (g;(x)-g. (¥ by (y) T (g-(x)—g,(y))}tb(y):[dy
(x-) % g=1 Y4=1 I J j=g+1 J

J J

(by the induction assumption) .

k
= KC(by, ... ,b))d(x) - jzl Clby s eve /Dy q b 1oeensby) (Dy$) ()

This proves (iv) when n =k .

We now continue under the additional assumption that Iy is bounded.

Then G e L(H) , and the preceding theorem can be invoked. Note that

k
6k = 6Gk , Bk = Sk(D) , and 6k(Bj) =0, j=1,...,k =1 . So, if
(=]
b e Cu(R)

kC(bk,...,bl)¢ = Sk(C(Bk_l,...,Bl))D¢

k
+ jZl C(BysennrBy g By qree-0By) (By9) (by (iv) and
the induction assumption)

kC(Bk,...,Bl)¢ (by theorem 7.1)

As C(Bk,...,Bl) € L(Lz(ﬂU) , parts (i) and (ii) follow, for n =k ,

using, for example, theorem 21 of [CMO]. Part (iii) is now immediate.
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It remains for us to remove the assumption that Iy is bounded.

Define b The theorem has been proved with b

k,m = X(—m,m)bk ° k

. It is not hard to show now that it is valid for

replaced by bk,m

b, itself. Il

The results in chapter IV of [CMO] can now be used to obtain results
concerning Lp—estimates, maximal functions, etc. The same applies to
the following theorem, which is the main theorem of the paper. In it,

Cn(b) = C(b,...,b) and Co(b) =H .

Lo
THEOREM 8.2 Let F(z) = z anzn denote an analytic function on the
n=0

disc {ze €||z] <x} . 1If F, is defined by

_ i Y (%) -9 (y)
Fbu(x) = 5 P.v. I_m e FF1—35§%ALJU(Y)dY ’

where g is an absolutely continuous function satisfying g¢g' =b , and

if |bll, < r , and if u e L,(R) , then F u(x) is defined for almost

-}
all x , Fus= nZO a,C (bJu € L,(R) , and

©o
n
Iegelly < L polagleliel, < = .

Proof Apply the previous theorem. The series an|an|HbH: is
convergent because Pn = O(n4) . To verify that the series Zancn(b)u(x)
converges for almost all x , use the fact that there is a sequence

Nk -+ « guch that

Ny

z ancn(b)u > z ancn(b)u (a.e.)
n=0 n=0 I
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9. The Hilbert Transform on Lipschitz Curves. Suppose vy is a curve

in the complex plane which is parametrized by z = p(x+g(x)) , x € R,
with p > 0 and Hb”m <1, where b=g'eL (R . (A curve has
such a parametrization if and only if it has a parametrization

z = x + ih(x) with h real-valued and |h'l| < « .) The Hilbert

transform HY on vy is defined by
(H U) (z) = ip.v. J -—];-—U(i;)di; ;, Ue L _(y) , z€v .
Y Y z=C 2

Define an isomorphism between L2 (y) and LZ(JR) as follows :

L, (y) = L2(IR)

1
%

U(z) < p{l+b(x)} “u(x)

Therefore

B V) (x) = p.v r 14b(x) F1+b(y)
. . : !

. Trg ) = (yg (y)) 2V -

(The existence of the p.v. is independent, a.e., of the parametrization.)

That is,
I 1/21? B)7/2
HY = (I+B) b(I+ B
. . -1
where Fb is defined by F(z) = Tz °

Hence, by the preceding theorem we have

THEOREM 9.1 1f bl <1 and wu e L,(R) , then HYu(x) is defined
for almost all x , and HYu € L2(]R) . Indeed

9 1.2 -5
H < 243 (1 — %11 - b
I YII S 241+ =) lIbll )~ ll1+bl|

110[1+bll
< ———

a-llp)l >
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Proof Apply the preceding theorem with «

= ) (-n%" .
n=0

_ 1
Flz) = 14z

Then

v -5
el < L e lblly < ca-lp) )77,
b n
n=0

since pn = O(n4) . Checking that ¢ can be chosen as above is hardly

a pursuit that needs be followed here. A

It follows also that the Hilbert transform on a simple closed
Lipschitz curve is Lz—bounded, as one can localize and apply the above.

(This does not apply to Lipschitz curves with arbitrary behaviour at « .)

One can also obtain results for Lp—norms, as noted in the last

section.

As a corollary of the above result we obtain the Lz—boundedness

of the following operators used in potential theory :

(Glu)(x) =p.v. [ 2_x—y 3 u(y)dy .,
= (x-y) “+(h(x)~h(y))

(€, (0 = p.v. J e S uy)dy
o (x-y) “+(h(x) -h(y))

Here h 1is a real-valued Lipschitz function. Corresponding estimates

in higher dimensions can be obtained using Calderon's method of rotation.

10. Square Roots of Accretive Operators. The background to this section

is contained in [KO] and [K1l].

An operator S in a Hilbert space H is called maximal accretive

if
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(i) D(S) 4is dense in H ,
(ii) Re(Su,u) =2 0 for all wu e D(S) , and

(iii) S cannot be extended to an operator with larger domain also

satisfying (ii).
Every maximal accretive operator is closed.

If S is maximal accretive then there is a unique maximal
. % . . %, 2 %
accretive operator S satisfying (S°)" =S . Note that D(s®) o D(s) ,

and, by lemma V. 3.43 of [KO],

1

{e°]
1 -
sty = %J (z+£2s) "Lsu at , ue D(S) .
0

1 1 1
Note also that D(S) is dense in D(S?) under {[|u||2+|ls/2u“2}/2 . Also

* : : *l Vi
note that S is maximal accretive, and S =S .

A closed regularly accretive sesquilinear form J in H is a

map J : VJ X UJ + € , where VJ is a dense linear subspace of H , such
that

(i) J[u,vl is linear in u and conjugate linear in v ,

(ii) Re J[u,u]l 2 0 Vu e VJ .
(iii) 3k > 0 > |Im J{u,ul| < k Re J[u,ul VYu e Vs

(iv) VJ is complete under Hu”§ = Re J[u,u] + Hu“2 .

THEOREM 10.1 If J is closed regularly accretive then the associated
operator AJ is maximal accretive and D(AJ) is dense in VJ . Here

AJ is defined to be the operator with largest domain satisfying

Jlu,v] = (Bu,v) , u € D(AJ) , V€ VJ . ||
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*
) =V_, and

1
THEOREM 10.2  If D(Aﬁ) =V, , then D@ 5

J

;3 *l
Jlu,v] = (Aéu,Asz) , u,v € VJ . |

L
It is not always true that D(A;) =V, . [Mc2]. oOur aim is

1
to give conditions under which D(Aj) =V_. Indeed we shall prove the

J

following theorem.

THEOREM 10.3 Suppose A : H -+ K 1is a closed densely defined operator
and F e L(K) with ReF 2p >0 . Let VJ = P(a) and define

J VJ X VJ +~ € by J[u,vl = (FAu,Av) . Then
(i) J is a closed regularly accretive form;

(ii) the maximal accretive operator AJ associated with J is

. * * * %
given by AJ = A FA ; and also AJ =AFA;

- -2 L
(1i1)  fT-pF Y = @-p?El™H% < 1 ;

- 2
(iv) if {I-pF l} and {I-pF l} are g-compatible with A ,
and if
2 v 1.k
c==2 ) plz-er 7" <=
k=0
where
k-1
1
P =75 [jz ay * 4qk] '
then D((A FA)?) =7D(A) , and
/o * P
—c‘l lau < [ Fa) %] < c/pllau] ,  uwe D) .
Proof Parts (i) and (ii) are straightforward.

(iii) Tet k2 = (1-p2F|™% . If we K , then
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[Pw-owll? - <2llEwl|? = (1) |Fw]® + o2w]? - 20 Re (Fw,w)

20 =2 (2 o 22 212
e lIEl ™ lEwll® + p%llwll - 20wl

IN

IA
[e]

Sl hull < kfufl , we K.

ol

IA
~

So |lT-pFT

(iv) By scaling, we can reduce to the case p=1. We assume this.

We first note the following identity :

(r+t2a"Fa) Lea'ry = ) or {a-Fhe e, wenma'm .
koo E t

* *
To prove this recall that tA Pt = Qt and I - Pt = tAQ

Therefore (using the conventions of §4) ,

2 F (- (1 Flp *B(1-P *
t) = tA F(I- t) + tA Pt

tzA*FA * + *
Q + 9 -

2* *
(£°A FA+T)Q .

. * - * * - -
S (I+t2A FA) ltA F c Qt(I—(I-F l)Pt)l

kZO o, {(x-F e,

}k

*
Therefore, if u e D(A FA) ,
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* ] b * - *
(a FA)éu = g-J (I+t2A FA) ltA FAu de
™o t
2 (7% o+ -1, 1k, dt
== ) o, {(x-F e Fau <=
0 k=0
2 v [° o« 1, .k dt
== ) [ 9, L(x-F M)P } Au T -
k=0 /0

This last step follows from part (c) of theorem 2.1, and lemma 1.4,

* - -
vith w =9 {(1-F Hp Au, and ¢ = (1ip) 1= H[Mlau] . 1t follows

k

also from that lemma that

* A 2 -
l@'em %) < 2 T pllz-r"HNau] = cfjau] .

©
)
k=0

* * 3
Since D(A FA) is dense in V; ., and (a FA)? is closed, it

follows that VJ c D((A FA) ) and
x %
[la FR) 2yl < claul
L. * % %
for all u e VJ . Similarly, VJ cD((aFA?% , and

* % b
(2 F a) %l < clay]

for all u € VJ .

* % % b
Choose u e D(AFA) < { < D((aF 2)% . Then
2 *
lau]® < | (FAu,Aw) | = | (& Fau,u) |

I((A*FA)%U,(A*F*A)ZU)I

IA

c|l a"Fa) ||| .

* 1,
S ] < el aTFa) Ry .

IA
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Now A is closed, and D(A FA) is dense in D((A FA)?) under

* P P % P
flall? + @ rR) 2|?1%, so D@ FA)H < U, and

* Y
lau]] < <l (a"Fa) “ul|
* 1

for all u € D((A FA) G .

We apply this theorem to obtain the following result about
differential operators. In it, Hl(IU denotes the Sobolev space,

B (®) = {u € L (®) | Du ¢ L (R} .

THEOREM 10.4 Let £ e L (R), with Re £ 2 p > 0 , and define

J: EY(R) x BY(R) > T by
00
J[u,v] = I f(x)Du(x)Dv(x)dx .
00
Then A is maximal accretive, where

J

A_u = DfDu ,

J
with
D) = {uec u (W] fou e vH®) .
Also
oo .1
D(AJ) = H (R)
and

Lojjou)) < 8%l < o/ollvul »  uw e BU®

where
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6
-3 < ﬂfﬂf

c =6 sup (1 - |1 - fTETJ) <6 c -
o

x€IR

Proof Apply the preceding theorem with H =K = LZ(HU , A=D,

V_=1D@®m) =Hl

I , let F denote multiplication by £ , and given qj

the values specified in theorem 3.1. All that remains to be done is

to f£find the value of c . Let

= -l 2 P
k = ||T-pF || = sup |1 - f7§71 <1 -2

x€R

Then

(o]
2 kK _ 1 k
c== Z PR S F o ) (kD) (ke2)K

for some o >0 , as g. = 0(j) and P, = O(k2) .

3

Q
IA

a(l-k)"

-3

o sup(l - |l - §%§71)

IA

-6 6
ap £l -
One can show, if one wishes, that o can be taken as 6 . II

One can use this result to show that, if fz € Lm(nn depends
analytically on z ¢ Q@ , where ( 1is an open subset of € , then so

1
does the corresponding operator A§ € L(Hl(nﬂ ’ LZ(IO) . Details will
z

be published elsewhere. It can also be shown that lower order terms
can be added to Jz as in the following theorem. Details of this will

also be given elsewhere.
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THEOREM 10.5 Suppose fz,gz,hz,kz are L _-functions depending
analytically on z € Q , where £ is an open subset of € , and
Re fz > P, >0 . Let J, be the form with domain Hl(IU X Hl(nu

defined by
(o]
Jz[u,v] = J_w {fz(Du)(Dv) + gz(Du)v + hzu(Dv) + kzuv} .

There exists K; such that
Re J_[u,ul + & Jluf)® 2 0,
207 z

for all u e Hl(IU . Let Az = A

J
z

o . . .
Then, for all Kz > Kz y AZ + KZI is maximal accretive,

7
D((AZ+KZI)6) = Hl(ﬂﬂ and, for some Az >0,

1 %
ilull 1 S e+ )%l < A llall 1.
4 H H

Suppose Kz is chosen to depend analytically on z ¢ O . Then,

L
for each u ¢ Hl(Iﬂ ’ (AZ+KZI)2u depends analytically on z € Q .
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