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THE HILBERT TRANSFORM ON LIPSCHITZ CURVESt 

RonaZd Coifman, AZan McIntosh 

and Yves Meyer 

Our aim is to prove the follm'ling theorems. 

THEOHEM A. Let y be a curve in the complex plane parametrized by 

x + ih(x) , x E JR, "There h is a real-valued absolutely continuous 

function with derivative h' E J~",(JR) Let H denote the Hilbert 
y 

transform on y, defined, for U E (y) , by 

Then 

(x) 
l 
'IT p.v. 

/l+Th~ Il+ih' (y) 
u(y)dy . 

(x+ih (x) - (y+ih (yl ) 

(x) is defined for almost all x E lR, and 

Indeed, there exists a constant c, depending only on Ilh' lleo such 

for all U E L2 (N) 

THEORE!/! B. Let f E (lR), with Re f ? 1 , and let: M deno"to 

the maximal accretive opera-tor in 

with domain D ("1) = {1.1 E 

( JR) = "[u E L IIR)" I ~u. E 
. 2' d.x (JR) } ) 

is HI (JR), and, if u E HI (JR) 

~II 6 
-611dUII 

d I '") X /_ 

(lR) defined by Mu = - f 

(where 

Then 'che domain of the square roo'c, 

2 • 

t This is an alternative treatment of results to be published in the 
Annals of Mathematics. 
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~1oreover, if f = f z depends analTtically on a parameter z EO Q, where 

Q is an open subset of iI, and Vi = M is the corresponding opera tor, 
z 

then, for all U E: Hl (IR) , 
}2 

M u depends analytically on Z 0 

Z 

The first theorem solves B" conjecture of Calderon. It has already 

been proved by Calderon in the case when Ilh' II", is sufficien-tly small 

[C21 The second theorem answers a question of Kato in the special case 

of ordinary differential operators defined on the "7hole real line. Both 

theorems have applications in the study of partial differential operators 

wi th non - SlTIOO-tll data. However such applications ,,7il1 not be given here. 

'Eheorem A follm"s easily once it is sbmm -that, given b E Loo (IR) 

the operators en (b) are L 2-botmded, with norms growing as a p01Jel' of n 

,."here 

(C (b)u) (x) 
n 

i pov. r"" (9(X)-9(Y»i'l u(y)dy 
TI J_ro {x_y)n+l 

9 being a function sa-tisfying 9 I b a.e. The L2-boundedness of 

C1 (b) 'IrJaS first shovm by Calderon in [ell and tha-t of Cn (b) by 

Coifman and I"ieyer in [CHI] and [CM2]. HO'itleVer, the methods used in these 

and other papers have not been stJ~ong enough to give the required 

dependence of lien (b) lion n 0 This paper is based on the following 

formula for (b) 

(b)u i Joo iT p.v. 
_ao 

U E 

(I+itD) -1 , 1 d 
D = i dx and B denotes multiplication by b . 

We use this formula to sho,,, that 

and thus to prove theorem A~ 
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J? 
Theorem B is proved somewhat similarly, for the operators M2 

defined there can be written as a sum of operators somewhat similar to 

The paper splits naturally into "Hilbert space methods" and 

"harmohic analysis methods". In section 2 a new concept concerning 

Hilbert space operators is developed, namely that of a set B of bounded 

operators in a Hilbert space 

possibly unbounded, operator 

the case when 

K being (q.)-aompatihZe with a given, 
J 

A from a Hilbert space H to K. In 

estimates similar to the one above 

are obtained when B E Band Rt 
-1 

(I+itA) • The required results 

then follow from the "harmonic analysis result" that 

M = {B E UL2 (lR» I Bu = bu , bEL", (lR)} is (q.)-compatible with D, 
J 

with qj = c(l+j) 

Section 10 on the square-root problem can be read independently 

of §§5-9 on Calderon's problems. Section 4 contains some basic 

terminology. 

1. Preliminaries. Throughout this paper Hand K denote complex 

Hilbert spaces and A denotes a closed operator from H to K with 

domain VIA) dense in H. We denote the range of A by R(A) and the 

kernel by N(A) For t > 0, operators Qt E L(H,K) and Pt E L(K) 

are defined by 

and 

(where denotes closure) . 
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THEOREM 1.1 

(a) 

(b) 

(c) 

(i) IIQtl1 ::; ~ ; 

(ii) o ::; (Ptu,u) 

(iii) IIPtl1 ::; 1 

(i) 

(ii) Qt = tPtA ; 

::; lIull 2 , u E K 

I1I- 2Pt ll ::; 1 • 

* * Qt = tA Pt 

* (iii) Pt(I-Pt ) = QtQt ; (I-2Pt ) 2 

aQt aPt 
t-= - (I-2Pt )Qt t-= -at at 

* I - 4QtQt 

* 
2QtQt 

(The fact that Qt E L(H,K) and Pt E L(K) follows from the proofs of 

(a) (i) and (ii). For most of the paper we only use this theorem in 

the special case when H = K and A = A* • In this case, the proof of 

(a) is much simpler.) 

Proof. A*A is self-adjoint, A*A ~ 0, (I+A*A)-l E L(H) and 

R«I+A*A)-l) = V(A*A) c V(A) , so Qt is everywhere defined. Also note 

* k * k that V( (A A) 2) = V(A) , and II (A A) 2ull = II Au II i/u E V(A) . 

(a) (i) tA 1 
~~~ ll+t2,,21 ="2 

I} < 10. - 2 • 
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(ii) where and V is a partial 

isometry. Then, if U E V 

'" Now V (A) is dense in K, so 0::; P t ::; 1 • 

(iii) This follows from (ii). 

(b) (il , (ii) 

The other parts of (il and (iil are straightforward. 

(el (il 
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(ii) 

(iii) Cl * 
t Clt (Qt(I-2Pt» 

The next lemma will be used often. Note that integrals of operators 

are always taken in the sense of strong convergence. 

LEMMA 1.2 Suppose Hj are Hilbert spaces, j 1, ..• ,4, and 

Tt E L(Hl ,H2) , Zt E L(H2 ,H3 ) and St E L(H4 ,H3 ) are operators depending 

continuously (in the strong topology) on t. Suppose 

and 

Then 

(i) and 



Proof 

(Hl in the case when Z = I -t 

32 

and 

(i) Let U E H, and 0 < to < tl < 00 Then 

as 00' -+ 0, and 

(ii) As 
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As a first application of this lemma, we present the following 

result. 

LEMMA 1.3 

(i) is the orthogonal projection on N(A)~ 

(H) is the orthogonal projection on R(A) 

(Hi) 
f 

II QtU II 2 dt 
5: ~lIull2 , u € H 

t 
0 

(iv) 
f 

* 2 dt 
5: ~lIu112 , u € K o IIQtull t 

Proof 

(i) 1 t2A*A 1 
1+t2A*A 1+t2A*A 

2 Joo * dt 2 fOO t2A*A dt 
QtQt-t = 2* 2t' o 0 (l+t A A) 

and this is the 

orthogonal projection on N(A)~ = N(A*A)~ 

(H) If U € V(A) , 

2f 
* dt 

2A r t2A*A dt = Au . QtQtAu t = -u 
(l+t2A*A) 2 t 

0 0 

R(A)~ = N(A*) 2f 
* dt If w € , then QtQtW T = o . 

0 

SO (H) is proved. 

(iii) and (iv) These follow from (i) and (ii) on using part (ii) of 

lemma 1.2. 

The following technical lemma will be needed later. 



34 

LEMMA 1.4 Suppose v(t) ,Uk(t} E H depend continuously on t € (0,00) , 

k = 0,1,2, ••. , and 

N 
(i) for all o < /) < M < co , sup II L uk(tl - v(t) II -+ 0 N-+-oo, 

tE [0 ,M] k=O 

(ii) - J: uk(t)dt exists in H for all k and 

(iii) there exists ck C 0 such that L 
k=O 

c < co 
k ' 

and, for all 

o < cS < M < 00, II f: uk (tl dtll ::; ck • 

Then 

(a) V = I r uk(t)dt exists in H , 
k=O ° 

(b) Ilvll ::; ~ Ilf: Uk(t)dtll < 00 , and 
k=O 

(c) f: v(t)dt exists in H , and f: v(t)dt = V 

Proof 

(a) By (ii) and (iii), L 
k=O 

c < '" k ' 
so 

00 Joo 
V = L u j (t)dt 

k=O 0 ( 
exists in H . 

(b) This is now clear 

(cl Let E > 0 . Choose N such tha-t L 
k=N+l 

II I fooo Uk (t)dt - vii < E, and, 
k=O 

< E • Then 

for all 0 < /) < M < 00, II L J: uk (tl dtll < E, and hence by (i), 
k=N+l u 
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fM fM N 
II v(t)dt - I uk(t)dtll < 

o 0 k=O 
e • 

Now choose 0 < 00 < MO < 00 such that 

Ilf: v(t)dt - vII < 3e , 

The result follows. 

2. Compatibility. Let B c L(K) , and let A : H + K be closed and 

densely defined. Let Bl = {AB I BE B , A 2! 0, IIABII ~ l} Let 

where 0 ~ qk ~ 00 , k = 0,1, ••• , 

DEFINITION B is q-aompatibZe with A if, 

(Lemma 1.3 gives the reason for taking qo = i2 .) 
THEOREM 2.1 

(a) B is q-compatible with A if and only if, Vj,k 2! 1 

such that qj,qk < 00, VBl, ••• ,Bk , Cl""Cj E Bl , VZt E L(H) 

depending continuously on t E (0,00) , with IIZtll ~ 1 , 
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(b) Le't be a sequence of positive real numbers, 

with and r. 
J 

Suppose, 

E L(K,H) depending 

continuously on t E (0,"') , such that Ilztll,;; 1 , 

'rIu E K " 

Then B is q-compatible wi,th A 

(cl If B is q-compatible WiUI A, ql < co,""" ,qk < co , 

and Bl ,B2 , . " ",Bk E then 

E UK,HJ 

and 

Moreover, if 0 < I) < M < 00, then 

(d) If K = H '" A A B is q-compatible with A , 

reo * dt 

)0 
(PtC1Pt " . )Qt (BkPt " " .B1Pt ) TE UK,H) 

k-l j-l 
and has norm ,;; qj I q!!, + qk L q!!, + 4q j qk 

!!'=o !!'=o 
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Proof 

(a) This follows directly from le~~a 1.2. 

(b) and for each j E {1,2, ... k} 

and Yj I.t be operators depending continuously on t 

let Zj,t 

such that 

liz. til :::; 1 , 
J, 

and 

'ifu E K • 

Then, for k z 1 , 

* + Zk,tZk-l,t ... Z2,tYl,t + Zk,tZk_l,t ... Zl,tQt 

(applying lemma 1.3 and the triangle inequality for L2 (O,oo» 

(cl Suppose B is q-compatible with A, and Bl, ... Bk E Bl . 

We apply part (c) of theorem 1.1. 



(where 

k-1 * k-~-2 
+ L Qt(I-2Pt) IT 

~=O j=O 

-1 
IT 

j=O 
S. 

J 
is defined to equal 

38 

I for any 

"lhere Z~,t E UH,K) depends continuously on t and satisfies 

Therefore if 

* 
k-l k r * * 

~-l 

+ QC;(I-2P6) IT (Bk-lc;) + I o QtZ~,'cQt IT (B£.-lt) 
j=O £.=0 j=O 

The first two terms on the right hand side each have norm ~ ~ , 

and converge strongly to zero as M + 00 and 0 + 0 . The last 

term has norm ~ 

dt 
t 
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as is seen on applying the triangle inequality and the definition 

of q-compatibility. Moreover, it converges strongly in L{K,H) 

This completes the proof of (c). 

(d) The proof is similar to that of (c). 

REMARKS 

1. If j ~ 1 , then L(K) is q-compatible 

with A. 

2. If then it is not alvlays true that L (K) is 

q-compatible with A • This can be seen, for example, by noting 

that theorem 6.1 is not valid if there are no compatibility 

assumptions on B [~1cl,Mc31. 

3. If Pt commutes with B for all B e: B and t > 0 , then B 

is q-compatible with A when 1 To see this, qk ./2 (l+2k) 

first note that PtQt = QtSt , where S = t 
(I+t2A*A)-1 So 

As in lemma 1.3, it can be shown that 

The result follows. 

4. The size of the qk is in some sense a measure of the non-

B * commutativity of Pt with B e: , or, in other words, of AA 

* with ABA for B e: B 
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5. Parts (c) and (d) of the above theorem are of vital importance. 

The notion of compatability would be useless without them. 

3. The Operator D Throughout this section H = K = L2 (lR) I 

A = D = !. ~ M = {B I :3 b € Leo (lR) ;) Bu = bu lJu € L2 (lR)} c L (H) Our i dx I 

aim is to prove the following theorem. 

THEOREM 3 .1. where I I 
qk = 72 + 6k(1 + e72) I k ~ 0 . 

Then M is q-compatible with D . 

We first prove an identity. 

LEMMA 3.2. 

Proof 

(i) Let cI>(x) = J-oe- Ixl W(x) i -Ixl 
I = :::-e sgn(x) 2 

Let cl>t(x) = ~(~) I Wt(x) = ~(~) 
t t t t 

Then Ptb = b*cI>t I Qtb = b*Wt • So P tb,Qtb € Leo and 

I1 Pt b ll eo $; Ic1>tll"bleo I IIQtbt $; I/wtlllllbil eo Now 

I/cI>t"1 = IIcI>III = I and "wt" l = IIwilI = I The result 

follows. 

(ii) On noting (i), we see that it suffices to prove this for 

f € S(lR) • By scaling, we see that it also suffices to 

prove it for t = I . Write QI = Q I PI = P • Let 

g 

On operating on both sides of (ii) with (I+D2) I we see that 

it suffices to prove 
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D«(I+D2 )(3)g) = (I+D2) «D(3)g) - D«D(3) (Dg» + (3(Dg) • 

Le. D«(3g) + D«D2 (3)g) = (D(3)g + D2 «D(3)g) - D«D(3) (Dg» + (3(Dg) 

This makes sense in S' (lR), and is easily verified. 

Proof of Theorem 3.1. We shall apply (b) of theorem 2.1, with 

r. = 6(1 +~) 
J el2 j = 1,2, ••• 

j = 1,2, ••• k, and let Bl, ••• Bk be the corresponding multiplication 

operators. By the preceding lemma 

where 

and 

So what remains to be proved is that, if u € L2 (lR), then 

This will follow from the above formula for Yt once we have shown 

that, 't/u € L2 (lR) , 

ff IQ B P B B P () 12 1 Qtbk(x) 12 dxtdt t k-l t k-2··· 1 t U x 
lR2 

+ 

and 
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dxdt 
t 

To prove these estimates, we first prove ·three lemmas. 

LEMMA 3.3 

defines a Carleson measure ~ of norm c :<; (1 + _1_)2 
\l el2 

is the completion of a Borel measure on 

for all Xo E lR, d > 0 , 

LEMMA 3.4 If jl is a Carleson measure of norm 

if 9 is a jl-measurable function on 

measurable function on lR, and 

where MI gl (xl sup Ig(y,tl\. 
!y-xl:<;t 

·then 

on 

on That is, 

satisfying, 

and 

is a Borel 

LEMl'1A 3.5 For all integers k ~ land func·tions b l ,b2 , .•. b k _l E Leo 

with 

and 
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for all and x e: m., where 

Hardy-Littlewood maximal function defined by 

b.f 
J 

JX+d 
u* (xl = sup.l:... I u (y) I dy • 

d>O 2d x-d 

and * u is the 

COMPLETION OF PROOF OF THEOREM 3.1 The estimates stated before the 

lemmas follow directly from the lemmas, and the fact [H] that 

We now prove these lemmas. We remark that Lemma 3.3 is a 

result of Fefferman and Stein. However a proof is included here for 

completeness. Lemma 3.4 is also well-known. 

PROOF OF LEMMA 3.3 Let b bl + b2 , where 

Define Pl and P2 using b l and b2 respectively. Then 

(from lemma 1.3) 

Also 
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-Ix-yilt I e sgn{x-y)b2 (y)dy 

" 
1 r -Ix-yilt 
2t 

\y-Xb1;0, 2d 
e dy 

s 1 I~;o,d -Isl/t (s=y-x) 
2t 

e ds 

-d/t e . 

If d~2 S 2d 
-2d/t dt 

(s 2:.) e -
T(XO~d) 0 

t t 

We conclude that 

PROOF OF LEl-lMA 3.4 

define 

" 2d 2 (fa -2ds 
e ds 

de 
-2 

1 2 
d~ " 2d (1 + ;;72) 

If S is a )l-measurable subset of JR2 
+ ' 

S' {x E JR I :3 (y,t) E S such ·that \x-yl" ·t} • 

Note that S' is a countable disjoint union of intervals Ik and 

therefore a Borel se·t, and that S c U Tk , where Tk = {(x,t) I [x-t,x+t] elk} . 
k 

Also note that even if is not open, so 

that where m denotes Lebesgue measure. 
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If a E (O,eo) and S {(x,t) I Ig(x,t) I > o:} then 

S' = {x E JR I Mig I (x) > a} This shows tha-t Mig I is Borel measurable 

and also that )l{(x,t) Ilg(x,t)1 > ad $; c m{xIMlgl(x) > cd. The result 
Il 

follows. 

PROOF OF LEM.MA 3. 5 since ~ t 2': 0 and 11/J t I = ~ t' we see tha'c if 

g,h E L2 (JR) and Ig(x) I $; hex) for all x, then 

and 

Consequen'cly, 

and 

So, it suffices to prove that, for k = 1,2, ... , 

Let Then v 2': 0 0 

$; 2 sup (St *v) 
t>O 

where 

where 

1
4\' I xl $; t 

= J:.... l-Ix/tl I I 
4t e ,x 2': t . 



46 

2 sup (6.t"<Pt*o .. "<pt"lull . 
t>O 

We need one final lemma, stated below, to conclude that 

" 2u 

This follows directly from part (v) of lemma 3.6, with g = lui ' 

LEMMA 3.6 Let F = {f E Ll(~) 

function, and f:oo f(x)dx = l} 0 

f ~ 0, f is a bounded even decreasing 

Then 

(ii) F is a convex subset of Ll (~) , 

(iii) FO cO{Xd I d > O} is Ll-dense and L2-dense in F where 

-1 
and "COli denotes the convex hull, Xd (2d) Xl-d,d] 

(iv) if ,f2 E F , then fl f2 E F 

(v) if g E L2(~) and f E F then I (g*f) (xl I ::; g*(x) , where 

is defined in lemma 3.5. 

Proof Parts (i), (ii) and (iii) are readily verified. 

(iv) On noting parts (ii) and (iii), we see that it suffices to prove 

(iv) when f = Xd for some d. This is easily checked. 

(v) Let g E L2(~) . 

I (g*f) (x) I 

If f = Xd , then, for all x E ~, 

{d Ifd g(x-yldyl ::; g*(x) . 
-d 

Thus the inequality holds when f E Fo • Finally, if f E F, there 

So, if x E ~, 



I (g*f ) (x) - (g*f) (x) I 
n 

The result follows. 
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I J9(X-tl (fn-f) (t)dtl 

:<; Ilgll~llfn-fIl1 ->- 0 . 

4. Facts about operators. By an operator T from a Hilbert space H 

to a Hilbert space K is meant a linear mapping T : VITI ->- K, where 

the domain V ('r) is a linear subspace of H The range (or image) of 

T is denoted by R(T) Let us denote the set of all operators from 

H to K by Op(H,K) , or if H = K by Op(H) If T E Op(H,K) 

then IITII is the (possibly infinite) number, 

sup {IiTuIlI u E VeT) ,lIull l}. 

The set of bounded linear operators from H t:o K is denoted L (H ,(() • 

That is, 

UH,K) {T E Op(H,Kl I V(T) H ,IITII < co} • 

Also 

UHl UN ,H) . 

WCr:ten new operators are construct"ed from old, the domains are taken 

to be the largest for which the construction makes sense. For example, 

"0 (S+T) = VIS) n 'O(T) , 

VeST) {u E VeT) I Tu E VIS)} • 

If Set) E L(H,K) depends continuously on t E (O,eo) , then 



48 

H I lim IN S(t)u dt exists in 
e:+0 e: 
N+<" 

We write SeT if V(S) c V(T) and Su = Tu for all u E V(S) • 

So S = T if and only if SeT and T c S Note that 

(ST)U = S(TU) • 

S(T+U) ~ ST + SU 

(S+T)U = SU + TU 

S - S cO. 

Some care needs to be exercise owing to the fact that the above 

relationships are not all equalities. 

5. Facts about commutators. If G E L(H) , then the derivation 

0G : Op(H) + Op(H) is defined by 

- i(GS-SG) • 

Note that V(oG(S» = V(GS) n V(SG) 

The following properties can be verified in turn. In them, 

S,T,G E Op(H) , 0 = 0G' and A 'I 0 • 

i) o(S+T) ~ o(S) + o(T) 

H) o(ST) ~ So(T) + o(S)T 

So(T) ~ o(ST) - o(S)T 

o(S)T ~ o (ST) - So(T) 

Hi) o (AS+I) AO (S) 
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iv) If (AS+I)-l E L(H) , then 

~d 

Moreover, if G(V(S» c V(S) , then these inclusions can be 

replaced by equality. 

v) If Set) E L(H) depends continuously on t E (0,00) , then 

The proofs are straightforward. For example, the first member 

of (ii) is proved as follows. 

S6(T) + 6(S)T - is(GT-TG) - i(GS-SG)T 

- is(GT-TG) - iGST + iSGT 

c - is(GT-TG-GT) - iGST 

c - is(O-TG) - iGST 

6 (ST) . 

To prove (iv), note that 

oIV(G) - A(AS+I)-l6(S) 

A(AS+I)-l6(S) • 
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O(S(AS+I)-1) = t 6({(AS+I) - r}(AS+I)-1) 

= ! O(I-(AS+I)-1) 
A 

_ ! I) «ASH) -1) 
A 

~ (AS+I)-16(S) (AS+I)-l 

6. Bounds on commutators. If A is a self-adjoint operator in H, 

then 
2 k IA I = (A ) 2 • Note tha-t 

foo 

1 iA(I+itA) -1 Cit 
= TI p.v. )_00 t 

Let us first prove the follm~ing theorem. 

THEOREM 6.1 Suppose A is a self-adjoint operator in H and 

G E UN) Suppose also that G <V IA» c VIA) , that B - i (GA-AG) E L (H) 

and that {B} and {B i
'} are q-compatible with A, wi-th < co Then 

Proof Le-t I) = 0 G be defined as above, and use the properties already 

developed. In particular F 

i5 (A (I+itA.) -1) 

(as 0 (A) c B) . 
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1 
c :rr pov. 

As {B} and {B*} are q-compatible with A, it follows from (d) of 

theorem 201 that ·the right hand side is in L (H) , and that it has norm 

Now V (/)( I A I )) 
8lTATf E L (H) , and 

V(A) , which is dense in H, so 

We remark that, in the case when H = L2 (:lR) , and 

G is multiplication by an L -function 
co 

g with L -derivative 
00 

g' = b , 

then B is multiplication by b , 1 1 
ql ~ 12 + 6(1 + e/2) , 

as is shown in §3 0 Therefore 

~ ~(5 + 24/"2 (1 + ~/ » !lB!I 
1T e 2 

So we have a new proof of the L2-estimate proved by Calderon [ell, 

together with an explicit bound on the normo li'?e leave comment on what. 

happens when g is not bounded to the next section, where we generalize 

this result to the higher commutators. 
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7. Higher Commutators. We now prove estimates for cert,ain operators 

which are related to the commutator integrals of Calderon. The 

relationship of these operators wi'th commu'tators is given in part (c) 

of the next theorem, and their relationship with Calderon's integrals later 

on. .Note however, that it is the fact that they satisfy the iden'tity 

(b) of theorem 7.1 which is important, rather than the fact that, under 

suitable conditions, they are cO~TIutators. In fact, part (c) is not 

used again. 

Throughout this section A denotes a self-adjoint operation in H , 

and P 
t 

and are defined as before. We also let 

(I+itA)-l tElR, t;-!O, 

and note that IIRtll" 1 . 

DEFINITION 

i 
:; p.v. 

and 

C(B, ... ,B) £(B,. 0 oB) 

When n = 0 f we take f(Bn , .. 0 ,Bll to be 

CO{B) 
i (00 R dt = 2 J: Q dt 1T p~v .. t t TI p.v. t t 

H sgn(A) 
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THEOREM 7.1 Suppose B is q-compatible with A with ql' .•• '~ < 00 . 

1, •.• n • Let 

n {n-R,-l } 
p = ~ L qR, 3 L q. + 4q R, . 

n ~ R,=O . j=O ] n-

Then the following are true 

(b) 

(c) 

Proof 

(a) 

If there exists G E L(H) such that B = ~, and 
n n n 

o (B.) = 0 , j = 1,2, ••• n-l 
n ] 

where 0 
n 

n 

then 

nC(Bn ,···,Bl ) = 0n(C(Bn_l ,···,Bl »A + L C(Bn,···,Bk+l,Bk_l,···,Bl)Bk 
k=l 

(For n = 1, this becomes C(Bl ) = 01 (H)A + HBl .) 

j = 1, •.. n, and 

o = 0 and if 
j Gj 

then 

n 

0k(B j ) = 0 

B. (V (Ak» 
~ 

such that B. = ~ , 
] ] 

1 ,,; j < k ,,; n, where 

1 ,,; i ,,; n, 1"; k ,,; n , 

1 f~ dt 1 n r R, 
n-R, dt = :rr p.v. 11 (P B )P -+ - y. 

-00 k~l (PtBk ) (-iQt) II (BHkPt ) p.v. ·t k=l t k t t ~ R,":O k=l 

+!. 
n n-R,-l 

[00 

R, n-j j 
L L p.v. II (PtBk ) (-iQt)BHl II (RtBk ) (-iQt) II (Bn-j+kPt ) 

dt 
~ R,=O j=O k=l k=H2 k=l t 
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Now the first integral on the right hand side is zero, as Pt is 

even in t. The others can be estima'ted using theorem 2.1. So 

2 ~ [q9,n-~-l 9,-1 'J n 
:<; L L qJ'';- °,_0 I qJ' + 4qo o _0 + -1T

2 I 
1T )1,=0 j=O "y, iC j=O IV "n iV, 9,=0 

n-9,-l 

I 
j=O 

The es'cimates for C (Bl , ... ,Bn) and Cn (Bl' follow, 

(bl It is straightforward to show that 

Moreover, on noting too,t (-it)RtA C Rt - I, it follows that 

n 
0n(C(Bn_l,··"Bl»A c nC(Bn,.",Bl ) - I C(Bn,,··,Bk';-l,Bk _ l ,··· Bk . 

k=l 

Since V(A) is dense in H ,the result follows. 

(c) We first prove that, for l:<; m :<; n , 

m n-l 
c I (0 •• , <5 'J 1 il, 1" '01 (HA ) ) B , 

j=l m J " J- J 
(*) 

When m 1, ,this becomes 

which is valid. So assume (*) holds for m = k - 1, and 

prove for m = k Set 
n-l 

S = HA , and note that, by the 

assumption on domains, 
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(1) 

Therefore 

Also, note that, if k > 

(3) 

for all operators X. (Apply (ii) of §5) • 

We now prove (*) 

(by (2» 

(by induction) 

(by (3») , 

and this equals the right hand side of (*). 

it is now easy to see that they are equal. First note that, when n = 0 , 

they bo·th equal H Now suppose they are equal for n = k - 1, and 

prove for n = k 
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.l... 0 0 
n! n n-l 

11m 
c - 0 C(B 1, .•• ,Bl)A + - L C(B , ... ,B'+l,B, 1, .•• ,Bl)B, 

n n n- n n=l m J J- J 

(by induction) 

which is dense in H. 

8. Calderon's Commutator Integrals. In this section H = L2 (JR) , 

A = D =!~ 
i dx ' 

and M = {B E L (H) I Bu = bu , b E Leo (JR)} Recall 

M is q-compatible with D with 1 
6k(1 + _1_) For B, q =-+ 

k h e/2 J 

the operators C(Bl, ••. ,Bn ) and Cn(B) , which are defined as in §7 

with respect to A = D, belong to L (L2 (JR», and 

where Pn is defined in theorem 7.1. Note that p = O(n4 ) 
n 

If b l , ••• ,bn E Leo (JR), and u E L2 (JR), define 

that 

E M , 

where gj is absolutely continuous and satisfies g~ = b, 
J J 

j l, ... ,n • 

When n = 0, this becomes 

HU(X) = ~Jeo 
7T~ 

-eo 

1 
-u(y)dy, 
x-y 
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where H = sgn(D) is the Hilbert transform, appropriately normalized. 

Our first theorem is the following. In it, B. and G. denote the 
J J 

operators of multiplication by b. 
J 

and and O. 
J 

denotes 

commutation by - i g j • That is, 

o. (S)u 
J 

- ig. (Su) + is(g.u) , 
J J 

for operators S in L2 (lR), and u € V(GjS) n V(SGj ) • 

THEOREM 8.1 Then 

(i) if u € L2 (lR), then C(bl, ••. ,bn)u is defined almost everywhere 

and belongs to L2 (lR) , 

for all u € L2 (lR) , 

(iv) if cJ> € C~(lR), then, for n <: 1 , 

Proof 

n 

+ L C(bn,···,bj+l,bj_l' .•• ,bl ) (bjcJ» . 
j=l 

When n = 0, the equality (ii) becomes H H (where H = sgn(D» 

Let us assume (i), (ii) and (iii) are proved for n = k - 1, and prove the 

theorem for n = k We first prove {iv). Let. cJ> € C~ (lR) • Then, for 

almost all x, 



Then 

<5 = 
k 

¢ E 

Ii 
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i f"" - :rr p.v. 
1 k 

k n 
(x-y) j=l 

(g. (xl -g . (y) ) q,' (y) dy 
J J _00 

1 k {Q,n-1 
+ --- I (g.(x)-g.(y))bQ,(Y) 

(x_y)k Q,=l j=l J J 

k 

k 
IT 

j=Hl 
(g. (xl -g. (y)) 

J J 

kC(bk,··.,b1,q,(x) - I C(bk, ••• ,bj+l,bj_l,O."bl) (b j ¢) (x) 
j=l 

(by ·the induction assumption) . 

This proves (iv) when n = k . 

lii/e now continue under the additional assumption that gk is bounded. 

Gk E L (H) r and the preceding theorem can be invoked. Note that 

Gk 
, Bk and So, if 

c~ (lR) , 

(by (iv) and 

t.he induction ass1JInption) 

(by theorem 701) 

As C(Bk, .•• ,Bl ) E L(L2 (lR», parts (i) and (ii) follow, for n = k , 

using, for example, theorem 21 of [CMO] 0 Part (iii) is now immediate. 
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It remains for us to remove the assumption that gk is bounded. 

Define 

replaced by bk,m 

bk itself. 

The theorem has been proved with bk 

It is not hard to show now that it is valid for 

The results in chapter IV of [CMO] can now be used to obtain results 

concerning L -estimates, maximal functions, etc. p 
The same applies to 

the following theorem, which is the main theorem of the paper. In it, 

Cn(b) = C(b, ••• ,b) and CO(b) = H • 

co 
THEOREM 8.2 Let F(z) I n a z 

n 
denote an analytic function on the 

n=O 

disc {z E a: I Izl < r} • If is defined by 

FbU(X) = ~ p.v. Jco __ 1 __ F(g(X)-g(y»)u(y)dY -co x-y . x-y 

where g is an absolutely continuous function satisfying g' = b and 

if IIbll oo < r, and if u E L2 (lR), then FbU(X) is defined for almost 

all x, Fbu = I anCn(b)u E L2 (lR), and 
n=O 

Proof Apply the previous theorem. 

convergent because To verify that the series 

converges for almost all x, use the fact that there is a sequence 

Nk + co such that 

Nk co 
I anCn(b)U + I anCn(b)u 

n=O n=O 
(a.e. ) 
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9. The Hilbert Transform on Lipschitz Curves. Suppose y is a curve 

in ~che complex plane which is parametrized by z = p (x+g (xl) , x E IR, 

with p > 0 and IIblloo < 1, where b = g' E Lao (IR) • (A curve has 

such a parametrization if and only if i~c has a parametrization 

z = x ,;. ih(x) with h reaZ-vaZued and Ilh'llco < co .) 

transform By on y is defined by 

(H U) (z) 
y 

i - p.v. 

The Hilbert 

Z E Y . 

Define an isomorphism between L2 (y) and L2 (IR) as follows 

Therefore 

-% U(z) ~ p{l+b(x)} u(x) 

i - p.v. 
l/l-;:b(~ .Ii+b(y) 

(x+g(x»-(y+g(y» u(y)dy . 

(The existence of the p.v. is independent, a.e., of the parametrization.) 

That is, 

where Fb is defined by F(z) = l~Z 

Hence, by the preceding theorem we have 

THEOREM 9.1 

for almost all 

llolll+bii oo 

< -----

(Hlbll oo) 5 
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Proof Apply the preceding theorem with, 

F(z) 
1 

--= 
l+z L 

n=O 

Then 

:> c (l-libll,) -5 , 

since Checking that c can be chosen as above is hardly 

a pursuit that needs be followed here. 

It follows also that the Hilber-t transform on a simple closed 

Lipschitz curve is L2-bounded, as one can localize and apply the above. 

(This does not apply to Lipschitz curves with arbitrary behaviour at co .) 

One can also obtain results for Lp-norms, as noted in the last 

section. 

As a corollary of the above result we obtain the L2-boundedness 

of the following operators used in potential theory 

f'" .x-y 
(Gl ul (x) = p.v. .----::- u(y)dy , 

_'" (x_y)2+(h(x)_h(y)2 

f'" h(x) -h(y) 
p.v. 2 2 u(y)dy . 

-'" (x-y) + (h (x) -h (y) ) 

Here h is a real-valued Lipschitz function. Corresponding es-tima_'ces 

in higher dimensions can be obtained using Calderon's method of rotation. 

10. Square Roots of Accretive Operators. The background to this section 

is contained in [KO] and [Kl]. 

An operator S in a Hilbert space H is called maximal accretive 

if 
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(il V(5) is dense in H, 

(ii) Re(5u,u) ~ 0 for all u E V(5) , and 

(iii) 5 cannot be extended to an operator with larger domain also 

satisfying (iil. 

Every maximal accretive operator is closed. 

If 5 is maximal accretive then there is a unique maximal 

k k 2 
accretive operator 52 satisfying (52) = s 

1 
Note tha-t V (5'2) '" V (8) , 

and, by lelnma V. 3.43 of [KO], 

" note that 8 is maximal accretive, and 

u E V(8) • 

Also 

A cZosed regularZy accretive sesquiUnear form J in Ii is a 

map J, VJ x VJ + ~, where VJ is a dense linear subspace of Ii, such 

that 

(il J[u,vj is linear in u and conjugate linear in v , 

(ii) Re J[u,u] ~ 0 \iu E VJ 

(iii) 3K > 0 ~ 11m J[u,u] I $ K Re J[u,u] \iu E VJ , 

(iv) VJ is complete under Ilull~ = Re J[u,u] + IIul1 2 

THEORE!~ 10.1 If J is closed regularly accretive then the associated 

operator AJ is maximal accretive and V(AJ ) is dense in VJ • Here 

AJ is defined to be the operator with largest domain satisfying 

J[u,v_l 
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THEOREM 10.2 

J[u,v] u,v E VJ • 

1; 
It is not always true that V(A;) VJ [Hc2] • Our aim is 

1 

to give conditions under which V (Aj) VJ Indeed we shall prove the 

fOllowing theorem. 

THEOREH 10.3 Suppose A: H + K is a closed densely defined operator 

and F E UK) with Re F :0: P > 0 Let V"_ u 
VeAl and define 

J V x 
J 

VJ + II: by J[u,v] (FAu,Av) . Then 

(i) J is a closed regularly accretive form; 

(ii) 'che maximal accretive operator AJ associated with J is 

* * * given by AJ = A PA; and also = A FA; 

(iv) if {I_pP-1} and {I_pp*-l} are q-compatible with A, 

and if 

where 

"then * k V «A FA) 2) = V (A) , and 

U E VeAl • 

Proof Parts (il and (ii) are straightforward. 

If w E K then 
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222 
/I Fw-pw/l - K /IFw/l (1_K 2) /IFw/l 2 + p2/1w/l 2 - 2p Re (Fw,w) 

::; p2/1F/I-2/1Fw/l 2 + p2/1w/l 2 _ 2p211w/l2 

::; o . 

II (I-pF-l)U/l ::; K/lu/l , U E K . 

/II-pF-l /l ::; K • 

(iv) By scaling, we can reduce to the case pl. We assume this. 

We first note the following identity : 

* W E V(A F) 

* * * To prove this recall that tA Pt = Qt and I - Pt = tAQt 

Therefore (using the conventions of §4) , 

2 * * * 
t A FAQt + Qt 

2 * * (t A FA+I)Qt 

Therefore, if u E V(A*FA) , 
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* k ? fOO 2 * -1 * dt (A FA) 2U = .::.. (I+t A FA) tA FAu t 
'IT 0 

= -'lT2 fooo ~ Qt* -1 k dt L {(I-F lP t } Au t 
k=O 

2 ~ foo 0* -1 k dt 
'IT L {(I-F ) P t} Au t 

k=O o-t 

This last step follows from part (cl of theorem 2.1, and lemma 1.4, 

with * { -1 }k uk = Q (I-F )P, Au, 
t 1: 

It follows 

also from that lewma that 

cllAul1 . 

* * ~ Since V (A FA) is dense in V J' and (A FA) ~2 is closed, it 

* k follows that V J C V «A FA) 2) and 

for all U E VJ 

for all u E VJ • 

* k 
II (A FA) ·ull :<:; cllAul1 

* * h:; Similarly, VJ C VetA F A) 2) , and 

* * k II (A F A) 2uII :<:; cllAul1 

* * * k Choose u E V(A FA) C VJ C vetA F A) 2) Then 

IIAuf :<:; I (FAu,Au) I = I (A*FAU,U) I 

I «A*FA)YzU, (A*F*A)Yzu) I 

* k 
:<:; ell (A FA) 2uliliAuil 

IIAul1 
* k 

:<:; ell (A FA) 2ull 
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Now A is closed, and is dense in '" :k V( (A FA) 2) under 

2 '" :k2:k "'](, {Ilull + II (A FA) "ull } 2, so V( (A FA) 2) c VJ , and 

IIAul1 '" :k S ell (A FA) 2ull 

for all u Eo: V( (A "'FA) %) 0 

We apply this theorem to obtain the following result about 

differential operators, In it, HI(lR) denotes the Sobolev space, 

THEOREM 1004 Let f E L",(lRl, with Re f ? P > 0, and define 

J : HI (lR) x HI (lR) ->- II by 

J[u,V] J:", f(x)Du(x)Dv(x)dx 

Then A'J is maximal accretive, where 

with 

Also 

and 

where 
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c = I P 1-3 6 sup (1 - 1 - -- ) 
JR. f(x) 

XE 

Ilfll~ 
~ 6 -6-

P 

Proof Apply the preceding theorem with H = K = L2 (JR.), A = D , 

1 VJ = V(A) = H , let F denote multiplication by f, and given qj 

the values specified in theorem 3.1. All that remains to be done is 

to find the value of c Let 

K = 

Then 

for some a > 0 , as 

00 

sup 11 - fix) I 
XEJR. 

c = ~ L P Kk ~ ! a L (k+l) (k+2)Kk 
n k=O k 2 k=O 

O(j) and 2 
Pk = O(k ) 

c ~ 
-3 a(l-K) 

I P I -3 a sup (1 - 1 - -- ) f(x) 

One can show, if one wishes, that a can be taken as 6. 

One can use this result to show that, if fz E Loo(JR.) depends 

analytJ.cally on z E-n~ere II J.s an open sUbset of Ie, then so 

does the corresponding operator ~ E L (Hl (JR.) , L2 (JR.» • 
z 

Details will 

be published elsewhere. It can also be shown that lower order terms 

can be added to Jz as in the following theorem. Details of this will 

also be given elsewhere. 
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THEOREM 10.5 

analytically on Z E Q where Q is an open StIDset of ~, and 

be -the form with domain HI (lR) x HI (lR) Let 

defined by 

Jz[u,vl 

There exists 

for all u E HI (lR) • 

o 
K 

Z 
such that 

Let A 
z 

Then, for all 
o 

K > I( 
z Z 

A + K I is maximal accretive, 

U; 
V «A +K I) 2) 

Z Z 

Suppose 

for each U E 

REFERENCE 

(lR) 

Z z 

and, for some A > 0 f 
Z 

1 
;;:-Ilull I 

z H 

U; 
,,; II (A +K I) 'ull ,,; z z A Ilull 1 

Z H 

I( 
Z 

is chosen to depend analytically on Z E Q 

U; 
(lR) , (A +K I)2u depends analytically on Z E Q z Z 
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