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ON ISOLATED SINGULARITIES OF MINIMAL SURFACES

Leon Simon

We here want to give a brief discussion of some
questions related to minimal surfaces with isolated singularities;
the many questions related to minimal surfaces with more complicated

singular sets are not considered.

We first make our terminology precise. For simplicity
of exposition we discuss embedded submanifolds of Euclidean space -
making the necessary comments about the more general Riemannian
setting at appropriate points.

M will denote a smooth n-dimensional embedded
submanifold of Bp+k s, nz2, k=1, where we always use the
term "embedded" to mean locally properly embedded. Thus for each
y € M there is an open ball Bp(y) with centre y and radius
p>0, and a C2 diffeomorphism ¢ of Bp(y) onto Bp(O) such

that w[MﬁBp(y)] =R N Bp(O) . Here and subsequently we identify

R" with the subspace of iRn+k consisting of all points

(xl, cees xn+k) such that =7 = 0 Yj = ntl, ..., nt+k .

M is said to be minimal if the mean curvature of M
is identically zero. As is well-known, this condition is equivalent
to the Zocal area minimizing property: for each y € M there is

some open ball Bp(y) C,Rp+k such that
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Hn(MﬁBp(y)) = Hn(ﬁan(y)] (H" = k-dimensional

Hausdorff measure)

whenever M = ©(M) , where ¢ : Bp(y) - Bp(y) is a Cl diffeomorphism
such that {x € Bp(y) :p(x) # x} is contained in a compact subset of

Bp(y) . This explains the use of the term minimal.

The regular set reg M of M 1is defined to be the set
. . n+k
of all points y € clos M (closure of M taken in R ] such that
Bp(y) N clos M is an embedded n-dimensional C2 submanifold of
R for some p >0 . The singular set sing M of M is defined
by sing M = clos M~ reg M . By definition sing M is a closed
subset of Ep+k and reg M D M ; if the inclusion reg M > M is

strict, then there are removable singularities. We always assume

here that such singularities have been removed, so that
M=reg M, sing M = clos M~ M .

k

A point y € R is said to be an isolated singularity

of M if y € sing M and sing M N Bp(y) = {y} for some p >0 .

The simplest examples of embedded minimal M with
isolated singularities (indeed the only known codimension 1 examples
until the work [CHS] to be described in §2 below) are the embedded

minimal cones; that is, minimal M representable in the form
(0.1) ) M = {Xy': y€Z,0<X<},

where I is a compact embedded (n-1)-dimensional submanifold of

Sn+k—l .
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There are many such minimal cones (see e.g. [HL]).

A simple example (corresponding to n = 3, k = 1) is

M = {(xl, x2, X3, XH) ¢ I#*”J {0} : (Xl}Q + (X2)2 - (XS)Q . (XU)Q} .

In this case the corresponding submanifold I C g3 (as in (0.1))

is just the two dimensional flat torus

{_1_31] x {le] cs®erY = R2 xR? .
/2 V2

More generally for any p = 1

M = {(X, y) ¢eRrRP xRP ~ {0} : |x|2 = Ile}

is a (2p-1)-dimensional minimal cone, corresponding to I C SQP—l
defined by I = fg; Sp—l} X [j; Sp-lJ
V2 V2

The study of minimal surfaces generally is closely
related to quasilinear P.D.E. theory, by virtue of the fact that U
is an open subset of R" and if u = (ul, cees uk) : U *ﬂRk is a

C2(U) function with values in IRk , then
(0.2) M = graph u = {(x, u(x)) = x € U}

is minimal if and only if u satisfies the system of equations

n Py

(0.3) Sogthutc0 on v, w=1, ..., k.
. & ij
i,3=1

ify _ -1 _ .
Here (g ) = (gij] , gij = 6ij + Diu Dju . The system (0.3)

is called the minimal surface system (minimal surface equation in
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case k = 1), and with respect to suitably chosen coordinate axes
.. - +

any minimal M < Rr? K can be represented locally as graph u for

some u satisfying (0.3). All this is readily checked by directly

computing the mean curvature vector of M in case M has the

form (0.2). (See, for example, [0].)

We should make a point here: it is not in general
true that M can be represented in the form (0.2) in the neighbourhood
of an isolated singular point. Indeed in the codimension 1 case
(when k = 1), no M of the form (0.2) can have isolated singular
points. For this and related results see [FR], [B], [MM], [SL2, 3].
On the other hand in case n =4 , k = 3 there is an example due
to Lawson and Osserman [LO] of an M having the form (0.2) and
having an isolated singularity. The example is also of the form (0.1)

for some compact smooth I < 83

The outline of the present article is as follows:

in 81 we discuss an old question (still unsettled) as to whether an
embedded minimal surface in .R3 can have an isolated singularity.

§2 gives a brief summary of recent work of Caffarelli, Hardt, Simon
[CHS] on examples of minimal submanifolds with isolated singularities,
obtained by perturbation of minimal cones (as in (0.1)). In §3 we
briefly discuss the important question of whether or not a minimal
surface is asymptotic to a minimal cone near an isolated singular

point.

For reference in these subsequent sections we here

make some remarks concerning the area growth of minimal surfaces

near an isolated singularity. Thus we let M C Rp+k be as above and
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we suppose that sing M N Bp = {0} for some po > 0 . Here and
0 .

subsequently we abbreviate Bp = Bp(O) . Since we assume M is

locally properly embedded we have

(0.1) Hn(Mﬁ[Bdeo J<e, O0<o<p<p, .

Now by plugging in a function of the form ¥(|x|)x in the first
variation formula (see [AW] or [SL1] or [MS] for a discussion) we

get the identity

2] -0,

provided support Y is a compact subset of (O, po) . In (0.5),

(0.5) i [mocl=ly + Ixlo Dy |71

V denotes gradient on M ; that is Vf(x) 1is the orthogonal
projection of the ordinary EP+k gradient of a function £ onto the

tangent space TxM .

We now choose p € (0, po) , 0 € (0, p) and replace

VY by the function wo 0 defined by
. °
wg’p(t) = o (W(t/p0)

where w;}(t) zZ 0Vt , ¢O(t) =0 for t<o0/2, o(t) =1 for
t>0, P'(t) =0Vt , and YP(t) =0 for t =1 . Then (0.5)
implies, for 0 <0 < p < po , that

2
5 <0,

(0.6) n IM cpo(lxl)w(!xl/o) - o5y %(IXI)MIXI/O)#WXI
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where we have used -p g%[w(t/p)] = tﬁ%{w(t/p)] (the common value

being (t/p)Y'(t/p)) . Taking € € (0, 1) , ¥ =1 on [0, 1-€]

and multiplying through by p_n_l and rearranging the resulting
expression, making use of the fact that phn]w'(|x|/p]|>'(1 T; ‘ |XI/Q)'

(because Y(t/p) =1 for + = (1-€)p ), we then deduce

- dp ljpr (]xl) IV_IE:I Wl I/D):[ dpl: M 0y =y ( [Xl/p]]

so that in particular

(0.7) [y, (IxI)iilYlfli { w(Ixl fo)-w( IXI/T)J T [y UxDu(lx] /1)

—n]

IA

o™ [y ogCIxDw(Ix] o)

IA
[

e ClxDr (1= /o)

where, in the last line, we used (0.6) again. This is valid for
O<T<p< po . Holding p, T fixed, and letting o0 ¥ 0 we deduce

by virtue of (0.4) that

(0.8) H (B ) < = ¥t <0y -

Then we can let ¢y 41 and Y 4 X , where X 1is the characteristic

function of the interval [0, 1) . This gives
(0.9) ij(B 5) |x|'n(1-jv[x||2) - ()
ot

= p_n Hn(MWBp) <®, 0<T<p<pg-
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This is the well-known monotonicity formula for minimal surfaces,
which we have thus shown to be valid if M has an isolated
singularity at O . (Actually it is valid in the presence of

much more serious singularities - in fact for arbitrary stationary
varifolds - but in this case one needs a-priori to assume finiteness

of the area, which we did not need to assume here.)

A formula like (0.9) continues to hold in the more
general case when M is a submanifold of a Riemannian manifold N ;
in this case the Bp are Geodesic balls in N , p must be

sufficiently small, and there is an additional factor of the form

(1+cp) on the right hand side (c a constant depending on N).

§1. 2-dimensional surfaces in R3

Here we suppose n =2 , k=1 ; thus M 1is an
embedded 2-dimensional minimal surface in Rs . The question is

whether or not such surfaces can have an isolated singularity at O .

We shall here sketch the simple proof that such an
isolated singularity ecamnot exist if we make the additional assumption

that M is stable in Bp ~ {0} for some 0o > 0 . Thus we shall

0
assume that sing M N [BD’V{O}) = 4 and
0
2 2 2
(1.1) anB [a]% 5anB [Ve |
Po Po

whenever support ¢ ¢ B ~ {0} is compact, where A denotes the
0
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second fundamental form of M . ((1.1) is just the stability

inequality; see for example [SL1] for an elementary discussion.)

We want to prove O € reg M . Note first that
(1.1), taken together with the area bounds (0.9), implies

immediately that

(1.2) |a]> <= VYo € (0, o) -

IMﬁB
p

1 on Bp ~ Bo N

(To check this, just take ¢ in (1.1) with ¢

@ =0 on 9B , ¢ =0 in , and |V¢| = c¢/0 , then let

B
o o/2
0 ¥+ 0 and use (0.9) to bound the right hand side.) Also by the
curvature estimates ([SSY] of [SS1]) for stable minimal surfaces we

have that

(1.3) |a(x)]| = c/lx[ , x€MN Boo/2 .

-1 ’
Now let p_+ 0 and let M = o= x € u} . By
(1.3) and the Arzela-Ascoli lemma we can select a subsequence
{k'} ¢ {k} such that {Mk' converges (in a ct sense) to a
minimal surface C with sing C = {0} . (Notice that we do this

by locally representing the Mk' as graphs of functions satisfying

the minimal surface equation, which is possible in a uniform way by

(1.3), because (1.3) tells us that the second fundamental form A ,

of is uniformly bounded in any annular region Bp/v Bo as

M s
k' = o ,) By virtue of the monotonicity formula (0.9), we easily

check that [ (l—|V|x|12) = 0 (V = gradient operator on C , so

CMB
P
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that |V|xl| =1 on C). Then C must be a cone with vertex at

the origin, and C N 82 is a l-dimensional embedded minimal surface

(i.e. a geodesic) in 82 , and hence must be a great circle in s? .

Thus we finally deduce that C 1is a plane through the origin.
Without loss of generality, let us suppose that the unit normal of

C is ey =(0,0,1).

Since approaches C locally (away from 0) in

Mk'

a Cl fashion, we see that

where V = unit normal of M . In particular if we take any » > k
and if we let X be any component of M N |B_  ~B , and if
k,r ! ot

2

DX , then we see that the Gauss map Vv : M > S

we write
k,r

Lk,r :

takes 'Lk " to an €-neighbourhood of eq » where € =+ 0 as

k, v > o,

On the other hand the Jacobian (area magnification
factor) of the Gauss map is minus the Gauss curvature of M , which

is %IA]Q. Hence the area of the Gauss image of Zk . is %
9

IZ IA]2 , which converges to zero as k =+ « by (1.2), and
T

furthermore the Gauss map is either a constant map on an open map

(because the Gauss curvature vanishes at only isolated points of

Zk , unless Zk . is contained in a plane). We therefore deduce
2 bl

that the Gauss image of Zk , must be contained in the same
2

e-neighbourhood of e, as L , where € >0 as k > » .
3 k,r
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Letting r » « , holding k fixed (but large), we
can thus deduce that the oscillation of V on any component of
BN M is small, B =

Writing B' = , it follows that

B B
Ot Ppr/2
for each component M* of BN M with 0 € clos M we have a

minimal graph G with
0 € (clos G) N B' = (clos M*) N B!,

provided k' is sufficiently large. (In checking this one needs to
use the fact that the oscillation of Vv on M¥ is small, together
with the fact that M* is connected, embedded, and oM® C 3B .) But
by the discussion of the introduction, we know that isolated

singularities of codimension 1 minimal graphs are removable, hence

we have
clos ¥ NB' = G ,

where G = graph u , with u(0) = 0 and with u satisfying the

minimal surface equation in some neighbourhood of the origin in iRz.

This essentially completes the proof, except that we
have to check that there cannot be more than one component M* of
M N B whose closure contains the origin. However if there were
another, then we could apply the above argument to it in order to
deduce that there are two minimal graphs G, G, with G NG, = {0}
Since the difference of two solutions of the minimal surface equation

satisfies the maximum principle, this is impossible.

Notice that the above result has been extended to the

case 2 <n <=6 thus if 2 <n =6 (k=1 and M stable in
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Bp ~ {0} still being assumed), then M cannot have an isolated
0

singularity at 0 . Indeed if Hn(Mpr) < @ (which is automatic
0

from (0.9) in case M has an isolated singularity at O and P is
sufficiently small) and if M is stable in Bp ~ sing M , then
0

(1.4) H'"2 (sing MNB )=0=singMNB_ =74,

[ p

0 0
(In particular this guarantees isolated singularities are removable
for 2 <n=6.) (1.4) is proved in the recent work of Schoen and
Simon [8S1]. The results of [SS1] are actually only stated for the
case when M is stable in Bp , but the reader will see that the

0 .

proofs of [SS1] actually apply to the case when M is only stable

in Bp ~ sing M (in the sense that (1.1) holds for any
0

1
¢ € cO(Bpo)).

All this generalizes to the case when M is a
codimension 1 embedded submanifold of a general Riemannian manifold,
and to the case when M has bounded (rather than zero) mean
curvature. In fact [SS1] is already presented in this setting, and
the main change needed in the above 2-dimensional argument relates to
the fact that the Gauss map is no longer necessarily open. One then
needs to use the iterative procedure described in §2 of [SS2] to prove

that the oscillation of V- on M* is small as before.
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§2.  Examples of minimal surfaces with isolated singularities

The material in this section is an outline of some

parts of recent joint work [CHS].

Let I be any smooth (n-1)-dimensional submanifold

Sn+k—l

of , 1<k, n=2, and let C be the cone over I .

Thus
c={w: x>0, we€Z}

and C has an isolated singularity at O unless it is a n-dimensional

plane through the origin. Write also
c =CnNB_,
T r

so that

For the moment we are not assuming C is minimal.

We consider first the linear Dirichlet problem

(2.1)

where f, ¥ are given functions on Cl and I respectively, and

where LC is a linearsecond order operator of the form

LCu = Acu + Qu ,

where AC denotes the Laplace-Beltrami operator for C , and Q has
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the form
Q(x) = r_2q(w) , x€C, r=lx, ws= x/|x| €z .
Since C 1is a cone, we have

(2.2) Lcu = rn_l 5;

1 3 (rn—l @:1_)

. + r—Q(AZu+q(w)u)

where on the right u = u(r, w) , O<r<l, w€ I and AZ
(the Laplace-Beltrami operator for I ) acts on u(r, w) as a

function of w € I with » fixed.

Our initial aim in this section is to discuss the
following simple question concerning solutions of (2.1):

Suppose p > 0 ,

(2.3) ]If[lP <c rp‘2 . VYo<r<1,

z
where “f“r = (IZ fz(rw)dw)z ; then for which boundary data ¥ in
(2.1) can we find a solution u of (2.1) such that u decays near

0 in the sense

(2.4) lhall, = e o, Vo<pr<1l.

(Notice that the requirement ”f“r <crP? s evidently necessary

for there to exist any such boundary data Y in view of the form

of the operator LC )

We write LZ = AZ + q@ and we let

U S U, = ... (uk +>® ags k - «J
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denote the eigenvalues of LZ , and let

@l, ¢23 oo
be a corresponding orthonormal basis for LQ(Z) . (Notice that
these wj are automatically of class % on 1 by virtue of

0,0

the assumption that q 1is C .) Thus any u € LQ(Cl) can

be written

u(x) = u(rw) = ) a.(e)e.(w)
Lo

J
S o2

where Z a.(r) < a.e. r € [0, 1] , and (by (2.2)) such a u

j=1 !
is a solution of the equation Lcu = f (in the generalized sense)
if and only if
(2.5) r2a" + (n-l)ra! - w.a.(r) = P2 (v) . =1, 2, ...

J J 33 J

(in the generalized sense), where

. = [ f . z '
f](r) IZ (rw)¢3(w) aw = (£(rw), cpj(w))L2 5

where 0 <pr <1 .

The homogeneous equation (i.e. (2.5) with fj = 0)

has solutions crY , where Y 1is any root of

(2.5)! Y2 + (n-2)y - “j =0,

SO
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o, fEETT
ve- ) ey

J

For each j we let Yj be the root corresponding to the plus sign.

-Y.
Then since wj =p J aj satisfies the equation
n-1+2y. ' n-1+y.
{r J wé) =7 fj we see that there are solutions
. . -(n-1)-2Y. n-1+Y.
(2.6) aj(r) = Re[ocj o34 pNd ]g s J gt J fj(T)deS S

J

where aj, Bj are constants with Bj > 0 . We now make the

additional assumption on p that there is an integer = 1 such

o
that p > 0 (as before) and

(2.7) Re[y.

<D< Re[Y. J .
JO} Iptl

The expressions for aj in (2.6) make sense, and give a solution

of (2.5), provided that we take

ldj € R arbitrary, and Bj =1 for j =7

a. =0 and .= 0 £ i< 3. .
oy =0 ana B SN
Indeed one easily checks that then
[e0)
u = a.(r)e.(w)
-Z J q)ZI

J=1

satisfies (2.1) with
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S

0 1 -(n-1)-2y. n-1+Y.
Re J 0 T J fj(T)des

23,1 3
and that

2 2-p p
@2.8) My se| T of +suw T nfn.f] P, o<rn<l
BESpes

as required. Furthermore one readily checks that wu is the unique

solution of (2.1) satisfying P ”u“r < © , together with

SuP0<r<l

the boundary data

(2.9) (Qimrfl u(rw), wj(w))LQ(z) = uj , =9

(We want to emphasize particularly that we have no control over the

numbers {Kimr u(rw), wj(w)] , 3= jO ; these are uniquely

i 12(3)

determined by £ .)

Using the notation Hj : LQ(Z) - LQ(Z) to denote the
0

operator w > z (w, ¢.) 5 ¢. , we have thus proved that for
323 ,t1 4y 3

any given 1 € L2(Z) there is a unique solution u of

L,u=f on C

C 1
(2.10)
Hj (u-y) = 0 on aCl
0
. , Dy ) .. e s
with supy_ 4T HuHr <« this solution satisfies
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1 H < 2_p p
(210" full_=c [Hnjowlle(z) tsupy o ) T IIfIITJ o,

“{l_njoJu]Z”L2(Z) = SUPor<1 Tz_p “f“T >

where ulz(w) = 2im 1 u(rw) . Of course we are still assuming

rt
(2.3) and (2.7).

To describe applications of this to non-linear

equations (and to minimal surfaces) consider the Banach spaces

2
Bp =4{u € C (Cl) : ”u”Bp

2 .
= P 3193 240 g2
Ssupg_ T jgo r’ |V uIO;r+ - [V u]a;r < oh

where we use the notation that V2u denotes the covariant Hessian

of u,
lwl,, . = supyy W] Lwl . _ = sup wix)=u(y)
Osr BCP ’ o5 X’yécfwcr/Q IX-Y!u ’

REY

and where o 1is a fixed constant in the interval (0, 1) .

Now consider the quasilinear problem of finding

u € Bp such that

Lu + N(u) = f on C

(2.11)
M. (u=y) =0 on I,
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assumption

(2.12)
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are as above but where we now make the additional

v, 3,

Rey. =1,
Jo

so that (2.7) implies p > 1 . Concerning the operator N we assume

(2.13)

Here, for

bilinear form on Rp+k and N

to mean trace S, o 82 , where S

Nu = N(l)(x, u/r, Vu) - V2u + r_lN(Q)(x, u/r, Vu)

k

(x, z, p) € Cl xR x R*F . N(l)(x, z, p) 1s a symmetric

(l)(x, u/r, Vu) - V2u should be taken

S are the symmetric bilinear

1 1’ 72

transformations on TXC X TXC associated with

N

(1)

N 3

(2)

(%, u/r, Vu) T and Vzu(x) . We also assume that

CxTC
x 4

have a 02 dependence on (x, z, p) (x#0) and satisfy

the structural conditions

(2.14)

]

PIINil)(x, z, p)| + ]Ni22x, Z, p)lJ + |N;l)(x, z, D)

2
1-1 . .
+ lNél)(x, z, p)| + rjgl([zl+|p|) ][]Nii)(x,z,p)|+]Ni;)(x,z,p)|J

2 (35) 3) ()
A e R R B

WDk, 2, 20+ W20 2 0]+ 20, 2, 23] = u(la] + lol)

NP, 2, 0| = ullz] + [p))? .
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(Here subscripts denote partial derivatives with respect to the

indicated variables.)

Subject to these assumptions, the result described
in (2.10) above, together with a standard application of the
implicit function theorem (or the contraction mapping principle),
enables us to assert that if (2.3), (2.7), (2.11), (2.12), (2.14)

hold, then there is a constant Bo > 0 such that the problem

Lu + N(u) = Bf on C

1
(2.15)

i}
o

on L

I, (u-By)
Jo
is solvable for any B = BO , with u € Bp satisfying

(2.15)" fhu - ul“B =< c82 .

where v is the solution of the linear problem (2.10) with

Bf, BY in place of Ff, ¥ .
If Cl is minimal of codimension 1 (i.e. k = 1),

and if M 1is the graph of a function u € Bp over Cl
M= {x + v(x)ulx) : x € Cl} (v = unit normal of Cl) ,

then M is a minimal hypersurface if and only if u satisfies

is the minimal surface operator (i.e. the

MCu = 0 on Cl , where MC

mean curvature operator). As- is well known, MC has the form

Mc(u) = Lu + N() ,

C
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with N as in (2.13), (2.14) and with L., as in (2.2) with

C

(2.16) q = |A|2 on I,

A = second fundamental form of C . Therefore the above general
existence result gives a large new class of examples of minimal

surfaces with isolated singularities. Specifically:

THEOREM 1.  Suppose C is minimal, k =1, q s as in (2.16),

and suppose ig8 chosen so that (2.7), (2.12) hold for some

jO
p> 1. Then for any given V € CQ’OL(Z) with {J_-Hjo}w =0,

there is a l-parameter family {UB}O<B<B c Bp of solutions of
-0

Mcu = 0 such that

Here u (x) = %im B-lu (x) , x €C, U . In fact we have
0 840 B 1

. A
uy = Re 7 p 3 (v, o.) ) 95 on c -
323+l L)

All the above discussion extends straightforwardly

to the case when our functions are sections of the normal bundle

ue
TC of C , provided we take

(2.17) L, = AL + v 2qw) °
: c- % Tr 4

: L 1
where AC—L is the normal Laplacian (see [SJ]) and q(w) : TwZ > TwZ
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is linear with smooth dependence on ®w . If C is minimal, the

minimal surface operator MC in this arbitrary codimension case
.

is an operator taking smooth sections of TC  to smooth sections

1
of TC with the form

MC=LC+N,

with LC as in (2.17) with

(2.18) a(w) = A/
4 L
where Aw : [TwZ] - [TwZ] is defined by

v, Aw(vl) = trace (Vl°Aw) o (VQ‘Aw) ,

where A 1is the second fundamental form of I (thus vy Aw is
a bilinear form on TwZ X TwZ), and where N satisfies similar
structural conditions to the N in (2.13), (2.14). (As before,
Mcu =0 on Cl if and only if graph u = {x + u(x) : x € Cl} is

an n-dimensional minimal submanifold of 1Rn+k .)

We thus have in particular the following theorem.

THEOREM 2.  Suppose C is minimal, k=1, q s as in (2.18)

and suppose is chosen so that (2.7), (2.12) hold for some

jO

p>1. Then for any given | € 2% (Z, TZJU there is a l-parameter
, - , _

family {UB}O<BEBO c Bp of solutions of Mcu = 0 such that

uol =lP.
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B - 4
Here the notation is as follows: u. = 2im B lu as before, B
0 B p
BY0
denotes the set of C2’a[Cl, Rp+k) functions w = (wl, ey wn+k)

]

such that each component w~ is in Bp and such that

L 2,0
w(x) € TXC Vx € Cl , and C™? (Z, TZ denotes the set of

wn+k)

CQ’Q[Z, Rﬁ+k) functions w = (wl, cees such that each

Jo. . 2,0, L
component w- is in C7?7(IZ) and w(x) € TXZ Yx € L .

The question now arises whether or not these perturbed
solutions are stable in case the underlying minimal cone is stable.
To facilitate further discussion we first derive a criterion

(involving eigenvalues of L. ) for the cone C to be stable.

z
Since there are no 2-dimensional minimal cones other than the 2 planes,

we assume n = 3 for the remainder of this section.

To begin , let us suppose C 1is an arbitrary cone

(not necessarily minimal) and let L, = AC + Q as before.

C

Let T € C%(Cl) be arbitrary, and write

z(rw) = Z a.(r) ¢.(w) , where a. € Cl((O, l)} . Then by (2.2)
T 3 3 0

[ee] [ee]
1 9 (. n-1 n-3
[ ociag = [2 o 1 |=(r"""al)e. ()" Ya. (L w.)){ Y oae ]dw ar ,
c, e 07z 5 or 3773 IV G2, KK
so that since Lz¢j = —uj ¢j and since ¢j are orthonormal in

LQ(Z) , Wwe get

(oo [ee]
1 n-1 12 n-3 2
2.19 L = - . .a. .
@a9) fo wrrs oy [P TGPt e L u]ajJ ar
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Now using integration by parts we have

©o (o]
(2.20) - fé o3 PR a2 dr < fl RS a2 "% ar
521 13 0 521 93

Uj = maX{‘Uja 0} s

and
1§ - 2n-3 1 n-2
2.21 tairt Cdr = e
( ) f _lu]aj dr f 21 u] a]aj dr
< 2[R T e *[jlrn-s"z"p-agdrﬁ
T n-2 551 373 0 551 i)
so that
flrn-s°z° -2 4 < lnlz (a2)? 4
0 Lo Mgy ar = 0 bovy (ag)" ar
j=1 (n- 2) j=1
you o
=2 ] (@) e,
(n-2) j=1 7

using this in (2.20) we see that IC ;LC£ <=0 Vg ¢ Cg(Cl] provided
1

n
(2.22) — =1
(n-2)? 't
Since fcl ;LCC = - fcl(]VClz-QQQ} , we have thus shown
(2.23) Joot? = [, Ive]® vce cslc)
1 1

provided that (2.22) holds.
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The condition (2.22) is equivalent to the requirement
that all the roots Y in (2.5)' are real. We then easily see

(since a complex root Yl gives oscillatory solutions
i

. = Relr
( 0

N ) for Lo &y = 0)

inf lvz|? - qz? <o

/
2 c
zecg(c,) 1

if (2.22) fails. Thus we conclude that (2.23) holds if and only if

(2.22) holds.

In case C 1is minimal of codimension 1 and
Q = r_2|A|2(w) (A = second fundamental form of C , restricted to I)
(2.23) is then exactly the stability inequality for C (cf. (1.1)).
This extends routinely to the case of arbitrary codimension (as for

Theorem 2). In this case the stability inequality requires

1 L
2.28) [, A@ o= [, |Vz]?, vre cé[cl, 7c¢)
1 1

and by the appropriate modifications of the argument above, we see
that this is true if and only if (2.22) holds, where now My is the

minimum eigenvalue of the operator
= AL A
L.C = AL+ AD)

4
where AZ is the normal Laplacian for I (see [SJ]) and where A

is as in (2.18).

The condition (2.22) for stability (at least in the
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codimensional 1 case) was first derived by J. Simons [SJ;
Lemma 6.1.6]. R. Schoen has pointed out that it is equivalent to
the requirement that I be conformally equivalent to a positive

scalar curvature manifold.

It is instructive to check the condition (2.22)

for the codimension 1 examples I = 65% Sp) X 655 Sp] . One

readily checks in this case that IA]Q(w) =2p on I , so that

M. is the minimum eigenvalue of A. + 2p , which is trivially -2p

1 z

(The minimum eigenvalue of AZ is zero.) Since n = 2p +1 in
this case, the criterion (2.22) tells us that the cone C over I

is stable if and only if

w_ > o 1
(n-2)2

nz=7.

(Cf. [SJ].) Similar considerations show that if % is a codimension
1 minimal submanifold of §" , with second fundamental form having

constant length K , then the cone over Y 1is stable if and only if

n-2
<
K = 3

We note that the argument above actually establishes

e
IC (IVC|2_QC2) z |1 - —12 fc (3@/31‘)2 ’
1 (n-2) 1
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so that if we have strict inequality in (2.22), then

2 . 1
(2.25) fcl (Ivz]2-qz?) = @ fcl (OC/BP]Q ve € c(c))

for some constant 6 € (0, 1) . Using the identity

IZ fé g%-(rn‘QQQ(rw)) dr dw = 0 , so that

~942
Gl‘g) j EQ 2= f (3C 3 )2 , we then have
2 C; r ¢, r

2 2 ' 2] 2 1
(2.26) fcl (Ivz]%-0z?) = 6 jcl ?/x? e ecylc)

where 0' > 0 is positive.

Notice that (by virtue of the standard representation
of minimum eigenvalue in terms of Rayleigh quotient) (2.23) is

equivalent to the assertion that the eigenvalue problem

A -
Lcu + ;a-u =0 on ce,l = {x €C:ex< lxl < l}
(2.27)

u=0 on BCE51

has minimum eigenvalue Xi >0 Ve >0 , while (2.26) is equivalent

to Ai > 9" >0 (0" independent of €).
That is, (2.22) © AL 2 0 Ve > 0 = (2.23); and strict
inequality in (2.22) « Xi >0 >0 for some 0O independent of €

e (2.26) for some 6' > 0 .

In view of this, and the fact that the uB obtained
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1
in Theorems 1, 2 lie in Bp (Bp respectively) we now easily

deduce the following theorem.

THEOREM.  If C <s strictly stable in the sense that strict
inequality holds in (2.22), then there is Bo > 0 such that all
the minimal graphs of Theorems 1,2 are stable for B = BO .

_ (n-2)?

m , then the minimal graphs of

(1f Hy
Theorems 1, 2 are stable in the weak sense that the stability
A
inequality holds for ¢ € Bq (respectively Bq) with ¢ = 0 and

¥ and “C“B =K , provided q > - G%;Q and provided B is
q

sufficiently small, depending on K).

§3.  The question of classifying isolated singularities -

uniqueness of tangent cones.

To facilitate the discussion of this section let us
assume that M has an isolated singularity in the following very

strict sense:

DEFINITION. M is said to have an isolated singularity at 0 in
the strong semse if sing M N By = {0} for some p > 0 and if

the second fundamental form A of M satisfies

(3.1) |a(x)| = c/lxl , O0< x| <p.

One would of course ultimately like to understand the general case

when it is simply assumed M N Bp = {0} , but for our present purposes
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the above assumption is convenient. Notice that (by the compactness
and regularity theory developed in [SS1]) (3.1) will automatically
hold for a seven dimensional stable embedded minimal hypersurface

with an isolated singularity at O .

In view of the examples of the previous section, one
might be led to conjecture that M 1is always asymptotic to a
minimal cone C near an isolated singular point at 0 , at least

in the sense

(3.2) 2im |sup |x—y|/ =0
@)
pY0 x €M Bp P
€CMB
%
for some minimal cone C . This would in fact be extremely

illuminating, because it is elementary to check that (3.1), (3.2)
iﬁply that sing C = {0} and that the spherical nearest point
projection ¥ (taking a point y € M N BBO to the point z € C N OBO
with least distance, measured in BBO , from y) is a smooth covering
projection. Thus we get a precise description of the exact nature of
the isolated singularity at 0 in terms of the minimal cone C and

an integer multiplicity (which is constant on the components of C ).

Unfortunately, (3.2) appears very difficult to prove,
even if we assume the strong condition (3.1). It is true that there
always exist tangent cones in the sense that if {pk} is a sequence
of positive numbers converging to zero, then there is a subsequence

{pk,} and a cone C
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