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ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM 

Neil S, Trudinger 

This article is concerned with certain local es"timates of Harnack 

and Holder type that have been established recently for linear and non-

linear elliptic partial differential equations in the works of Krylov 

and Safonov, [10] f [llJ, Trudinger [19J, [20], and Evans [7], [8]. 

Crucial to the derivation of these results is a maximum principle 

that was discovered about tVJen"ty years ago by Aleksandrov [2J and 

Bakelman [5]. Since the Aleksandrov-Bakelman maximlli~ principle has 

received only scant attention in expository monographs such as [9] we 

will also supply its proof below. 

let A 

Let S"l be a bounded domain in Euclidean n space, *n and 

[aij ] be a measurable, real nxn s~metric matrix valued 

function on S"l We assume that A is positive in S"l so that the 

partial differential operator L, given by 

(1) Lu 

for u e C2 (S"ll is elliptic in S"l. (As is customary we adopt the 

slli~ation convention that repeated indices indicate summation from 1 



2 

to n). Following the notation in [19], we let A, A ,V denote 

respectively the minimum eigenvalue, maximum eigenvalue and determinan"t 

of A • 

(2) 

V* -_ V1 / n , Setting we thus have 

"" O<:\<V </\.. 

If u is a continuous function on n we define "the upper 

contact set of u, denoted r+ or to be the subset of n 

,l,n+l , where the graph of u lies below a support hyperplane in 'I' 

is 

(3) for all x G n 

for some p 

that 

Clearly if u is a concave function, then r+; n. When" u G Cl (nl 

we must have p = Du(y) in (3) as any support hyperplane must then be a 

tangent hyperplane to the graph of u Furthermore when u € C2 (Q) , 

the Hessian matrix, is non-positive on r+ In general 

the contact se"t r+ is closed in n. 

We can now state "the following version of the Aleksandrov-Bakelman 

maximum principle. 

THEOREM 1. 

we have 

(4) 

where c depends only on nand d is the diameter of n. (In fact 

we can take C = 1 ) 
n(w)l/n . 

n 
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The salient features which distinguish Theorem 1 from the classical 

HOpf maximum principle are the presence of the integral norm, the 

restriction to the set r+ and the dependence on the coefficient 

determinant. Note that we have Lu::; 0 on since there. 

The proof of Theorem 1 utilizes the concept of normal mapping. If 

u is an arbitrary continuous function on n, the normaZ mapping, 

X (y) = Xu (y) of a point yen is the set of "slopes" of support 

hyperplanes at y lying above the graph of u, that is 

(5) X{y) {p~n I u{x)::;u{Y)+P'{x-y) for all x e n} 

Clearly X{y) ~ <P if and only if y e r+ . If u e Cl{m , then 

X{y) = Du{y) for y e r+ If, for example, n is a ball, BR{O) 

and k the conical function 

(h constant) , 

then 

(6) 
{ 

hy 
- RIYI 

= Bh/R{O) 

for y ~ 0 

for yO. 

the n dimensional Lebesgue measure of X{Q) 

is given by 

(7) Ix{ml 

on 

UX{y) 
yen 
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Let us now show that u can be estimated in terms of \X(~)I . 

Suppose that u takes a positive maximum at a point y € ~ and let k be 

the function whose graph is the cone with vertex (y,u(y)) and base d~ 

Then Xk (m c Xu (m since for each supporting hyperplane to the graph of 

k, there exis"ts a parallel tangent hyperplane to the graph of u. Now 

let k be the func"tion whose graph is the cone with vertex (y , u (y) ) and 

base Bd(y) . Clearly Xk(~) c Xk(~) and consequently 

But then, using (6) and (7), we have 

and hence 

(8) u(y) 
d <-

lin 
(0 

n 

( 2 
J \ det D u\ 
r+ 

(r 2 ] lin 
J \ det D u\ 
r+ 

To conclude the proof of Theorem l, we invoke the ma"trix inequality, 

B ~ ( tracne AB) n 
det A det J A , B > 0 

Consequently on r+ we have 

1 (_LU]n 
~V ~ 

and hence by (8) , 

(9) 

as required. 
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COROLLARY 1. For any function with u < 0 on 

We have 

(10) sup u 5 cdll (Lu) - /v*1I 
n Ln(m 

where C is the constant in (9). 

Corollary 1 follows from Theorem 1 by approximation. Since the argument 

was only carried out for uniformly elliptic L in earlier works such as [5], 

[17], we supply a complete proof here. Suppose first that L is uniformly 

elliptic, that is A/A ~ Yo for some constant Yo Let {urn} be a sequence 

converging in the sense of to u • For 

arbitrary s > 0 we can then assume {urn} converges to u 

and '\n 5 s on ans for some domain ns c n Consequently by Theorem 1, 

and hence, letting m ~ 00 and using the fact that u m converges uniformly 

to u on ns ' we have 

(11) 

from which (10) follows by letting s ~ 0 • 

To remove the condition of uniform ellipticity we consider for n > 0 , 

the operators 

which will be uniformly elliptic. We obtain by virtue of (11) , 

so that letting n + 0 and using the dominated convergence theorem we get 
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inequality (11) again. Corollary 2 now follows by letting E + 0 . 

The proof of Theorem 1 can be extended to cover more general linear 

and quasilinear operators by appropriately weighting the area of the normal 

mapping; (see [3] or [6] for details). In particular for linear operators 

of the general form. 

(12) Lu 

with c ~ 0, we obtain an estimate of the> form (10) but where the constant 

C also depends on 

It is interesting to note that Theorem 1 arose as a byproduct of the 

work of Aleksandrov [1] and Bakelman [4] on the Monge-Ampere equation, 

(13) g , 

where g e Ll(n) is positive. If u is a convex solution of (13) and 

u ~ 0 on an, then the estimate (8) (with the appropriate sign change) 

implies that 

(14) 

We will later in this article derive an estimate for derivatives of solutions 

of (13) as a consequence of the local estimates which we will derive from 

Theorem 1. 

Let us now turn to local estimates. For uniformly elliptic operators 

of the form (1) the following two important estimates were established by 

Krylov and Safonov in [10], [11]. In their formulation we will denote by 

",n BR a ball of radius R in ~ 

THEOREM 3. (HoZder estimate) 

and B oR the concentric ball of radius ORi 0 < 1 • 

For any function u e w2 , n (BR) , we have 
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(15) 

where C and a are positive aonstants depending only on nand AO. 

THEOREM 4. (Harnaak inequality) For any non-negative jUnation 

where C depends only on n, Yo and a. 

Alternative proofs of Theorems 3 and 4 are provided in the paper [19) 

in addition to the following two complementary results. 

THEOREM 5. (Loaal maximum prinaiple) For any funation 

p > O. we have 

(17) 

where C depends on n, Yo ' a and p. 

THEOREM 6. (Weak Harnaak inequality) 

u € W2 ,n(B) and some p > 0 
R 

(18) (R-n J up(IP S 

BaR 

we have 

C{inf 
BaR 

For any non-negative funation 

where c depends on n , YO and a, p depends on n and Yo only. 

The Harnack inequality, Theorem 4, is a simple consequence of the 

and 

combination of Theorems 3 and 4. Also the Holder estimate, Theorem 3, can 

be readily deduced from Theorem 6 by a standard method; (see [9), p.190). 

While the weak Harnack inequality, Theorem 6, is basically a variant of a 

key measure theoretic result of Krylov and Safonov, the local maximum 
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principle, Theorem 5, is scllstantially new. Its proof differs from those 

of ·the o·ther results in that it depends crucially on the res·triction in the 

Aleksandrov-Bi3.kelman maximum principle, Theorem 1, to the upper contact set 

r+. For ·the other proofs, a weaker version of the estima·te (4) with r+ 

replaced by n is sufficient. Furthermore the proof of Theorem 6, as given 

in [19], extends to embrace a large class of quasilinear, non-uniformly 

elliptic opera'cors. A byproduct of 'chis extension, namely Harnack inequalities 

for non-uniformly elliptic divergence structure equations, is taken up by the 

author in [20]. For operators of the form (1), the condition of unifonn 

elliptici'cy can be weakened to a condition, 

for some q > n the constant C in (17) will then depend on q and 

instead of 

As detailed proofs of these results are carried out in [19], we will 

confine a'ctention here to illustrating the use of Theorem 1. By a coordinate 

stretching, we can assume tha·t R = 1. Fix S::: 1 and set 

so that 

Lv 

n(x) v nu 

ij 
nLu + 2a D.uD.n + uLn . 

~ J 

Theorem 5 now follows by application of Theorem 1 and appropriate choice of 

S. The first derivatives of u are estimated on the contact set r+ by 

(19) !Dul ::; ~ ( I Dv I +u I Dnl ) 

:: ~ (I-Ixl + ulDnl) 

::: 2(1+SJn-I/Su . 
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Note that the definition of r+ is crucial for this estimation. 

* To prove Theorem 6, we normalize L so that V 

which we also assume initially to be positive. Then for 

w = -log (u+gol v nw we have 

Lv 

1 and set 

by Schwarz's inequalities. 

Now for fixed a E (0,1) and sufficiently large S, we find that Ln ~ ° 
for Ixl ~ a. Application of the Aleksandrov-Bakelman maximum principle, 

Theorem 1, then yields a bound for v in the ball Bl provided the measure 

of the subset of B where w is positive is sufficiently small. From 
a 

this point we can proceed with the aid of an ingenious measure-theoretic 

induction argument of Krylov and Safonov to estimate w from above and 

hence equivalently u from below. 

Theorems 3 to 6 all extend readily to more general linear and quasi linear 

elliptic operators. For linear operators of the form (12), Theorems 3, 4 and 

6 continue to hold provided the coefficients band c satisfy 

while Theorem 5 holds provided 

,. 
c/O € Ln(BR) for some q > n . 

The constants C in the resultant estimates will then depend also upon 

the appropriate norms of the coefficients band c. These results are 
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all proved in [19], (see also [18]), together with appropriate extensions 

to quasi linear operators. The Holder estimate for quasi linear elliptic 

equations is also treated in [13] and [14]. An interesting consequence 

of these extensions is the interior gradient estima"te for quasi linear 

equatiGms satisfying the "natural conditions" of Ladyzhenskaya and 

Ural'tseva, (see [9 1, [13]. [19]). 

Liouville theorems also follow from the Harnack inequalities. For 

example, Theorem 4 implies that a w2 ,n Clln) 
loc l' 

function satisfying Lu = 0 

in tn and bounded on one side must be constant. Furthermore Theorems 

3, 5 and 6 admit extensions to balls BR which intersect the boundary ClQ 

of a domain Q where Land u are defined. In particular if, u < 0 

on BR n 3Q, then Theorem 5, and "its extensions to more general operators, 

holds with replaced by B n Q 
OR 

and 

If at a point y € aQ, the generalized cone condition, 

(20) lim inf 
R+O 

I BR (y)-QI 

-IBR(YlI e > 0 

n Q" respec"tively. 

is satisfied, then we obtain a Holder esi:imate for u at y in terms of 

the trace of u on 3Q 0 

To conclude this article we indicate how 'che weak Harnack inequality 

can be used "to give o. simplified derivation of recent important Holder 

estimates of Evans [71 for the second derivatives of fully nonlinear 

elliptic equations. For an application of Theorem 5 to such equations 

the reader is referred to [21]. 

Let us consider equations of the form 

(21 ) g 

1." d " n c "n h F" funct1' on 1" n c2 ("n) n a oma1.n" l' , were 1.S a concave l' 
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Let u e C4(~) be a solution of (21) and suppose that F is uniformZy 

eZUptic for u, that is, there exist positive constants .:\., Ii such 

that 

for all t; e ~n, where F .. = ~ Let y be a unit vector in ~n 
:LJ dr .. 

:LJ 
a!'d differentiate equation (21) twice in the direction y 1~e obtain 

thus 

(23) 

(24) 

F .. D .. D u 
lJ :LJ Y D ¢ 

Y 

F .. D .. D u + F .. knD .. UD]O U = D ¢ 
:LJ :LJ yy lJ, ~ :LJy <~y yy 

2 d F 
where F iJ. ,ko = ~r By the concavity of F 'lIe see that the function 

'- o· ijrk9, 

'" = D u satisfies the differential inequality 
yy 

(25) 

Using the concavi'cy of F again, we obtain for any x,y e ~ , 

(26) F .. (D2U(Y») (D .. u(x)-D .. u(y» 2: F(D2 U(X» .- F(D2U(Y» 
:LJ lJ:LJ 

g(x) - g(y) . 

We now adopt the key trick of Evans [7 1 and invoke a result from matrix 

theory [15] which guarantees the existence of a natural number N > nand 

unit vectors 

(27) 

\vhere w. 
J 

depending only on n.. :\. and A, 

F .. (D2U(yl) (D .. u(x)-D .. u(y) 
:LJ lJ:LJ 

N 
l: i3. (y) (D u(x) -D u(y» 

j=l J YjY j YjY j 

N 

l: Sj (W j (x)-W j (Y» 
j=l 

such that 
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(28) 

for positive constants ), *, l\" also depending only on n, A and l\ • 

Therefore by (26) we obtain 

N 
(29) I i3 . (w. (y) -w. (x» < g (y) - g (x) • 

J J J -j=l 

Now we are in a position to exploit t~e weak Harnack inequality. Let 

BR ' B2R be concentric balls in Q of radii R , 2R respectively and 

(1) 
m. 

J 

(2) 
M. 

J 

(2) 
m. 

J 

Applying Theorem 6 to the functions 

(30) 

w. 
J 

w. 
J 

we obtain 

where C and p are positive constants depending only on n, A and l\ 

Let us now sum the estimates (30) over j of k for some fixed index k 

We obtain ·thus, (taking p S 1), 

(31) 

where W(R) , w(2R) 
N 

I 
j=l 

(1) 
m. 

J 

(2) 
- m. 

J 

and 
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Now by (29) we have, for x E B2R ' Y e BR ' 

so tha·t 

Consequently by (31), 

(32) 
(2) p11/P { 

(wk -mk ») :s: C W (2R) -W (R) + osc 

B2R 

where the 

(30) and 

whence 

(33) 

constant C again depends only on 

(31) and summing we then obtain 

w(2R) ::: C(w(2R)-W(R) + osc 

B2R 

W(R) < QW(2R) + C(osc g + g2R) 

B2R 

n , 

g + 

A and 

g2 R) 

1 
1 - C 

A . By adding 

Holder estimates for the functions w, ; j 
J 

1 , N, now follow in ·the 

standard way; (see [9], p.191). By suitable choice of additional unit 

1 
i,j vectors, nalTle1y y, , (e, ±e ,) , = 1, ••• n , or by the Schauder 

1J 12 1 J 

estimates we get the full second derivative Holder estimates. 

THEOREM 7. Let u be a c4 (.Il) solution of equation (21). Then for 

any baH BR C It and a < 1 . 

(34) 

where C and a are positive constants depending only on n, A and A. 
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We remark that Theorem 7 continues to remain valid when we only assume 

F is concave, uniformly elliptic for u and u, g e w2 ,n (m , [21] • 

Furthermore by interpolation, (see [9 J, po124), we obtain an estimate for 

the C2,a(~.) norm of u, for any ~' cc ~, in terms of 

sup lui 
~ 

n , :\ , l\ , ~. ,~ and 

embrace the Bellman-Pucci equation 

(35) 

where 

and ·the coefficient matrices 

sa·tisfying 

(36) 

These es·timates also 

g 

k 1 ,.om are constant matrices 

for all ~ e ~n. This was the prime example of Evans [7 J. In the later 

work [8], Evans considers more general nonlinear equations thereby 

including the general Bellman-Pucci equations with variable coefficients. 

The approach described above extends analogously to cover these situations, 

the main additional technique being a device used by Ladyzhenskaya and 

Ural'·tseva , (see [91 p.270 or [12] p.340), in connection wi·th gradient. 

Holder estimates for quasi linear equa·tionso 

Finally we no·te that the proof of Theorem 7 yields an alternative 

deriva'cion of interior C2 ,a estimates for the Monge-Ampere equation (13) 

to that of Pogorelev, (see [16J). Note that the function 

r -7 Idet rll/n 

is concave for r = [r .. J > 0 0 It also extends to the complex case as 
~J 

considered by Yau [22J. 
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