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REMARKS ON MULTIPLE SOLUTIONS OF NONLINEAR EQUATIONS 

E.N. Dancer 

In this lecture, we discuss some of our recent work on the number of 

solutions of weakly nonlinear elliptic partial differential equations. In 

particular, we discuss cases where the answers were surprising (at least to me). 

In §1, we have rather fewer solutions than one might expect while in §2, we have 

rather more solutions than one might expect. The discussion in §1 is rather 

brief since a more complete discussion appears in [4]. 

§1 TOO FEW SOLUTIONS 

In this section, we discuss the following problem. 

-~u f(x,u) in n, 
(1) 

u o on an. 

Here n is a smooth bounded domain in Rn 
' 

f:nxR+R is cl 
' 

f(x,O) = 0 

for x E n and y- 1f(x,y) + a2(x) as JyJ + ~ uniformly in x, where 

a2(x)>O inn. Let a1 (x) = f;(x,O) and assume that a1 (x)>O inn. Finally assume 

that the two eigenvalue problems 

A h in n, 

h o on an 

do not have zero as an eigenvalue (where i=l,2). Let m1, m2 denote the number 

of negative eigenvalues counting multiplicity of these two eigenvalue problems 

respectively. Then Clark [1] proved that (1) has at least 2Jm1-m2 J distinct 

non-trivial solutions provided that f is odd in y. It can also be shown that 

this result holds without the oddness assumption if n=l (that is, in the ordinary 

differential equation case). Intuitively, if we cross many eigenvalues of the 

linearization as we move from 0 tow, then we have many solutions. Recently, 

the author has constructed examples where Jm1-m2J = n but there are only two 

non-trivial solutions. Thus, although we cross many eigenvalues, we only have 2 

non-trivial solutions. In particular, we see that Clark's result is not true if 

we delete the oddness assumption. 
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The construction of the counterexample depends upon the following 

abstract result. Assume that E and H are Banach spaces and F:E+H is c1 

and Fredholm of index zero such that F(m)=O for m E M, where M is a 

compact c1-submanifold of E. In addition assume that N(F'(m)), the kernel 

of F'(m), has the same dimension as M for mE M. If G:E+H is c1 and 

P(m) is a projection onto N(F'(m)) depending c1 on m, then it can be 

shown that the zeros of F(x)+EG(x) near M for small E are largely 

determined by the zeros of S(m) = P(m)G(m) on M. In particular, if S 

has only non-degenerate zeros in an appropriate sense, then the nUIIIber of 

zeros of F(x)+EG(x) near M for fixed small E is equal to the number 

of zeros of S on M. This result is useful because S is reasonable to 

compute in simple cases. 

The idea to construct the counterexample is as follows. We choose n 

the unit ball in Rn, X an eigenvalue of-~ Dirichlet boundary conditions) 

-
of multiplicity n and then choose f independent of x and sublinear such 

that is slightly less then is close to but less than the 

next eigenvalue of -~. It then turns out that -~u-f(u) satisfies the 

assumptions of the previous paragraph on F where the set of solutions consists 

of {0} and a manifold M of non-zero solutions. Note that the manifold M of 

solutions comes from the symmetries in the problem. Moreover, M turns out to 

be, up to a scale factor, close to the unit sphere in the eigenspace for ~. 

We then choose a suitable G=g(x,u(x)) such that S has only 2 zeros and the 

result follows. This requires some work. Here our knowledge of M helps us to 

understand S. In practice, it is easier technical to do the construction 

slightly dif~erently. Details appear in [4]. 

· It seems likely that there is a counterexample with f independent 

of x but we have been unable to construct one. The same idea of 

perturbing symmetric situations is also used to construct several other 

counterexamples in [ 4]. 
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§2 TOO ¥~ SOLUTIONS 

In this section, we show that some problems have rather more solutions 

than one might hope. Our basic construction is a variant of one in Schaeffer 

[11] and Hale and Vegas [9]. (We obtain a little more information than in [11] 

while our construction seems easier to use and to hold more generally than the 

one in [9]). Our results emphasize that it is the geometry of the underlying 

domain n and not only its topology which matters for determining the number 

of solutions. 

Firstly, assume n ~ 2, 1<p<(n+2)(n-~-l (l<p<oo if n=2) and kEZ+. We 

construct a smooth bounded domain n in Rn such that n is topologically a 

ball in Rn but the equation 

-Liu uP in n, 
(2) 

u = 0 on <ln 

has at least k non-trivial positive solutions. Moreover, each of these 

solutions is non-degenerate, that is, the linearization is invertible. This 

last property is useful when one wants to study other problems (as we will see 

later) and it implies that our large number of solutions holds for all domains 

close to n in a suitable sense. 

To construct n, we will use ns where s is small. First let n s 

consist of Bs(O) u B~(me1 )(where m is reasonably large and fixed) jogethe~ 

with a "straight tube" of radius s 2 joining the two balls. Here Bs(t) is 

the ball with centre t and radius s. We can make flE smooth by roundiilg 

off the edges where the tube meets the two balls. Let T denote the rotation 

through 21Tk-l in the el-e2 plane. (Thus T fixes e3 , ... ,en.) L fine 

n U Tifl . It is easy to see that, provided m is large enough and 
E Q,-:i:;;k-1 £ 

s is small, n is a smooth manifold wi"th boundary diffeomorphic to the unit 
E: 

ball and n is T invariant. 
E 

generalized sense to 

Note also that, as s + 0, n tends in some 
E: 

To construct our solutions, we maximize 

subject It is easy to see that there is a u10 
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as E + 0. (Here J 0· is the corresponding functional when nE is replaced 

by f2o. and u0 is the corresponding maximizer). To prove the last claim we 

note that,· since n0 s flE,. JE(uE)~0 (u0 ). (Here we are using that 

·1 2 . ) { ·1 2( ) . . } ) W ' (fl0 = ueW ' flE : u = 0 outslde ·flo • To prove the inequality the 

other way, wenote·that a subsequence of uE must converge weakly (in fact 

1 ) . w·l,2(-) - h - w·1,2(,... ) - . . J C ) strong y 1n B· to u0, w ere u0 E. ..0 ·, u0 maxm1zes ~ u0 • 

and fn lvu012dx=l. Here B is a large ball containing all the flE's. Now, 
0 

u0 must be a non-negative solution of -~u = 10uP in fl 0, where 10 > 0. 

Thus, ori each component of n0, u0 must vanish identically or be the unique 

positive solution of (2) (for fl = ~(me1)) up to translation and sc~ling. 

Here we are using a result in [7] to ensure uniqueness. Of these possible 

choices of u0, it is not difficult to show the one that maximizes J 0(u0) 

is the one where u0 vanishes except on one component of n0. Since 

(3) -~UE .= AEUEP 

where AE > 0, we can use a simple sealing to obtain a positive solution of · 

(2) (for n = nE) mostly concentrated near a single. component of n0• If we 

use the symmetry, we then obtain k different positive solutions of (2) (each 

concentrated near a different component of fl 0). 

To p~ove the non-degeneracy, we first note that it suffices to prove uE 

is a non-degenerate solution of (3) for small e. By scalar multiplying (3) 

by u£, we see that AE is. uniformly bounded above. By using the independence 

of the constants in the Sobolev inequalities and the Lp regularity theory 

upon the domain for. domains contained in B (cp [8]), we deduce that the u8 

00 p-1 are uniformly; bounded in L . lf -~he: = AEP u8 h8 in QE, hE = 0 on llfl8 

and llh8 11 2 = 1, we see similarly that hE are uniformly bounded in W1 ' 2 (nE) 

and thus (as before, working in w1•2(B)), we deduce that a subsequence of hE 

converges weakly in w1•2(B) to ho E w1•2cno) where llh0112 = 1 and . 

-~h 0 = 10pu0P-1h0. This is impossible by the non-degeneracy of the solution 

of (2) on a ball (which follows from [3] and [7]). Thus the non-degeneracy 

holds for small positive e:. 
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We conjecture that (2) has a unique positive solution if n is convex. 

The above example has additional interest because, it can be used to 

obtain multiple solutions for some related equations. Firstly, if f is c1, 

if f(O)=O, if l<p<(n+2)(n-2)-l and if y1 -Pf'(y)~>O as y ~ 0, then it 

follows easily from our work above and ideas in [6] that the equation 

-~u Af(u) in nE, 

u o on ane 

has at least k small positive solutions for A large. 

Secondly, but a little less obviously, it follows also that there exist 

a,b,c,e,f,g > 0 for which the problem 

-llU = u(a-bu-cv) 

(4) -~V = V(e-fu-gv) in nE, 

u = v = 0 

has at least k strictly pOsitive solutions provided n ~ 5. Here a solution 

is strictly positive if both components are strictly positive in ne. Note 

that this system occurs in animal population problems. To prove this result, 

we replace -~v by -d~v in the second equation where d > 0. (This of course 

corresponds to changing e,f,g in the second equation). By the theory in [5], 

there is an explicit function h:R~R such that the number of strictly positive 

solutions of (4) for small d is at least the number of isolated positive 

solutions of non-zero index of 

-~u h(u) 

(5) 
u = 0 on one. 

For a suitable choice of a,b,c,e,f,g, it turns out from the formula for h 

in [5] that h(y) = ry2 for O~y~s where r may be large without s being 

small. It now follows easily from our earlier result that (5) may have many 

isolated solutions of non-zero index. Hence the result follows. Note that 

there is a trivial method of obtaining a line of solutions of (4). We simply 

choose a=e, b=f, c=g. However our examples, which occur for very different 

values of the parameters, have the properties that there are at least k 
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components of strictly positive solutions, that the other solutions (u,O) 

and (O,v) are non-degenerate and that there are at least k solutions for 

any nearby set of parameter values. Thus, the large number of solutions is 

a "stable" property. This contrasts with the other example of non-uniqueness 

mentioned above. The above solutions we have constructed are all unstable 

(for the natural corresponding parabolic problem) . It turns out that there 

must also be an asymptotically stable strictly positive solution. This is a 

special case of a rather more general result. Note that, in [10], an example 

is constructed where there are several stable solutions for Neumann boundary 

conditions and for quite different parameter values. 

Lastly, the same ideas can be used for the Gelfand equation 

-l\U in n' 
(6) 

u = 0 on an 

~ n=Z. More precisely, we find that for all sufficiently small £ there 

is a A.=A.(e:)>O such that (6) (for n = ne) has at least k solutions each 

of which is non-degenerate. The proof of this is similar in outline to the 

proof of the corresponding result for (2) though it is rather more technical. 

We briefly sketch the ideas. The idea is to maximize 

subject to the constraint J I \lu j 2 dx = R where R is larg.e. n£ Now for 

n = B1 (0), it is known that there is a 5: > 0 such that (6) is uniquely 
~ 

solvable for A = A, has no solution for A > A and has exactly two 

for O<A.<A., where u1(A.) is the minimal solution 

are non-degenerate. (This follows from [ 2] and 

[3]). Now one shows that, for large R, J 0 (u) = fn 
0 

-l)dx is maximized 

(subject to the constraint) by u 0 where u0 is a translate of the minimal 

solution u1(A. 0) on (k-1) components of n0 and is a translate of u2(A 0) 

on the other. 
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The above result together with some of the ideas in [2] can be easily 

used to show that there is an a. (S, y) >'0 such that 

-L'.u 
-1 a.(l+S-u)exp(-yu ) inn£, 

has at least k solutions if S > 0 and y is large. This equation occurs 

in catalysis theory (cp [2]). 
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