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DEGREE THEORY AND GAUSSIAN MEASURES IN INFINITE DIMENSIONS 

Ezra GetzZer 

In this talk, I will explain a new approach to the definition of 

the degree of a map between infinite dimensional spaces. First, recall 

the definition of the Leroy-Scha~der degree, as given by Elworthy and 

Tromba [2]: 

Let F : B + B be a nonlinear map on the Banach space B such 

that 

i) F is compact, in the sense tha·t is a compact linear 

map on B for all x E B ; 

ii) I +F is a proper map" 

Then the degree of F is defined to be 

deg(F) :E sgn (I + dxF) , 
x+F(x)=y 

where y is any regular value of the map I + F that is I + d F is 
X 

invertible for all x such that x + F (x) y • (The number 

sgn (I+ dxF) = ±l , according to whether the linear map I +d F 
X 

preserves or reverses the orientation of B .) The basic result of the 

theory is that this definition of degree is independent of the regular 

value y E B that is used, and that the set of regular values of I+ F 

is generic, and hence, non-empty. 

Consider the following map, from the space of Ca maps from the 

circle S to RN into the space of Ca-l maps from the circle to 

f (t) f-+ df (t) + ('1/V) (f (t)) , 
dt 

where V is a C00 real function on RN , and hence \IV 
00 

is a C 
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nonlinear map from RN to itself. In the end, we would like to have a 

definition of the degree of this map. There are two problems \vith 

applying the Leroy-Schauder theory, though: the map is not proper, and 

does not map a Banach space into itself, but rather maps one Banach 

space into another. The solution of the second objection is very 

simple. Let A be the operator d~ + 1 , \'lhich is an isomorphism 

Then by composing the map we are 

.considering with the operator /1.-l , we obtain the map 

f(t) 1--->- f(t) + A-1 (VV-l)(f(t)) ' 

which maps Ca(S,RN) into itself smoothly for a~ 0 • Since A is a 

linear isomorphism, we feel that whatever the degree of ..£.. + 1/V 
dt 

is, 

it must be the same as the degree of r + A -l (1/V- 1) , which is of the 

form I + compact. 

The other difficulty, that ..£_ + 1/V 
dt 

is not proper, cannot be 

overcome, and this prevents us from applying the Leroy-Schauder theory. 

What we will do is imitate another approach to the definition of degree 

in finite dimensions, which makes use of differential forms: 

then the degree of ¢ is defined by 

where w is an N-form on RN • The fact that this definition of 

deg(rjl) agrees with our earlier one follows from Sard's theorem, which 

tells us that the set of regular values of ¢ has full measure in RN 

that is, its complement has Lebesque measure zero. 

To imitate this definition in infinite dimensions, we need a class 

of objects to stand in for volame forms. We will use measures of the 

form f·d~ , where d~ is a fixed Gaussian measure on B , and f is 

co 
an L fa~ction. The pullback is defined by using the change of 
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variables formula for Gaussian measures which, formulated correctly, 

holds in infinite dimensions as well as in finite. 

In order to state the change of variables formula, we need some 

background in Wiener spaces, that is, Banach spaces carrying a Gaussian 

measure. The theory of calculus on Wiener spaces is generally called 

Malliavin calculus after the mathematician who first used it to study 

hypoelliptic differential operators. For more information on the 

subject, see the excellent review by Ikeda and Watanabe [4]. 

A Gaussian measure on a Banach space B is characterized by its 

Fourier transform: 

* for every a E B the dual of B , where (•,•) is an inner product 

* * on B which makes B into a pre-Hilbert space. The Hilbert 

* completion of B under this inner product is called H , and we 

obtain a triplet 

* B C+HC+B. 

This triplet (or equivalently, the specification of the inclusion 

H G+ B ) specifies the measure d~ completely. It can be proved that 

both inclusions are compact. 

The prototypical Wiener space is the Banach space Ca(S,Rn) of 

loops in Rn , with H given by 1 n H (S,R ) , the Sobolev space of loops 

for which 

is finite. This measure was· first constructed by Wiener. 

In doing calculus on a Wiener space, it proves to be very useful 

to have a fixed domain of "smooth" functions on which to operate. A 



convenient choice here is the· set of cylinder functions, which have the 

form 

F(x) = F(<a1 ,x>, ••• ,<a.n,x>) , 

where ai E B* and F E C~(Rn) It is a simple exercise in Fourier 

transforms to show that 

where A is the n xn matrix Aij =<a.,a.>. This formula shows 
~ J 

that d~ is a probability measure, and that.the cylinder functions are 

dense in Lp(B,d~) for p < 00 • 

The main difference between calculus in finite dimensions and 

calculus on a Wiener space is that derivatives are only taken in 

directions corresponding to vectors in H c B • The gradient operator 

from the dense domain of cylinder functions to Lp(B; H) , p < co , is 

defined by 

(llF) (x) ®a. 
J 

* This operator has as its adjoin~ V the operat9r on H-valued 

cylinder functions given by 

(V* (F ®a)) (x) = l- ~ (a,a.) (aClFJ + (a,x)FlJ ({a1 ,x), ••• ,(an,x)). 
j=l J xjJ 

* Since both V and V have dense domains, it follows that they are 

closeable - we shall denote their closures by the same symbols. 

* The operator ~ = V V is known as the Ornstein-Uhlenbeck operator 

- it is an infinite dimensional version of the harmonic oscillator, and 

has eigenvalues {0,1,2, ••• } • Using it as an analogue of the 

Laplacian, we can define Sobolev spaces on B : 



Similarly, if G is a Hilbert space, there is a Sobolev space 

Lp,s(B;G) of measurable maps from B to G . It has been proved, by 

Meyer and Kree, using Littlewood-Paley methods, that \I is bounded 

* from to \1 is bounded from 

to Lp,s-l(B) , for any s 

As an analogue of the space of test functions in finite dimensions, 

we have the Frechet space 

00 

n Lp' 5 (B) • 

p<oo 
s<co 

But elements of W · (B) need not be continuous functions of B - for 

example, Ito integrals with smooth data. 

A Wiener map or a Wiener space B is a map of the form 

x f.-+ x + F (x) , 111here F E W00 (B, H) • For example, a linear Wiener map 

takes the form 

Xf-+X+Ax+h, 

where A is a bounded linear operator from B to H , and h E H • 

As another example of a Wiener map, we have the map defined above on 

Ca(S,Rn) , where a < ~ in order that Ca(S,Rn) should be a Wiener 

space: 

so that 
-1 

F(f) = A (\IV- I)f It is an agreeable exercise in Gaussian 

integration to show that F E W00 (B,H) of V satisfies 

for k :<: l • 

We have the following analogue of Sa:i:d's theorem for Wiener maps~ 

A proof may be found in Getzler [3]. 
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Theorem 1 If I +F is a Wiener map such t·hat in addition 

FE c1 (B,H) ~ then its critical set (I+F) [the set of x E B such 

that I + v F is not invertib Ze on H l has ~-measure zero. 
X 

Using this theorem, ~ve can define ·the pullback of the Gaussian 

measure d~ by a c1 Wiener map. Since the derivative of F is a 

Hilbert-Schmidt map on H , it has a well defined orientation if it is 

invertible - that is, the group 

{I +A E I +HS(H) j I +A is invertible} 

has two components. Thus, \V'e can define sgn (I +A) = ±l according to 

which component I +A lies in. The pullback is now defined by the 

following formula: 

J f(x)d(I+Fi\(x) 
B 

J :E sgn (I + \1 xF) f (x) d~ (y) • 
B x+F(x)=y 

We would like a change of variables formula that would enable us 

* to calculate d(I +F) ~(x) • Suppose for the moment that B is a 

finite dimensional Wiener space. Then the ordinary change of variables 

formula gives 

* d(I+F).!:! 

d~ 
det(I +\?F) e-(x,F(x)) -jF(x) 12/2 • 

This makes no sense in infinite dimensions, but Ramer [5] showed how to 

rearrange it in such a way that it does, using the renormalized 

determinant det2 • This is a holomorphic function on GL2 (H) , 

defined by 

det2 (I- A) 

Notice that det2 (I +A) 

exp :E .±. Tr r "' An'J 
·n=2 n 

det(I -A) 
-Tr A 

e 

if IIAIIOO < 1 ' 

if 

0 if and only if I +A is singular, and 
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otherwise, the sign of det2 (I +A) is just sgn (I +A) • 

We can now renormalize the change of variables formula: 

det(I +'ilF) 

det2 (I +'i?F) 
e[Tr'i?F-,(x,F(x))] -IF(x)\ 2!2 

-'i?*F- IF(i{) 12/2 
e .• 

We shall call this quantity o(F) . It is hardly surprising that the 

following change of variables formula holds. 

Theorem 2 If I + F is a c1 Wiener map, then 

* d (I +A) Jl 
d]l 

o (F) • 0 

Actually, since o (F) makes sense for any 
1 F E W (B,H) , it seems 

reasonable to define the pullbi:wk of d)l by such a Wiener map I + F 

to be o(F) djl In this way, we will even be able to define the 

degree of some w1 but non-continuous Wiener maps! 

we can now define the degree of a Wiener map: 

f * deg(I+F)= d(I+F)jl 
B 

The following theorem gives a sufficient condition for this to be a 

reasonable definition. 

Theorem 3 If I + F is a w1 Wiener map such that 

for some p > 1 , then for aZZ f E L00 (B) , 

L (I +F) *f o(F) djl = deg(I +F) IB fdjl D 
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Of course, it is sufficient to prove this theorem for f of the 

form i( a,x} * 
e ,CI,EB This is done by ru1 argument which makes use 

of integration by parts. 

If I + F is actually c1 , then by the usual reasoning, making 

use of the implicit function theorem, we see that a geometric form of 

degree theory holds too: if y E B is a regular value of I + F , then 

~ sgn(I +\]xF) 
x+F(x)=y 

deg(I +F) • 

It follows that deg(I+Fl is actually ru1 integer; whether this is 

true for more general Wiener maps is less clear. 

Let us now see how the above theory applies to our map 

d A ~ dt + VV • Ceccotti ru1d Ghirardello [1] gave the following heuristic 

calculation of deg(A). 

Assume first that V has only non-degenerate critical points. 

Then if f is a solution of A(f) = 0 , we have 

f jA(f) 1
2 = f ~~!\ 2 

+ 2 d~ V(f(t)) + !VV(f) j2 0 , 

so that f is a constant and equals one of the critical points of V 

Furthermore, if f is a constru1t, we have sgn (\]fA) = sgn(VfV) , so 

that 

~ sgn ('V fA) 
A(f)=O 

Of course, this calculation is merely suggestive since, as 

explained above, Leroy-Schauder theory cannot be applied to the map A • 

However, our theory of degree does apply: 

Theorem 4 a) If v E C00 (RN) satisfies 

i) jVkvl is exponentially bounded for k ~ l 

iil jvvj + oo as lxl + oo , 
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iii) for a suffiaient'ly la'l'ge c » o , 

then the hypothesis of Theorem 3 is satisfied for the Wiener map 

A-1 o A • 

b) The degree of A 
-1 . 

(that is, of A o A ) equaLs deg('i7V) • [J 

The proof of part a) is a straightforward calculation with 

mollifiers, in which A-1 oA = I+F is replaced by I+Pe:FP£, and £ 

is taken to zero. To calculate the degree of A , we use the fact that 

the family of measures converge weakly to a Dirac 

measure at zero as e: + 0 • Instead of pulling back the measure dA , 

we pull back ·dA and· find that 
£ ' 

J w * deg(A) = - lim d(I +F) \: 
£+0 

J ~ 2 o(f(t) -x) sgn.(IJXV) 
'VV(x)=O 

deg{'i7V) • 

This semiclassical calculation is reminiscent of the heat kernel proof 

of the Atiyah-Singer index.theorElm. 
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