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MINIMAL SURFACES WITH FREE BOUNDARIES 

S. Hildebrandt 

We will in this lecture give a survey of some recent results for 

minimal surfaces with free boundaries. To this end, we consider 

boundary configurations <T,S> in 1R3 consisting of a fixed part r 

and a free part S . The fixed part r is the union of Jordan arcs 

r 1 , . .. ,rm, and the free part consists of surfaces s1 , ... , S0 in R3 

with or without boundary. Each of the curves r. is either a closed 
J 

curve, or else an arc with end points on S . In the following, the 

fixed part r may be void, whereas the free part S is always assumed 

to be non-empty. 

Q ~ ~3 of some Riemann surface n with boundary A mapping X 

into JR3 is called a solution of the free boundary problem for the 

configuration <T.S> if the following properties are satisfied: 

(ii) X is a harmonic mapping ; 

(iii) X maps Q conformally onto X(Q) , except for isolated 

branch points in n ; 

(iv) X(an) c r U s 

(v) the surface hi X(~) intersects S at Z n int S 

perpendicularly. Here E denotes the free trace X(an) of 

the minimal surface m on the free boundary S. 

Obviously, property (v) does not make sense since we assumed X to be 

only continuous at the boundary an. Therefore, (v) has to be 

understood in a weak sense. However, it follows from well known 



79 

regularity theorems that X is smooth up to the boundary provided that T 

and S are smooth; cf. [16], §315 and §512. General regularity theorems 

for solutions of free boundary problems that are neither area minimizing 

nor a priori assumed to be continuous up to the boundary have recently 

been proved by Gri.iter-Hildebrandt-Nitsche [6] and by Dziuk [4]; the case 

as¢ • has been treated by Hildebrandt and Nitsche [9], [10} ;see also 

[6]. Thus we can assume that X is sufficiently regular at 3Q. 

In the following we shall mostly be concerned with disk-type 

minimal surfaces solving the free boundary problem for some 

configuration <T,S>. 

First we consider the number of solutions for a free boundary 

problem. It is well known that for boundaries consisting of a single 

smooth Jordan curve it is still undecided whether they can bound 

infinitely many minimal surfaces. Even more difficult to decide seems 

to be the question of whether or not a closed curve can bound infinitely 

many minimal disks. It is, however, trivial to find supporting surfaces 

S 'li'Jhich bound continua of minimal disks. For instance, the sphere, 

the cylinder, or the torus furnish simple examples. Yet, in these 

cases, all minimal surfaces belonging to the same family are congruent 

to each other. On the other hand, H.A. Schwarz [18]has already 

described boundary configurations <T,S> that bound denumerably many 

noncongruent minimal surfaces. 

Let, for example, S be a circular cylinder surface and r 1 • r 2 

be two straight arcs which are perpendicular to each other as well as to 

the cylinder axis and pass through the axis at different heights. This 

configuration bounds denumerably many left and right winding helicoids 

which meet the cylinder at a right angle. Only two of these belicoids 

are area minimizing; the others are but stationary. 

However, worse can occur. As Gulliver and Hildebrandt [8] have 
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shown, the~e exist real analytic boundary configurations <r,S> that 

bound 1-parameter families of noncongruent (and even nonisometric) and 

area minimizing minimal surfaces of fixed topological type. We quote 

only one of the examples of [8]: 

There exists a·real-analytic, embedded surfaceS of the type of the 

torus, and a homology class [T0 ] in H1 (S;Z), so that T' bounds a 
0 

family of stationary minimal surfaces of the type of'the disk, which 

have smallest area among all oriented surfaces in G with boundary on 

S and homologous in S to 'T~· (cf. figure 1). Here G denotes the 

solid body with aG = s. 

y 
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Fig. 1 
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J:ig. 4. Fig. 5. 

Figures 1- 5 have been taken from [8] 
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On the otjler hand, Tomi [21] proved the following remarkable 

result: 

If a compact, analytic, andH-convexbody Gin 1R3 has the 

properties that there is a closed Jordan curve in G which cannot be 

contracted in G, and secondly, that the free boundary problem for G 

admits infinitely many minimizing solutions of disk-type contained in 

G , then G must be homeomorphic to a solid torus, and the set of all 

solutions form an analytic family of embedded minimal disks. 

As Tomi pointed out, the assumption of analyticity of aG is 

crucial, since one can produce smooth H-convex bodies of arbitrary 

genus which possess continua of solutions. 

Let now X : B ~ ~3 be a disk-type minimal surface that intersects 

a smooth surface S orthogonally. If r,e are polar cooordinates 

about the center of B, we shall write X= X(r,e), and the 

conformality relations take the form 

( 1) 

On the other hand, we infer from the equation 

the relation 

LIX = 0 on B 

21! 

f x (1,e) de = o. 
0 r 

0. 

The boundary condition (v) implies that Xr(l,e) is a normal vector to S 

at X(l,e). If we assume that S is orientable, we can pick a unit 

normal vector field N on S such that 

holds on aB; whence we obtain 

(2) J N(X)ds = 0 
X 

where X denotes the free trace X : aB-> IR3 , and ds is the arc 

element of z. 
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The relation (2), which yields a necessary but, in general, not 

sufficient condition for a closed curve :E on S to be the solution of a 

free boundary problem for <S> ,was first derived by B.Smyth [19]. He 

used it to establish the following theorem: 

If S is the boundary of a tetrahedron in R3 , then there exist 

exactly three disk-type minimal surfaces which solve the free boundary 

problem for <S>. Each of these solutions is non-planar and embedded ; 

in fact, each is a graph over some planar domain. 

The proof rests on the following well known observation that can 

easily be proved: 

If x* is the adjoint surface of a minimal surface X : B ~ R3 

* that maps some subarc C of oB into a straight line L , then X 

maps C into a plane E which intersects L perpendicularly, and the 

adjoint surface * X meets E along the trace * 3 X : C ~ R at a right 

angle. Horeover, the converse of this statement is also true. 

Therefore, the adjoint surface x* of a solution X : B ~ R3 of 

the free boundary problem for a polyhedron S is bounded by a polygon 

r , the edges of which intersect the planes of the corresponding faces 

of S orthogonally. If S has only four faces F1 , F2 , F3 , F4 , the 

polygon r is, up to similarity, uniquely determined by S and by the 

circuit in which X(oB) runs through the faces F . 
K 

Moreover one may 

reverse the procedure. There are three quadrilaterals corresponding in 

the described way to the three essentially different circuits of the 

faces of F , and each of these quadrilaterals bounds a unique minimal 

graph. From these graphs, one can retrieve three solutions of the free 

boundary problem for S by passing to their adjoint surfaces. 

We note that, for a particular tetrahedron, this procedure had 

already been carried out by H.A.Schwarz; cf. [18]. Unfortunately this 

simple method does not work for polyhedra with five or more faces. 
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Nevertheless there have recently been proved existence theorems for 

disk-type minimal surfaces stationary within a smooth ,closed, and 

convex surface -S. Struwe [20] established the existence of at least one 

disk-type solution but had to allow for possible selfintersections of 

the minimal surface, whereas Grliter and Jost [7] established the 

existence of embedded disk-type solutions. Jost bas lately proved that 

there always exist at least three solutions provided that the curvature 

of S satisfies a suitable pinching condition. 

What are the stationary minimal surfaces within a sphere S? 

Clearly the disks passing through the centre of S and with boundary on 

S are solutions. J.C"C.Nitsche [17] recently proved that these are the 

only disk-type minimal surfaces stationary within S, by employing the 

fact that for each minimal surface X(w), w = u + iv, the expression 

(L-N) - 2iM 

is a holomorphic function of w (here L,M, and N denote the 

coefficients of the second fundamental form of X(w))o On the other 

hand, there certainly exist solutions of higher topological type for 

s . For instance, if we choose 
2 2 -1/2 

a = (x0 + cosh x0 ) , where x0 

the positive root of the equation 

tanh x = 1 
X 

is 

then the catenoid generated by the catenary y = a cosh (~) intersects 
a 

the unit sphere around tbe origin at a right angle. 

We may similarly ask: What are the disk-type minimal surfaces that 

intersect a cylinder S = C x IR at a right angle? Here C denotes a 

closed curve contained in a plane E with the normal vector e. As is 

to be expected, the only continuous disk-type solutions are the planar 

surfaces obtained by orthogonally intersecting S by a plane parallel 

* to E. In this case, the proof is very easy" In fact, if X (r,e) is 

the adjoint of a solution X(r,8) for S , we infer from the equations 
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* X8 (1,9) and Xr(1,9)·e = 0 0 . Thus 

* is a plane curve, and X (r,9) turns out to be planar as well. 

* Correspondingly, X has a constant surface normal whence the surface 

normal of X is constant as well, and the assertion follows at once. 

There is still another case where we can make good use of the 

adjoint surface. Consider the so called thread problem, where one asks 

for area minimizing minimal surfaces bounded by a configuration <r,S> 

consisting of a fixed arc r and a moveable arc I of prescribed 

length L(I) connecting the two end points P1 and P2 of r. If the 

length L(I) of I satisfies 

the existence of nontrivial •olutions is to be expected, the "open 

parts" of which, however, will in general be disconnected, as simple 

thought-experiments show. H.W. Alt [1] has established an existence 

theorem. One expects that those parts of I which are not attached to 

r will be regular real analytic curves, and it will then also turn out 

that their curvature is constant. J.C.C.Nitsche [15] proved that they 

h 2 ·a · b h d 11 f "bl ave a C -parameter representation, ut a to a ow or poss1 e 

branch points. Between branch points, the parameter representation was 

m 
shown to be of class C U.Dierkes, S.Hildebrandt, and H.Lewy [3] 

recently proved that the non-attaching and non-selfintersecting parts of 

I are regular, real-analytic curves, with a parameter representation by 

the solution of the thread problem that is free of boundary branch 

points. 

The proof of this fact, given in [3], is based on the fact that if 

X : B ~ ~3 is an area minimizing solution of the thread problem which 

maps an arc C of aB into a non-attaching part of the thread, then 

* * the adjoint surface X of X maps C into a curve I that lies on a 

* * sphere S, and X meets S along I at a right angle. (Note that 
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* X need not stay strictly on one side of S). Regularity then follows 

from the results of [6]. 

Let us return to the free boundary problem for configurations 

<T,S>. The following finiteness result has been proved by Alt and Tomi 

[ 2] : 

Let S be a compact, embedded, analytic surface in ~3 and r be 

a homotopical.ly non-trivial Jordan curve in the unbounded component of 

~3 -s. Then there are only finitely many (geometrically different} 

surfaces of disk-type which minimize Dirichlet's integral (and hence 

area} among all surfaces bounded by the configuration <S>. 

To our knowledge, the following result due to Hildebrandt and 

Nitsche [11] is the only nontrivial uniqueness theorem for minimal 

surfaces stationary within a configuration <T,S> which cannot {by an 

obvious reflection argument) be directly derived from a uniqueness 

theorem for a single Jordan curve. To formulate this result, we make 

the following assumptions: 

Let S be the half plane {(x,y,z) : x ~ 0 , y = 0} in ~3 . and 

let r be a regular curve of class c1 'a, o <a< 1, which does not 

meet S except for its end points P1 and P2 , where r issues from S 

at right angles. Suppose also, that P1 and P2 are different and lie in 

the interior of S. Finally, assume that r is symmetric with respect 

to the x-axis and the orthogonal projection l' of r onto the 

(x,y)-plane is a closed, strictly convex and regular curve of class 

c 1 ~a. and that the projection map is 1-1 except for P1 and P2 

which are projected at the same point of l' Then the following holds: 

There exists exactly one disk-type solution of the free boundary 

problem for <T,S>, the free trace of which on s is touching as . 

This uniquely determined solution is area minimizing and can be written 

as graph over a planar slit domain. (There may, still, be other 
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solutions whose boundary does not touch as. They are, however, not 

interesting since their interior will intersect S .) 

We will close our report by mentioning an estimate for the length 

L(Z) of the free trace of a solution 
- 3 

X:a ... IR for the free boundary 

problem to the contour <r,S> In fact, we have 

(3) L(Z) ~ L(r) + ~ A(X) 

provided that S satisifies a two-sided sphere condition with spheres 

of radius R. 

(4) 

If r is empty, formula (3) reduces to 

L(X) ~ ~ A(X) 

Here, A(X) denotes the area of X .which is given by the Dirichlet 

integral of X. 

These formulas had first been proved by Hildebrandt and Nitsche 

[12] with a worse constant than 2, assuming also that X had no 

boundary branch points of odd order. Klister [13] proved the result 

with the optimal constant 2, and finally Dziuk [5] showed the 

assumption on the boundary branch points to be superfluous. 
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