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MINIMAL SURFACE DESCRIPTION OF CRYSTAL STRUCTURES 

* + S.T. Hyde & Sten Andersson 

Since the birth of crystallography, solid state crystalline 

forms have been analysed in terms of aggregates of plane-faced 

Euclidean polyhedra. Crystals have been viewed as translationally 

symmetric collections of '"unit cells'" - the basic building block of a 

crystal with atoms located in special positions within the 

polyhedral array which describes the crystal. This approach has been 

vindicated largely empirically, with surprisingly recent attempts to 

place it on firm theoretical ground [1]. 

Thus, the syJiffiletry of the macroscopic crystal reflects the 

symmetry of the unit cell, giving rise to the characteristic 

prismatic morphologies of crystal faces. The archetypal "classical" 

solid-state crystal is completely specified by its unit cell, vTith 

translation periodicity and symmetry dictated by the unit cell 

geometry. In the jargon of a crystallographer, the class:Lcal crystal 

has complete "long-range order". 

In contrast, another atomic arrangement exists in the solid 

state. This is conventionally described as a random network, with 

short-range order with respect to each skeletal atom (eg. silicon in 

silicate glasses) but lacking long-range order [2]. These short-range 

ordered structures have been described as random packings of various 

polyhedra [3]. 
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For decades solid-state materials W'ere conveniently classified 

as crystals or glasses complete order or statistical chaos. 

HoW'ever, over the past ten - fifteen years, cracks have appeared in 

this scheme. So-called "modulated structures" have been found where 

the crystal consists of a classical component, as well as a modulated 

structural component which does not conform to the translational 

symmetry requirements of the backbone classical component. In fact, 

in some cases the. translational periodicity of the modulated 

component ... has been f.ound to be an irrational multiple of the 

translational periodicity of the backbone structure so called 

incommensurate structures [4]. Recently, a body blow was dealt to 

the corpus of classical crystallography with the announcement of an 

aluminium:manganese alloy containing atomic arrangements with 

long-range icosahedral point symmetry [5] - a forbidden crystal 

symmetry since a tesselation of R3 by translationally symmetric 

icosahedra is impossible. (The structure is remarkably similar in 

cross-section to the Penrose tiling pattern of R2 which requires 2 

unique building blocks.). It is widely conjectured that this alloy 

is the first example of a whole class of "quasi-crystals" - with long 

range orientational order, but short range translational order. 

Thus the conventional crystallographic solid classification of 

long-range order (crystals) or disorder (glasses) has grown to a 

virtual continuum of glasses, "quasi-crystals", incommensurate 

structures and crystals. 

In order to ac.commodate these newcomers, solid state 

crystallography has adopted tesselations of R4 [6] for incommensurate 

structures and R6 for quasicrystals [7]. While this approach seems 

reasonable as a descriptive technique, it has some serious physical 

inconsistencies. All models are unable to account for structural 
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transitions between the various structure types. For example, a 

single sample of the aluminium:manganese alloy contains regions 

straddling the spectrum of solid phases; from glass to ordered 

crystal in addition to the quasi crystalline phase [ 8]. Also 

incollll!lensurate crystal phases are frequency associated ~lith crystal 

phase transitions. 

It would be more satisfying if all solid state phases could be 

interpreted within a single covering space - preferably R3 • Here we 

describe a special class of 2 manifolds - periodic minimal surfaces -

and their applications to 'classical crystallography' and speculate 

as to the usefulness of a 2-manifold description of solids in their 

totality. 

About 3 years ago, one of us (S.A.) realised that complicated 

crystal structm:·es, which have units eells containing many atoms, 

consisting of 2 interpenetrating networks of simpler structures with 

little bonding between component structures, may be more si.mply 

described using triply periodic minimal surfaces in R3• The minimal 

surface separates each structural component, with the 2 structures 

occupying the labyrinth on either side of the surface. In most 

cases, the structures can be understood solely with reference to the 

minimal surface, with atoms occupying special positons off the 

surface. 

This description has subsequently been applied to simple crystal 

structures, where the minimal surface appear to fit (calculated) 

electrostatic equipotentials, with charged atoms in either labyrinth 

[9]. For example, Schwarz' P-surface (figure 1) describes the 

equipotential surface of CsCl, ~;ith cs+ ions on one side of the 

surf ace and Cl- ions on the other. There is also an empirical 

correlation between electrostatic field and Gaussian curvature, 
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suggesting powerful links between differential geometry and 

solid-state physics [10]. 

In some cases the atoms are situated at special positions on the 

periodic minimal surface, where the surface consists of all field 

lines between atoms. Any point, 2:• on the surface satisfies 

.SE 
A (r.) o on 

(where !_ is the electrostatic field, n is the surface normal vector 

at!) and we call the surface the 'critical field surface' [11] {c.f. 

the conjugate nature of field and equipotential lines in 2~D 

electrostatics) [ 12] • Chemical bonds between structures are 

described by geodesic arcs on these surfaces, which need not be 

straight lines. 

Fig 1: Schwarz' P-surface. This surface describes an 
electrostatic equipotential of the CsCl structure, with cs+ cations 
in the centre of the picture, and Cl- anions in the four spaces 
around the central hole on the other side of the surface (and 
equivalent positions). The P-surface also represents the critical 
field surface for the network silicate, sodalite. The small spheres 
on the surface represent silicon atom positions in the sodalite 
structure, where they occupy all saddle points of the surface. 
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The (vector) electric field on the critical field surface may be 

described using singularities located at atoms (sources, sinks), 

midway along (like) atom-atom bonds (2-fold saddles), and inside 

atomic rings (multi-fold saddles). Thus topological characteristics 

of solid structures may be determined using Hopf 1 s theorem relating 

genus to singularity index [13]. So far we have found both 

orientable and non-orientable surfaces to be applicable to crystal 

structures. 

Structural Transitions 

The advantage of a minimal surface description of crystal 

structures is clear when considering phase transitions. For example, 

the flat points of Schwarz' F-smrface describe the face-centred cubic 

atomic lattice, while the flat points of the gyroid describe body 

centred cubic packing corresponding to the structures of the 

austenite and martensite phases of iron. (The martensitic phase 

transition is crucial to the formation of useful steels.) Austenitic 

iron transforms from the fcc to the ('ll.artensite) phase. This is 

conventionally described by the Bain mechanism, with the fcc unit 

cell distorted into the bee unit cell - a purely phenomenological 

model [14]. 

In fact, the minimal manifolds describing martensite (gyroid) 

and austenite (F-surface) are isometric surfaces, related by the 

Bonnet transformation. If v1e Bonnet transform the f-surface 

(suitably scaled to the austenite unit cell dimension) to the gyroid, 

we find the new unit cell dimensions (which are fixed by the 

isometry) correspond clos·aly to those found in Nature. Thus the 

structures are related through an isometric family of minimal 

manifolds. The inherent rela·tive orientations forced upon the 
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structures by the Bonnet transformation are also consistent with 

those seen in Nature (where bulk shears of the material occur, so 

that the straight line scratches on the surface of austenite are 

rotated in the martensite) [15] (figure 2). 

Fig 2: The Bonnet transformation from the F-surface to the 
gyroid, If the association parameter for the F-surface is 0°, the 
gyroid is formed for 8 = ±38.015°. The figure shows, from top to 
bottom, surface portions for e "' :±:10°, :±:20° and :±:38.015° (left and 
right images). Atoms are located at the vertices of the tetrahedra 
(flat points of the surface), and transform from face-centred cubic 
symmetry (F-surface), to body-centred cubic (the gyroid). The 
relative orientations of the ±8 surfaces show the mirror related 
intermediate structures, 
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The Bonnet transformation is of further potential interest in 

describing incommensurate structures. The. surfaces intermediate to 

periodic minimal surfaces appear to be non-periodic in the sense of 

incommensurate structures - a natural explanation to the frequent 

existence of incommensurate structures during phase transitions. 

A point on an associate surface to a linear periodic minimal 

surface is related to the known surface and adjoint surface to the 

known surface via: 

(1) = r {S) cos e + r (S*). sin 8 
~ -i 

where 8 is ·the association parameter of the Bonnet transformation. 

Equation ( 1) is consistent with an understanding of incommensurate 

struc·tures as the resolution of two independent structures, modulated 

90° out of phase [ 16]. Efforts to directly compare incommensurate 

structures with aperiodic isometric relatives of simpler periodic 

min:tmal surfaces are severely hampered at the moment by lack of 

suitable polynomials to paramatrise isometric families of minimal 

surfaces via the Weierstrass equations. Nevertheless, we are 

confident that the incommensurate structures arise naturally within 

the context of minimal surfaces in contrast to their uneasy 

alliance with "classical crystallography". 

This manifold description of solid state structures suggests 

tantalising concepts for understanding other structures. Since 

second order phase transformations involve continuous changes in 

atomic position [17] we expect all such transformations to be 

describable in terms of homeomorphisms of 2-manifolds. Thus, the 

orientability of structures in terms of their manifold must be 

preserved during the transformation. Ninimal surface preserving 

homeomorphisms would be expected to be most favourable, limiting 
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possible homeomorphisms to be conformal surface transformations [18], 

placing useful restrictions on structural candidates for phase 

transformations. 

Since the quasi-crystal aluminium:manganese alloy has been found 

to have coexisting phases of glass, crystal and quasi-crystal, we 

expect the structure of the quasi-crystal to be related via a surface 

transformation to the manifold description of the crystalline 

phase. If we consider the representation of the discrete group [3,5] 

in the sphere (the symmetry group of the icosahedron) as the Gaussian 

image of a minimal surface [19], we may generate an infinite family 

of minimal surfaces with icosahedral point symmetry. Work is 

underway to determine whether these surfaces adequately account for 

the atomic structure in the quasi-crystal. Again, the concept of a 

quasi-crystal seems to accommodate a 2-manifold description more 

naturally than more complex higher dimensional theories, and the 

success of such a description extends to a natural understanding of 

the coexistence (and hence transformation) of the phases; all phases 

are related by a homeomorphism (at least). Finally it should be 

noted that 2-manifolds other than minimal surfaces are likely to be 

useful. "Stationary" surfaces in the sense of Nitsche are also 

likely to be of use in modelling the solid state [20]. 

Conclusion 

Periodic minimal surfaces in R3 have been found to des.cribe 

crystal structures and structural transitions. The proposal that a 

2-manifold description of solid structures permits a physically 

accessible understanding of other less ordered solid forms,. with 

natural explanations of the increasingly observed phase transitions 

between these forms, in terms of 2-manifold homeomorphisms. 
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