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THE NEUMANN PROBLEM FOR EQUATIONS OF MONGE-M~PERE TYPE 

P-L. Lions 

N.S. Trudinger 

J.I.E. Urbas 

In the paper [10] we are concerned with the existence of classical 

solutions to the semilinear Neumann problem for equations of 

l\llonge-Ampere type 

( 1) f(x,u,Du) 

in convex domains n in Euclidean n-space, IRn, where f is a 

prescribed positive function on - . n 
ax!Rxl~ . In conjunction with (1), we 

treat Neumann boundary conditions of the form 

(2) D u 
IJ 

'P(x,u) 

on the boundary Clll, where v denotes the unit inner normal on an 

and (!' is a given function on a11x1R. For the main existence theorem, 

whose statement follows, we assume that o is uniformly convex with 

boundary an E CS,l 1 1 - n 
f e C ' (Ox~x~·) is positive and non-decreasing 

non-decreasing in z with 

( 3) 
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for all (x,z) e anxR , for some positive constant 10 . Furthermore we 

assume the structural inequality 

(4) 

for all 

(5) 

f(x,N,p) ~ g(x)/h(p) 

(x,p) e nxRn , where N is a constant 

are positive functions satisfying 

and 1 geL(a), 

THEOREM 1 Under the above hypotheses on the domain a and functions 

f.~. the boundary value problem (1},(2) has a unique convex solution 

u e c3,a(ii) for all a < 1. 

When the domain a and functions f and 
... 

~ are c . then 

the solution 
... -

u e c (a). Two special cases embraced by Theorem 1 are 

the standard Mange-Ampere equation, 

(6) f(x) , 

and the equation of prescribed Gauss curvature 

(7) 

Theorem 1 yields a unique convex solution of the boundary value problem 

(6),(2) for arbitrary positive f e c1 ' 1(ii) while a unique convex 

solution of the boundary value problem (7),(2) is obtained provided 



( 8) 

137 

t.l. 
ll 

Condition (B) is also necessary for the existence of a classical 

solution; (see [2],[15]). It is interesting to compare Theorem 1 with 

the !mown results for the Dirichlet problem, 

(9) u : ~(x) on d2 

(see for example [1],[3],[4],[6],[7],[9],[12],[14]). Here the problem 

(7),(9) is solvable classically for arbitrary • e c1 ' 1(an) 

if and only if the function K also vanishes on an [14] aod we 

cannot then necessarily infer further global regularity of the solution 

u beyond 0 " -u .. c ·-uzl. Corresponding necessary conditions also hold 

for the general Dirichlet problem (1),(9); {see [14]). Note that in the 

extremal case, J" K = w , the equation (7) bas a bounded classical 
n n 

:solution in n: which is unique up to additive constants but satisfies 

The proof of Theorem 1 depends on the method of continuity ~1hich 

requires the a priori estimation of solutions in the Schm1der space 

c2 ~) for some a > 0. The maio concern here is tbe estimation of 

the second derivatives for which we have had to introduce techniqu.es 

somewhat different from those associated ~ii th the Dirichlet problem 

[3],[5]. Second derivative estimates are already provided in 

[14]; (see also [8],[13]). Our maximum modulus estimates are obtained 

through an interesting extension of the Aleksand:rov Bakel'man maximum 

principle to oblique boundary conditions, while gradient estimates 

result from convexity. 
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As an application of Theorem 1 we derive the following existence 

result pertaining to the case when f and ~ are independent of z. 

THEOREM 2 Suppose that the hypotheses of Theorem 1 hold except that f 

and 'I' are independent of z. Then -there exists a unique number A 

and convex function u e c3 'a(n} for all a < 1 , unique up to 

additive constants, solving the boundary value problem 

(10) 

( 11) 

The vanishing of tbe functional 11 thus provides the necessary 

compatibility condition for the given Neumann problem to be solvable. 

However such a condition cannot be made explicit as is the case with 

linear operators. In this connection, for functions f of the form 

(12) f(x,p) g(x) /h(p) 

it would be more interesting to consider, instead of (2), the 

prescription of Du(a), because then the compatability condition 

becomes 

(13) I h 

Du(a) 

In particular for the boundary condition, 

(14) 1 on aa , 

Du(r.:) is the unit balL We remark that (14) becomes an oblique 
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condition, that is ~·Du < 0 on aa , through imposition of the 

convexity of the solution u 
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