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A NOTE ON BRANCHED STABLE TWO-DIMENSIONAL MINIMAL SURFACES 

Mario J. Micallef 

§L INTRODUCTION AI~D STATEMENT OF RESULT 

In [3], D. Fischer-Colbrie and R. Schoen investigate the properties 

of stable minimal surfaces in 3-manifolds of non-negative scalar curvature. 

As a special case, they prove that, the only complete, stable, oriented, 

immersed minimal surfaces in JR 3 are planes, a result which was also pro-

ved by do Carmo and Peng [2]. For applications, it is useful to know whe-

ther this theorem still holds if the minimal surface has branch points 

(an argument given in §3 shows that the usual second variation of area 

formula is valid even in the presence of branch points). The answer, in 

general, is no: there exist branched minimal surfaces in JR 3 of the 

conformal type of the disk whose Gauss image lies in a disk of arbitrarily 

small radius in s2 (see, for instance, [5, page 73]); these are then 

stable by a theorem in [1] (see also Remark 5 in [3]). In this note we 

show, however, that if, as a Riemann surface, the minimal surface is of 

parabolic type (i.e. it admits no non-constant positive superharmonic 

functions), the stability of the minimal surface in JR3 implies that it 

is a plane. This is actually a special case of the following 

THEOREM. Let F : M2 + JR4 be a (possibly branched) stable minimal immer

sion of an open oriented surface M2 without boundary. Then F is 

holomorphic with respect to an orthogonal complex structure on JR4 if 

any one of the following conditions holds: 

(i) M is parabolic in the conformal structure induced by . F 
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(ii) M is compLete a:nd the comp~exified nonnaL bundLe of M 

(dEnoted by Na;M) admits a square integrabLe ho lomorphic 

section (see Remark (b) beLow for the precise mea:ning of 

this). 

Proof. The theorem was proved by the author in [4] in the case that the 

minimal surface is unbranched. The same proofs work even if the minimal 

surface is branched upon utilising the proposition in §2 below and upon 

observing ·that the usual formula for the second variation of area is still 

valid for branched immersions, a fact which is proved in §3 below. 

Remarks (a) Condition (i) is the more useful one for applications: for 

example, M is parabolic if it has quadratic area growth or if it is a 

graph over all of JR2 • 

(b) Since M is oriented, so is its normal bundle NM • We may 

therefore define an orthogonal complex structure on NM by rotation by 

90°. This implies that Na;M = L ~ E where L is the complex line bundle 

(Na;M)1 •0 whose fibres are locally spanned by e 3 - ie4 , {e3 , e4} being 

a local oriented orthonormal frame for NM (Note that at branch points, 

M still has a well defined tangent space in JR4 and therefore also a 

well-defined normal space.) A section s of Na;M is defined to be holo-

morphic if and only if where is covariant differentiation 

in NM and z is a local complex co-ordinate on M . In [4], it is pro-

ved that if one of the projections of the Gauss map onto each of the fact-

ors of omits an open set, then one of L and L admits 

a square integrable holomorphic section. 
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§2. A GENERAL RESULT FOR THE OPERATOR 6 - q 

Let (M, (ds) 2 ) be ann-dimensional non-compact Riemannian manifold 

without boundary, and let q : M + 1R be smooth. For every bounded 

domain D c M , let 

inf 
f E ~(D) 

t( !Vfl 2 + qf2 ) dvol 

JMf2 dvol 

where dvol is the element of volume for the metric 
2 

( ds) • 

THEOREM. [3, Theorem 1, page 201]. The following conditions are equiva-

lent: 

(i) v1 (D) :::: 0 f'or every bounded domain D c lVJ 

(ii) \)1 (D) > 0 for every bounded domain D c N 

(iii) the1oe exists a posiHve function g , sat~isfying 

6g - qg = o on M . 

We now point out an easy generalization of this theorem. Let N be 

a Riemann surface. A metric ( ds) 2 on M will be called weakly conformal 

if locally, (ds) 2 = A(z)[dz[ 2 , where A:::: 0, A= 0 only at isolated 

points and z is a local complex co-ordinate on some open set in M The 

element of area dA on M is, of course, given by A. dx 1\ dy where 

Z = X + iy The gradient of a function f : M -+ 1R is, of course, locally 

k 
given by 'ilf = A.- 2 (f a +fa on the set where A.> o Note that the 

X X Y. y 

Dirichlet integral of -F , T jvf[ 2 dA makes sense even though Vf blows 
Jill 

up at "bl~anch points", i.e. the points where A.= 0. 
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PROPOSITION. The above theorem is still true for an open Riemann surface 

M without boundary equipped with a weakly conformal metric. 

REMARK. Near points where A = 0 , the equation 0 is to be 

interpreted as liE g- A.q g = 0 
(l2 

where ll = --- + 
E (lx2 

Proof. We only have to check that (ii) "" (iii) ; the rest is self-evident. 

Let (ds) 2 be any metric on M for which the corresponding conformal 

structure is the same as that which M has as a Riemann surface, i.e. 

locally (ds) 2 = ~(z)ldzl 2 where ~ > 0 Then (ds) 2 = p(ds) 2 where 

A. locally, p = 
].1 

For any bounded domain D c M , let 

L<lvfl 2 2 -+ qpf )dA 
\(D) inf 

f E C~(D) J f2 dA 
M 

where dA is the element of area for the metric (ds) 2 Then \\(D)?:O 

if and only if v1 (D)::: 0 The above theorem then implies that there 

exists g> 0 satisfying ~g - pqg = 0 on M 
' 
i~ee llg - qg = 0 on 

!'1 The proof is complete. 

§3. THE SECOND VARIATION OF AREA FORMULA FOR BRANCHED MINIMAl IMMERSIONS. 

In this section we show that the usual second variation of area 

formula is still valid for branched minimal immersions. Let p be a 

branch point of F and let U be a neighbourhood of p which contains 

no other branch point. (This is possible because branch points are 

isolated.) By choosing U sufficiently small, we may define a local 

complex co-ordinate z on U with respect to which the metric is 
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2 
A.(z) I dz I ~ve may also suppose that z(U) ;;l JB (0, 1) = {z E (!; 11 z I< 1} . 

For each 1 > 8 > 0 , define a Lipschitz function f 8 by 

1 if jzj > 8 

fe (z) 
logizj/82 

if 82 ::: I zj ::: 8 
log lf. 

8 

0 if I zl < 8 
2 

If s is a section of NM defined over U , then, for any o > 0 , 

we have: 

J iV.L sj 2dA sf jVJ..Cf8s)j 2dA :s (1+ 1 /0) J jVEf8 i2 lsj 2dxdy 

U\z 1 (JB (0,8) U z(U) 

+ ( 1 + ())I f~ jll~s 1 2 dx dy 

z(U) 

< c ( 0 , s ) + ( 1 + 0 ) f f~ I V'.L s 12 dA 
- log J;e u 

In the above, Z = X + iy and V'E is the Euclidean gradient so that 

j\7.isj2 = jill. sj2 1171. sl2 IVE£812 = (afe) 2 + rClf e J 2 By 
+ and l3Y E 

31 ax df 3x 
ay 

letting e + 0 and then letting 0 ->- 0 in the above inequalities we see 

that 

J IV.i(f8s)j 2dA->- I IVLsj 2dA as e + 0 . 

u u 

Given a compactly supported section s of NM , let 

section obtained by cutting s down to zero on the annuli 

se be the 

2 
B(p. ,8)\B(p. ,8 ) 

-- ~ ~ 

by means of the function f 6 defined above, where {pi} is the set of 

branch points of F . It is legitimate to apply the usual second variation 
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of area formula to By letting e ~ 0 and using (*) we see that 

the usual second variation of area formula is also valid for s . 
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