
224 

OVERDETERMINED SYSTEMS DEFINED BY COMPLEX VECTOR FIELDS 

Francois Treves 

~1. FORMALLY INTEGRABLE STRUCTURE 

00 
Let n be a C manifold (Hausdorff, countable at infinity), 

dim n = N(2:1), and let 11 .... ,10 be n complex vector fields, of 

"' class C , in R, linearly independent at every point (so that n S N). 

We would like to study the homogeneous equations 

( 1) 0 ' j 

as well as the inhomogeneous equations 

(2) j 1, '· .. ~ n , 

"" with right-hand sides f. e C (£2) . 
J 

It is known from the study of a 

single vector field (i.e.,n = 1) that difficulties arise even at the 

local level. In this expository note shall limit myself to the local 

viewpoint and n can be taken to be an open subset of Euclidean space 

~N. Yet it is perhaps advisable to continue thinking of n as a 

manifold lest the important consideration of invariance be forgotten. 

The questions one begins by asking, about equations (1) and (2), 

are the standard ones: existence, uniqueness and approximation of 

solutions, their regularity, their representations (say, by means of 

integral operators), etc. Answering these questions with satisfactory 

generality seems to be very difficult. Here I shall briefly describe 
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some of the results about existence, uniqueness and approximation of the 

solutions. 

The considerations of invariance are of two kinds: invariance under 

coordinate changes - in the base manifold Q invariance under linear 

substitutions of the vector fields 

n 

1 k a. 
J 

j 1, ... ~ n ~ 

k=l 

with k (aj) a smooth nxn nonslngular matrix-valued function in Q . 

The properties of the solutions of (1) and (2) that interest us 

obviously partake of both kinds of invariance. In modern terminology 

this means that I'Je are not simply dealing with vector fields in &l; in 

fact, we are dealing with (smooth) sections of a certain vector 

subbundle, henceforth denoted by r , of the complex tangent bundle of 

a . na . 

The first particular case that comes to mind is the one where the 

"generators" L. can be taken to be real. 
J 

In this case it is well 

known that we must take the system to be "involutive", i.e., to satisfy: 

(3) 

where the coefficients 

n l l ajk LI , j,k 
1=1 

are smooth. Condition (3) is classically 

known as the Frobenius or the integrability, condition ([X,Y] = XY- YX 

is the commutation bracket). 
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In the general case (when the Lj may be complex) we shall also 

make the hypothesis (3), which we shorten as 

( 3') ['Y,'Y] c 'Y ' 

and to which we refer as formal inteqrabil i ty (of the vector bundle 'Y). 

The adjective formal is there to distinguish this notion from that of 

integrability, or rather of local integrability, which is the assertion 

of the existence of "enough" local solutions to the homogeneous 

equations (1). Before discussing the latter concept let us give a 

brief list of important special classes of formally integrable 

structures (this refers to vector bundles like r ) on a manifold a 

Already alluded to, the essentially real structures: there are 

local systems of generators consisting of real vector fields. 

In the complex case we must introduce the complex conjugate, r, of 

the vector bundle r : the fibre of f at a point of a is the complex 

conjugate (within the complex tangent space) of that of 'Y. 

With this definition one then says that r is (or defines) a 

complex structure on the manifold a if 

(4) ~em = r m f 

(&I: direct sum, to be understood,like eq (4), fibrewise). 

Keep in mind that (3') is assumed to hold. In the literature, what I 

call here a complex structure is often called an almost complex 
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structure, but I shall omit the "almost", for a reason that will be 

clearer in a moment. 

The next two classes of structures are obtained by weakening 

condition (4): 

r is said to be elliptic if 

(5) a:m r + r 

(+: fibrewise vector sum, not necessarily direct); 

r is said to be a Cauchy-Riemann (or CR) structure on a if 

(6) rnr 0 . 

Thus a complex structure is an elliptic CR structure. The preceding 

terminology has the following justification: 

Suppose L1 , ... ,Ln are local generators of r; to say that r is 

elliptic is equivalent to saying that the second-order linear partial 

differential operator 

+ ... + L L 
n n 

is elliptic. Another way of saying it is by looking at the symbols 

o(L .) 
J 

of the vector fields the common zeros of o(L 1), ... ,o(Ln) 

in any real cotangent space to a (at a point of the domain of 

definition of the basis L1 , ... ,Ln) is the origin. 
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The motivation for the name CR comes from the theory of several 

complex variables: Let S be a (real, smooth) hypersurface in [n+l 

and consider all the complex vector fields L defined on S that have 

the following two properties at every point of S : L is tangent to S; L 

is a linear combination of the Cauchy-Riemann operators 

"' Suppose for instance that S is defined by a real C equation: 

(7) p(x,y) 0 

where x = ~~ z, y Jm z, and dp ¢ 0. Suppose in fact that 

( 8) 0 . 

Then the following vector fields 

(9) 

are tangent to S and they are linearly independent. They span what 

is sometimes called the Cauchy-Riemann tangent bundle of S, and is 

often denoted by T0 ' 1 . One also writes r0 •1 T1 •0 , the vector bundle 

spanned by 

L. 3 - [~I ~]-3-- .1=1, ... ,n . 
J azj 3zj azn+l azn+l ' 

(We recall that 

- -
Clearly, L1 , ... ,L0 ,L1 , ... ,L0 are linearly independent, i.e. (6) holds. 
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In the CR case the solutions of eqns (1) are called CR functions (or 

CR distributions). 

The prototype of CR structures is that defined on (where •~e 

call the coordinates x,y,s) by the Lewy vector field, 

(10) L 
a 

iz a 
oz as 

We can map iR3 onto the hypersurface s of [2 (coordinates: 

z = X + iy, w = s + H) defined by the equation 

( 11) t 
2 I zl 0 

Then L is transformed into the tangent Cauchy-Riemann operator 

(12) L - 2iz a 
az aw 

There are formally integrable structures on manifolds that are 

neither elliptic nor CR o A simple example is the one defined on R2 

(coordinates: x,t) by the l'iizohata vector field, 

(13) a _ it a 
at ax 

It defines the standard complex structure in the upper half-plane t>O, 

the opposite one in the Iower half-plane t < 0 : and L0 = L0 when 

t = 0 o The Mizohata structure on 1R2 is sornehm~ related to the Lewy 

structure on ~3 . 
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Notice that, in the last two examples, the base manifold is 

real-analytic, and the coefficients of the generating vector fields are 

also analytic. We may deal with formally integrable structures on an 

analytic manifold ll , which are themselves analytic: the structure 

bundle r is then an analytic subbundle of tra (satisfying (3')). 

§2. LOCALLY INTEGRABLE STRUCTURE 

The definition of local integrability is best given in terms of the 

vector subbundle T' of the complex cotangent bundle [T*n which is 

the orthogonal of r for the duality between tangent and cotangent 

vectors (at one and the same point of the base Q ). The property that 

r is involutive (i.e., (3) or (3')) is equivalent to the property that 

T' is closed, which means that, given any smooth section ~ofT', in 

the neighbourhood of any point of Q we can write 

(14) ~1 A ~1 + · · .+ ~m A ~m 

with smooth local sections of T' and ~1' · · · '~m smooth 

differential forms (one-forms). Note also that the fibre-dimension 

{i.e., the rank) of the vector bundle T' is equal to N-n , recalling 

that the fibre-dimension of Y is equal to n. It is possible, and 

convenient, to choose the sections ~ 1 •... , 

independent, and write N ; m + n . 

in (14) to be linearly 

DEFINITION. The formally integrable structure r (or T') on Q is said 

to be locally integrable if T' is generated locally by exact smooth 

one-forms. 
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To say that r is locally integrable is to say that an arbitrary 

point OeQ has an open ne:ighbourhood U in which there are functions 

"" Zjec (U),j = 1, ... ,m, such that 

(15) 0 whatever the smooth section of r,L; 

(16) dZ 1 , ... , dZm are linearly independent at every point of U 

To the question "When is the structure r locally integrable?" no 

general answer is known; only in special cases has it been answered. 

First of all, in the essentially real case: this is the Frobenius 

theorem, for it asserts that local coordinates x1 , ... ,xN can be found, 

such that the vector fields 
axm+1 '· · ·' axN 

(recall that n = N - m ) 

span r over the domain of the coordinates, U . It means that the 

functions Zj = xj , j = 1 , ... ,ni, satisfy (15) and (16). 

This observation also takes care of the analytic structures, for 

one can complexify the base manifold Q and holomorphically extend the 

vector bundle' r . It then suffices to apply the holomorphic version of 

the Frobenius theorem and restrict the resulting coordinates to the real 

domain: Thus every formally integrable analytic structure (on an 

analytic manifold) is locally integrable, and the functions Zj in 

(15) - (16) can be taken to be analytic. 

<XI 

Returning to the case of C structures the first nontrivial 

statement in the literature is the Newlander-Nirenberg theorem, which 

asserts that every complex structure is locally integrable (in the old 

terminology, every almost-complex structure is a complex structure; see 
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Newlander-Nirenberg [12]). An easy consequence is the result that every 

elliptic structure is locally integrable (Treves [16]). 

The first example of a formally integrable structure which is not 

locally integrable was found by Nirenberg ([13]) in 1972. The defining 

vector field is a perturbation of the Mizohata operator, (13): 

(18) 
a 
at it(l+'l'(x,t))~ 

uX 

where '9 is a certain c"" function in IR2 , 'I' ;;; 0 for t < 0 , and 

therefore vanishes to infinite order at t = 0 . In 1973, Nirenberg 

([14]) constructed a similar (but more complicated) perturbation of the 

Lewy vector field, (10), which is not locally integrable. As a matter 

of fact the Nirenberg operators have the stronger property that all the 

solutions of the homogeneous equations Lh = 0, say in the whole space 

(~2or ~3 ) , are constant. Such examples have more recently been 

extended to systems of n vector fields defining CR structures on 

IRZn+l whose Levi form is nondegenerate and has signature (n-1,1) (see 

Jacobowitz-Treves [4],[5],[6]). The difficulty for systems is that one 

must only deal with perturbations that respect the formal integrability 

condition ( 3) . 

On the positive side, in addition to the cases mentioned above 

(essentially real, elliptic, analytic), there is a remarkable result of 

Kuranishi [8] concerning CR structures on R2n+l defined by n 

vector fields, whose Levi form has all its eigenvalues >0 (or all <0) . 

If n ~ 4 the structure is locally integrable. 
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One of the advantages of locally integrable structures is the 

approximation formula for solutions of the homogeneous equation, which 

we now describe. We reason in some open neighborhood of 0, U, in which 

we assume that there exist functions Z. satisfying (15)-(16). After a 
J 

[-linear substitution we may assume that 

(19) d(~~z 1 ), ... ,d(~&Zm) are linearly independent at every point 

of u9 

and take = 5?e-Z., j = 1, ... ,m, as coordinates. We complete this 
J 

set of coordinates by adjoining to them n additional ones, 

t 1 , ... ,t0 , and thus write 

(20) x. + i<P.(x,t) , j 
J J 

1, ... ,m " 

We can also achieve that ~jlo = 0, and that all first partial 

derivatives of every ~j with respect to x1 , ... ,xm, vanish at the 

origin. Note that the "tangent" structure bundle r is then spanned, 

over U, by vector fields, 

(21) L. 
J 

1, .. ~ , n . 

One can then easily prove (see Baouendi-Treves [2], Treves [16]) that 

there is a an open neighborhood u0 c U of 0 such that, if h is any 

solution of the homogeneous equations (1) in U , then, in the smaller 

neighborhood 
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h(x,t) 

(22) 

[~]m/2 J exp{-~ ~ 2} ~~~ " j~l [Zj(x,t)-Zj(y,O)] ~(y,O)h(y,O)dZ(y,O) , 

00 
where ~ e c0 (U) , ~ : 1 in a suitably large neighborhood of the 

closure of u0 , and 

dZ(y,O) 

The limit in (22) can be understood in a variety of ways: in the 

distribution sense, if h is a distribution solution (then the integral 

at the right is a duality bracket); in the sense of Ck(U0 ) if h is a 

Ck solution (O~~+m); in the sense of Sobolev spaces if h belongs to 

one of these. Etc. 

Recently (spring 1985) G.Metivler [11] was able to extend (22) to 

systems of nonlinear first-order PDE (in involution), under the proviso 

that the solution h be of class c2 . The formula (22) has the 

following consequences; 

a) APPROXIMATION: every solution h of Eqns (1) is the limit, in a 

suitable neighborhood of the origin, and in the appropriate distribution 

space, of a sequence of polynomials Pv(Z) with complex coefficients in 

Z(x,t) (we write Z- (Z1 , ... ,Zm)). 

In particular, a) implies that any CR function (or distribution) 

on a CR submanifold X of [m is locally (in X) the limit (uniform, 

Ck, distribution, etc.), of a sequence of holomorphic polynomials. 
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(b) LOCAL CONSTANCY ON FIBRES: call "fibres" of Z in any subset S 

of U the intersection of S with the pre-images of points under the 

map (if Z were valued in R the fibres would be its level 

sets). A consequence of Th.l is that every continuous solution of (1) 

in U is constant on the fibres of Z in u• Among o'ther things 

this shows that the germs of fibres of Z at 0 are independent of the 

choice of Z ; they are invariants of the structure T' . That they 

are an essential feature of the structure T' is evidenced by the 

Theorem at the end of ~3. 

The fibres of Z can be highly singular sets, and certainly need 

not be connected: for instance, the fibres of Z x + it2/2 in any 

neighborhood of the origin in ~2 consist of the points (x,±t). Z 

defines the Mizohata structure on R2 (see [13]). According to (2) all 

the solutions of the Nizhobata equation, bt - ithx = 0, are even with 

respect to t. 

The local constancy on fibres can be rephrased as follows: every 

continuous solution h in U is, in U' (possibly contracted about D), 

of the form hoZ, with h a continuous function in Z(U'). 

c) UNIQUENESS IN THE CAUCHY PROBLEM: Formula (22) imlpies that, if 

h = 0 on the submanifold t = 0 of U, then h : 0 in U' . 

Recall the examples Cohen [3] of smooth vector fields 

L = a/at - ib(t,x)a/ax in ~2 such that there are C00 solutions of 

Lh = 0 (in the whole plane) whose support is exactly the half-plane 

t ~ 0. In view of For•ula (22) Cohen's vector fields L do not define 

a locally integrable structure on ~2 . 
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In order to give an invariant meaning to the uniqueness in c) let 

"' us adopt a global viewpoint. Thus a is once again a C manifold. 

Let us say that a smooth submanifold X of n is maximally real if 

dim X = m and if the pull-back of the structure bundle T' to X is 

equal to [T*X or, equivalently, if the natural injection of [TX into 

[Tnlx is transversal to ~. Suppose then that the origin lies on X. 

It is easily seen that the coordinates t 1 , ... ,tn in the open 

neighborhood U (see above) can be chosen so that X n U is exactly 

defined by the equations t = 0. In passing let us point out that the 

map induces a diffeomorphism of X n U onto a totally real 

submanifold of [m of (maximum) dimension IlL A reformulation of c) 

is then that, if the trace on X of a distribution solution h (trace 

which is always well-defined) vanishes identically in X , then h 

itself vanishes identically in some open neighborhood of X. This 

property enables us to "circumscribe" the support of any distribution 

solution: it is a union of orbits of the family of real vector fields 

when L ranges over all smooth sections of U (see Treves 

[ 16] , Ch . II , Th . 2 . 5 ) . 

§3. INHOMOGENEOUS EQUATIONS 

Assume that the vector fields L. are given by (21). In this case 
J 

the commutators [Lj,Lk] only involve partial derivatives with respect 

to They can be linear combinations of L1 , ., .,Ln, if and 

only if they vanish: 

(23) 0 ' j,k 

If then we want to solve the inhomogeneous equations (2), the right-hand 

sides f. must evidently satisfy the compatibility conditions: 
J 
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(24) 

The question we briefly discu~s here is that of the possibility of 

solving the equations (2) for any smooth right-hand side 

f; (f1 , ... ,f0 ) satisfying (24). We can regard f as a one-form in 

the neighborhood U of the origin. We might be content with solving 

(2) in a smaller neighborhood of the origin. The PoincarA lemma for 

one-forms tells us that this is always possible when the structure T' 

is essentially real (we may then select the vector fields L. 
J 

to be 

real, i.e., L.; 3/atj, j; 1, ... ,n). The Dolbeault lemma entails the 
J 

same for elliptic structures. 

As with local integrability the first counter-examples to local 

solvability arise with structures that are neither real nor elliptic. 

It suffices to deal with a single vector field L (i.e., the fibres of 

U have dimension one). Then the compatibility conditions (24) are 

void. The celebrated example of Hans Lewy [10] is that of the 

hyperquadric t = x2 + y2 in [ 2 (where the variables are 

z = x + iy , w ; s + it) equipped with its natural CR structure. The 

Lewy vector field is L = a/az - iza/as. It is nowhere locally 

solvable. But already the Mizohata vector field in 2 
IR (~~here the 

coordinates are t,x) , 10 = a/at - ita/ax provides a counter-example: 

it is not locally solvable in the neighborhood of any point (O,x) . 

Actually, in the case of a single vector field (n = 1) , the 

complete answer is known. It is a particular case of the local 

solvability theory for single linear PDE. Suppose the vector field L 

has the form (21); actually one can change variables and "straighten" 
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~~L (in general, this is not feasible when dealing with systems 

(25) L=2._+i 
3t 

With L written in this form, the local solvability of (2) is 

equivalent to the existence of an open ball U c ~m and an open 

interval I c I'R 1 , both centered at 0, such that the following holds: 

(P) V x e U , V ~ e ~m , the function 

m 
I 3 t ~ l bk(x,t)~k 

k=l 

does not change sign. 

This property (P) can be restated in completely invariant fashion, but 

we shall not do so here (see Nirenberg-Treves [15]). Let us only 

restate it as follows: 

(P) There is a unit vector ~(x) in U such that 

b(t,x) lb(t,x) j;i(x) in U x I . 

We have used the notation b 
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L 

The vector ~ is well-defined and smooth in the region 

{x e U 3 t e I , b(t,x) ¢ o} . 

The region UQ X I is foliated by the integral manifolds of the 

vector fields 

b(x,t) = O) 

a m a 
at ' l vk(x)a The region (U\U0 ) 

k=1 xk 

is foliated by the integral manifolds of 

X I 

a 
at 

(in 

pair of 

which 

the leaves are two-dimensional; in (U\U0) x I they are one 

dimensional. In both subsets L is tangent to the leaves. One method 

for solving the inhomogeneous equation 

(26) Lu f 

is to solve it on each leaf individually, in such a way that the 

solution u varies smoothly with the leaf. This is possible (see 

Treves [19]). 

It follows from a theorem in Hormander [7] that when condition (P) 

holds, possibly after contracting U and I , there are m solutions 

Zj of LZj = 0 in U xI (j = 1, ... ,m) whose differentials are linearly 

independent, In other words the local solvability of the vector field 

L entails the local integrability of the structure (on U x I c Rm+1) 

it defines. But of course the structure can be locally integrable 

without there being local solvability of the inhomgeneous equation, for 

instance when the coefficients are real-analytic but do not satisfy 

condition (P). The simplest examples of this are the Lewy operator (10) 



240 

on and the Mizohata operator (13), in an open neighborhood of the 

origin in IR2 . 

For smooth hypersurfaces in [n+1 whose Levi form is nondegenerate 

a complete answer (also for p-forms with p>1) is provided in 

Andreotti-Hill [1]. The answer depends on the signature of the Levi 

form. For one-forms the only case of nonsolvability occurs when the 

Levi form has n-1 eigenvalues of one sign and one of the opposite 

sign. Exactly the same result is valid for all analytic structures 

whose Levi form is nondegenerate at every point of the characteristic 

set, as shown in Treves [17]. 

Beyond that only special and fragmentary results are known. Let us 

mention such a result that sheds some light on the role of the fibres of 

the mapping Z , both from the viewpoint of local integrability and 

from that of local solvability: 

Consider the structure on n c IRn+l defined by a single analytic 

function Z (such that dZ is nowhere zero). In other words the fibre 

dimension of T' is one, and that of r is n . We shall consider 

local generators of r of the following kind (and thus commuting 

pairwise): 

(27) 1, ... ,n , 

with analytic coefficients Aj 

Let us use the following terminology: 
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We say that the equations (2) are locally solvable at x0 if, 

given any open neighborhood U of x0 , there is an open neighborhood 

U' c U of such that, to any smooth one-form f in U satisfying the 

w 
compatibility conditions (24), there is a C function u verifying 

( 2) in U' . 

We say that Condition (P) llolds at a point x0 of n if there is 

a basis of neighborhoods of x0 in each of which the fibres of Z are 

connected. 

It can be shown that Condition (P) as defined is the same as the 

property (P) above, in the local solvability theory for a single vector 

field L =a/at+ A(t,x)a/ax (with A analytic). 

THEOREM. If Condition (P) holds at every point of Q the equations (2) 

are locally solvable at every point of a 

If Condition (P) does not hold at a point 

(2) are not locally solvable at that point. 

X 
0 

of the equations 

Furthermore there exist 
00 # . 

C vector fields Lj (J = 1, ... ,n). in 

an open neighborhood U c n of that have the following properties: 

(28) 

(29) 

for each j L. - L.* vanishes to infinite order at the 
J J 

the vector fields L.• commute pairwise; 
J 
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(30) the structure on U defined by the (which is formally 

integrable by virtue of (29) is not locally' integrable. 

For a proof see Treves [18]. 
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