
24 

MAXIMAL SURFACES AND GENERAL RELATIVITY 

Robert Bartnik 

In this report I'd like to review the development of the regularity theory of 

maximal (and prescribed) mean curvature hype:rsurfaces and describe some of the 

main ideas that are involved. Such surfaces have long been an important tool in 

general relativity, but it is only recently that their regularity properties have been 

fully described [CY], [BS], [G], [Bl], [B2]. These results, culminating in [B2] which 

showed that variational extremal hypersurfaces are smooth and spacelike, are 

described in some detail in the following sections; here I will give a brief summary 

of the main properties and applications of mean curvature hypersurfaces in general 

relativity, together with selected references. 

Perhaps the most important reason for the utility of constant mean curvature 

hypersurfaces is their uniqueness property [BF], [G]; in a cosmological spacetime 

-i.e. a spatially compact, globally hyperbolic Lorentzian manifold satisfying the 

timelike convergence condition 

(TCC) Ric(T,T) ;::; 0 for all timelike vectors T 

a constant (non-zero) mean curvature Cauchy surface is unique [BF] and a maximal 

(i.e. zero mean curvature) Cauchy surface is almost unique [G]. Thus constant 

mean curvature slicings provide a "canonical" choice of global time function in a 

cosmological spacetime, and maximal surfaces parameterised by the "time at 

infinity" play a similar role in asymptotically flat spacetimes [Bl]. 
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'I'he uniqueness property is the main reason this time coordinate is the most 

common choice in theoretical num.erical relativity [P], [8m], [8mY1,2]. Indeed, it 

vvas precisely to investigate the initial value problem that Lichnerowicz first 

considered the maximal slicing gauge [L]. Explicit calculations for spherically 

symmetric spacetimes such as the Schwarzschild [R], [Eet], [D], [SmY2], [BCI] and 

Tolman-Bondi [ES] spacetimes indicate that maximal slices have good singularity 

avoidance features (c.f "crushing singularities" [ES], "collapse of the lapse" [SmY2]). 

There is however a significant eomputational cost in solving the resulting elliptic 

equations, especially if a spatial elliptic gauge such as the "minimal distortion" 

gauge of [SmYl] is used to prevent the spatial coordinates being swallowed by any 

black hole. For this reason various numerical alternatives have been proposed [BP], 

[MSNM], [Sw) but whether these have useful singularity avoidance features is not 

clear. We note that the obvious alternative gauges such as the De Dondeu:r and 

Gaussian coordinates become singular long before the spacetime develops 

singularities [CBl]. 

Constant mean curvature gauges have also been successfully applied to more 

theoretical questions involving Einstein's equations. Apart from the uniqueness 

property, they have the additional advantage that the (Gauss-Codazzi) constraint 

equations simplify [CBY]. There has been a lot of work investigating the structure of 

the space of solutions, particularly by Marsden and his collaborators [Mil ,2], 

[AFMM], [EIMM], [FMM]. Topics they have considered include the linearisation 

stability of Einstein's equations in the presence of symmetries, existence of 

conformal Killing fields, Hamiltonian structures and slice theorems for the phase 

space. Another very interesting application is the program of Christodoulou and 

Klainerman [CK) to prove global existence for small data solutions of the vacuum 

equations. 

Maximal surfaces in spacetimes satisfying the weak energy condition are 

3-manifolds with non-negative scalar curvature and it was widely recognised [Ge2], 
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[CBFM], [CBM] that this was important for the positive mass conjecture [ADM]. 

This conjecture was finally settled by Schoen and Yau [SYl] and although later 

proofs [W], [SY2] removed the need for a maximal surface, it may well be that 

non-negative scalar curvature will yet be important in considering the structure of 

spacetime. This belief is motivated by the fact that non-negative scalar curvature 

imposes topological constraints. 

An example of Brill [Br] of an asymptotically flat spacetime without any 

(complete) maximal slice exploits this by building a spacetime with spatial topology 

that cannot carry a metric of non-negative scalar curvature. Similar ideas also lead 

to a cosmological spacetime without any constant mean curvature Cauchy surfaces 

[B3]. Very briefly, Brill's construction starts with those pieces of the maximally 

extended Schwarzschild and k=O Friedman dust solutions which are not used when 

constructing the Oppenheimer-Snyder stellar model. These two spacetimes can then 

be glued together along their boundary in the same way as in the construction of the 

Oppenheimer-Snyder model. The Friedman component has spatial topology R3-Ball 

and can be (spatially) compactified by identifying the faces of a large cube. The 

resulting spacetime has asymptotically flat spatial slices with one end, topologically 

T3-Ball. Such a slice cannot admit a metric of non-negative scalar curvature. The 

example of [B3] is a variation on this construction. 

These examples are not as catastrophic for the theory of prescribed mean 

curvature surfaces as might first appear, since they are somewhat unrealistic 

physically. This follows from results of Schoen and Yau [SY2,3] which imply that an 

apparent horizon must exist in such examples. Reassuringly, the maximal [Bl] and 

constant mean curvature [G], [Gal], [B3] existence theorems have conditions which 

rule out the behaviour of these counterexamples - and these conditions are imposed 

for purely pde reasons. The paper [B3] contains a discusion of the conditions under 

which a cosmological spacetime should admit constant mean curvature Cauchy 

surfaces. 
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Another promising application is the study of spacetime singularities, The 

main result in this line is the celebrated Hawking singularity theorem [H], which 

shows that a cosmological spacetime V>rith a Cauchy surface of strictly positive (or 

negative) mean curvature is necessarily timelike incomplete singular), Using 

ideas due to Avez [A] and Geroch [Gel] and the regularity results of [B1,2], this 

leads to general conditions under which a cosmological spacetime is singular [Ga], 

[B3] (see section 4). We note that J.-H. Eschenburg has recently proved a spectacular 

splitting theorem using rather different methods [EJ]. 

L The Problems. 

First we outline the problem and briefly describe some notation. For rather 

more precise definitions and more detailed explanations than those given here, the 

reader is referred to the books of Hawking and Ellis [HE] and O'Neill [O'N] for 

causality theory, [GT] for pde background material and to [BS], [Bl ,2] for notation 

specific to these problems. 

A hypersurface M in a Lorentz manifold '7/ is said to be weakly spacelike if 

it is locally achronal, so that M can be written locally as the graph of a Lipschitz 

function. Since M then has a tangent plane almost everywhere, we can define the 

area of M ; in the special case where M is a graph in Minkowski space Rn,l , M = 

graphnu. , u E C0•1(Q), Q c Rn , the area of M is given by 

area(M) = 

The concavity of the area integrand means it is natural to look for hypersurfaces (or 

equivalently, Lipschitz functions u) which maximise the area. More generally we 

consider the variational problem 
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(VP) maxM e 'f { area(M) - fv(M*,M) F du } 

where FE V(M* ,M) is an open 

set in the spacetime with boundary bd(V(M* ,M)) = M u M* and M* is a reference 

hypersurface, and 'f is a class of weakly spacelike hypersurfaces (for example, the 

set of surfaces spanning a given boundary set, o:r those passing through a given 

point). 

We say that M is a regular hypersurface if it is a smooth weakly spacelike 

hypersurface with everywhere spaceHke tangent For such surfaces we can 

define the mean curvature HM as the trace of the second fundamental form 

(extrinsic curvature): in Minkowski space this is given by 

1 ( 

~ 

There are a variety of geometric interpretations of this expression, the most natural 

being 

where N is the future unit normal to the hypersurface M and divM is the 

divergence operator on M [Bl]. From this expression it is not hard to see that the 

prescribed mean curvature equation 

find M such that HM = FIM 

is the Euler-Lagrange equation of (VP). Although other boundary conditions are 
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possible, it is most natural to consider the prescribed boundary problem (Dirichlet 

problem) 

(DP) find M , a regular hypersurface, such that 

and ()M = S , a given boundary set. 

This corresponds to CVP) with '.f being the class of weakly spacelike hypersurfaces 

having boundary S. 

The Euler-Lagrange equation (1) is a quasi-linear, non-uniformly elliptic 

equation vvith ellipticity governed by the important quantity 

(2) v = 1 /...J 1 - ID u !2 

= -(N, T) 

where T =at is a future timelike reference vector. If an a priori bound for v is 

known then the Leray-Schauder theorem and the De Gio:rgi-Nash estimates (see eg. 

[GT]) can be applied to derive existence and regularity results for (1 ). This rather 

standard argument is described in [BS], [G], [Bl]. Thus, the first main problem is 

Problem 1. Find an a priori bound for v , valid for regular prescribed mean 

curvature hypersurfaces. 

Since v measures the hyperboiic angle between the normal vector and a reference 

timelike direction and thus blows up as the tangent plane approaches the light cone, 

this problem has been paraphrased as that of showing that prescribed mean 

curvature hypersurfaces don't "go null" [MT]. 
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Notice that while the (classical) mean curvature (1) :requires u e C2(Q) and 

v < 00 ' the area functional is weH-defined for u E C0)(Q) and v ::;; 00 ' so it is 

conceivable that an ext:r,Emllal for need not satisfy the Euler-Lagrange equation. 

This leads to 

Problem 2. Show that solutions of (VP) are in fact classical solutions of the 

Euler-Lagrange equation (i.e. regular hypersurfaces with the prescribed mean 

curvature). 

2. Preliminary Results. 

The existence of variational solutions was first shown Avez [A], with later 

modifications by Goddard [Go2] and Bancel [B], [ABl This involves first imposing 

some geometric conditions to constrain any maximising sequence and then using 

the concavity of the area functional to show semicontinuity, so that the limit surface 

is maximal (see also [BS], [B2]). Avez also claimed the solution is regular, but he 

overlooked the non-uniform ellipticity of the Euler-Lagrange equation (1). This 

serious error was propagated in [Gel], [HE] and to a lesser extent in [Cet]. 

The first correct existence results for classical solutions were based on the 

implicit function theorem, linearising about known solutions [CB2], [St], [CBFM], 

[MT]. If M is a regular hypersurface with Laplace operator t,.M and second 

fundamental form A , the linearised mean curvature operator on M is [CB2] 

(3) -t.M + IAI 2 + Ric(N,N) , 

and the implicit function theorem requires us to be able to invert LM<p = 0 in order to 

find nearby maximal and/or constant mean curvature surfaces. The invertibility is 
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immediate if the tirnelike convergence condition holds and appropriate boundary 

conditions are imposed. Although this approach has the disadvantage that it needs 

M to be controlled a priori and hence can only be applied near known exact 

solutions, it does yield some physically useful results [MT], [CBM]. 

The timelike convergence condition appears also in the main uniqueness 

result, due to Brill and Flaherty [BF]. If M0, M1 are two compact Cauchy surfaces 

then there is a future timelike geodesic y which maximises the distance between M0 

and M1• Assuming y(O) E M0 and y(d) E M 1 , by considering the second variation 

formula for geodesics they show that 

(4) 0 
d 

f Ric(y;y') ds + Hly(l)) - H0(y(d)) 
0 

where H 0, H 1 are the mean curvatures of M0 , M1 respectively. Coupled with the 

implicit function theorem, this shows uniqueness for regular constant (non-zero) 

mean curvature Cauchy surfaces [MT]. Later Claus Gerhardt [G] considered the 

borderline case and by combining the uniqueness results of [BF], [CB2] and his 

regularity estimates, he showed that if a cosmological spacetime has two maximal 

Cauchy surfaces then they are both totally geodesic and the region they bound is 

static. This can :readily be sharpened to show that if there is just one maximal 

Cauchy surface then either there is a constant non-zero mean curvature Cauchy 

surface or the spacetime is globally static [B3]. 

3. PDE results. 

The first result from outside the relativity community is due to E. Calabi [C]. 

Using the Lorentzian analogue of Simons' identity in minimal surface theory (SJ], 

he showed that maximal surfaces in Minkowski space have the Bernstein property 
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(i.e. entire solutions are linear) in dimensions n ::::; 4. This was extended to all 

dimensions by Cheng and Yau [CY], using a maximum principle argument. This 

argument has been simplified by Schoen [S] and Ecker [E] and is worth describing: 

Let M = graph0 u be a maximal hypersurface in Rn,l with 0 e M and define 

the functions 

w = (X,N)2 , 

where X= (x,u(x)) is the position vector and N is the future-directed unit normal to 

M. Denoting the gradient and Laplace operators of M by V, A respectively, we 

have the formulae 

Az = 2n 1Vzl 2 = 4(w+z) 

A w = 2w I A 12 + 21 V(X, N) 12 

where A( , ) is the second fundamental form of M . Denoting by xT the tangential 

component of X and A. the maximum modulus eigenvalue of A, we can estimate 

I V(X, N) 12 = A2(x_T, xT) ::::; (w + z) A.2 . 

Since H = tr A = 0 (maximal), by the Schwarz inequality, 

so that 

Alogw :<:: 2(w/(n-1)-z) IVlogwl 2 /lvzl 2 . 

We now apply the maximum principle to the function 
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f(z) + log w , 

where f(z) is chosen so f(Z) = -co and Z > 0 is such that M n { z s Z } cc M . This 

will be satisfied for every Z > 0 if M is regular and entire. In fact, we take 

f(z) = K log(Z - z) + log z , K > 0 to be fixed, 

and note that M regular ensures f(z) + Iog w is C2 near 0 and hence has an 

interior maximum. At the maximum point we have 

f'(z) Vz + Vlog w = 0 and 0 :=:: t1f(z) + t1log w , 

so substituting gives 

0 ;::: 2nf'(z) + I Vz 12 f"(z) + 2 (w/(n-1)- z) f'2 . 

Collecting terms in w , substituting fo:r f(z) with K = 2n and simplifying, we get 

w ~ n(n + 1) z at the maximum point. 

Thus at every point in M n { z < Z } we have 

f(z) + log w ~ log(n(n+l)Z2n) , 

>vhich gives the estimate 
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If M is :entire then sending Z ~ co shows 

and in terms of the Lorentzian distance function p = , this is 

::o; (n+l) 

This shows M is a complete Riemannian manifold, but more is needed to prove the 

Bernstein theorem. Following [E] we use the Calabi-Simons identity 

= 

together with the maximum principle for log( J A I (Z-z)) . This gives 

and since at the maximum point also Vlog I A I = - Vlog(Z-z) , we see that 

Thus at every point of M 11 {z < Z} we have 

so for an entire M we send Z ~ oo to find that I A 1 2 = 0 , which is the Bernstein 

result. 
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Another application of the Calabi-Simon identity was given by Nishikawa [N], 

whilst Treibergs [T] extended the estimates of [CY] to study constant mean curvature 

hypersurfaces in Minkowski space. He classified the possible "blow downs" and 

showed there is a constant mean curvature hypersurface asymptotic to any C2 cut of 

null infinity, contrary to an earlier conjecture [Gol] (see also [St]). 

We note that the I Vp I estimate implies an interesting interior bound for the 

ellipticity parameter v [B2] but this is of limited use for the general prescribed 

mean curvature problem, since the argument does not extend to non-constant mean 

curvature or non-flat spacetimes. However, with hindsight we can see the Cheng­

Yau argument is closely related to the interior estimate for v of[B2]. This will be 

described later. 

From the formula for the variation of mean curvature [CB2], [Bl] 

(5) A v = v ciAI 2 + Ric(N, N)) + T(HT) - (T, VH) , 

where Ric( , ) is the Ricci curvature of the spacetime and T is the reference unit 

timelike vector field used to define v , we see that for constant mean curvature 

hypersurfaces in Minkowski space, 

Of course, this can also be derived by a direct calculation. This implies v is bounded 

by its value on the boundary and thus solvability of the Dirichlet problem for constant 

mean curvature in flat space follows from suitable boundary gradient estimates. 

Such estimates were given by Flaherty [F] for C2 domains n c Rn with 

non-negative mean curvature, and Bancel [Bal] for convex domains with small data. 

The paper (BSJ essentially settled the main problems in Minkowski space. A 

Moser iteration argument based on the 11v identity and the Sobolev inequality gives a 
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bound for v in terms of a boundary estimate (for merely bounded measurable mean 

curvature) - this boundary estimate follows fur general C2 domains by a spherical 

barrier construction. This settles Problem 1. A comparison lemma tor (DP) and 

(VP) solutions shows that a variational extremal is the limit of classical solutions 

and a mean value type estimate for J I D 2u I 2 shows that the approximating sequence 

satisfies uniform estimates, so the limit surface is regular. Thus the Dirichlet 

problem is solvable for arbitrary domains, provided only that the boundary data 

admit a extension. The "contained light ray" lemma shows that a null ray 

segment within a variational extremal surface extends within the surface to the 

boundary, and this permits a description of the solution if the boundary data admits 

only a weakly spacelike extension; namely, the surfaces is regular except on the 

contained null rays. With the proviso about contained null rays, this settles 

Problem 2. 

Independently, Gerhardt [G] derived the v bound and showed it can be 

extended to non-flat spacetimes. Like [BS], Gerhardt's estimate requires only 

bounded mean curvature and depends on the size of the domain and on a boundary 

estimate for v . An immediate application is the existence of constant mean 

curvature surfaces in spacetimes with compact Cauchy surfaces and barriers 

(crushing singularities [ES]) to the past and future. A special case of this :result in 

Gowdy spacetimes (i.e. spacetimes with a T2 symmetry) had been obtained slightly 

earlier by Moncrief and Isenberg [IM]. Further, by constructing spherical barriers 

Gerhardt was able to solve the Dirichlet problem in spacetimes conformal to a 

product. As mentioned above, he also applied the estimate to show that maximal 

surfaces in cosmological spacetimes are either unique or the spacetime splits 

metrically. 

A global estimate for v which does not depend on an a priori boundary 

estimate and could be applied to unbounded domains was given in [Bl]. Although 

the maximum principle argument is described in [Bl], an integral argument 
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(distinct from [G], [BS]) gives the same estimate, including the dependence on the 

norm of H . The key idea of the argument is to use a time function which has been 

adapted to the boundary data and consider the maximum principle for the functions 

±Ku +log v simultaneously, where u is the time function restricted to the surface 

and K is a large constant. The condition u = 0 on the boundary is used to control 

the case where both ±Ku + log v have boundary maxima. Together with a 

coordinate bending result constructing a time function incorporating a given regular 

hypersurface as a level set, this solves (DP) for smooth boundary. 

Another application of the estimate is to the problem of finding a maximal 

sur£<:~.ce in an asymptotically flat spacetime. The method here is to solve the Dirichlet 

problem with aM going to (spatial) infinity and try to take a limit. The difficulty is 

that the estimate for v depends on the height u , and thus an a priori estimate is 

needed for u . Such an estimate is given in [Bl] and involves two conditions of 

physical interest. Firstly, the mean curvature of the reference time function H0 is 

required to decay as O(r-3) and this condition is also needed to remove an 

arbitrariness in the structure of spatial infinity [A]. Secondly, a uniformity condition 

is needed in the interior region which ensures that weakly spacelike hypersurfaces 

have bounded height variation in the interior. Brill's example of an asymptotically 

flat spacetime not admitting any ma.'Iimal surface extending through the interior 

:region shows that some restriction is necessary, and the uniformity condition is 

sufficient to exclude this example. 

The height estimate is obtained by first modifying the time function at infinity 

so H0 ~ -cr-3 (the first condition is essential here) and then applying a test function 

argument to the mean curvature formula 

Some careful estimation of the error terms and a mysterious choice of test function 
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leads to the estimate for u . This is described in [Bl] section 5. 

There are many open 

also that the 

generalised to a moving with bounded (the "boosted slice" problem), but 

not immediately to the case of several bodies moving apart. Another interesting 

:problem is that of existence of constant (non-zero) mean curvature surfaces 

asymptotic to a given cut at nun infinity [St], [T]). In view of Brill's example, it 

condition on the horizon. 

The most recent results [B2] show that the Minkowski space existence 

theorems of [BS] hold in general Lo:rentzian manifolds, after taking into account the 

possibility of more complicated causal structure. A generalisation of the idea of 

"graph" is essential to the statement and 

weakly spaceHke hupersurfaces M0 , 

reference timelike vector field and ClM0 = 

of the (VP), (DP) results: we say that 

rel. (where T is a 

if they are COih"'lected by a family of 

weakly spacelike hypersurfaces Mt , 0 ~ t :o;; 1 , dMt = oM0 , moving along the integral 
•) 

curves of T . Since there may be quite unrelated surfaees spanning a given 

boundary set (an (immersed) example in lVIinkowski space is described in [Q]), it is 

most natural to consider the existence problems for surfaces in a given T~homotopy 

equivalence class. Thus the basic (DP) existence theorem is: 

Theorem [B2] Suppose S is a wea!dy spacelike hypersurface with cl(D(S)) globally 

hyperbolic, and Fe C1('V'). Then there is a weakly spacelike M with M"' S rei. as 
and a singular set L c M such that M - L is regular and HM = F on M - :E. 

Here the singular set L is entirely analogous to the "contained light rays" of 

[BS]: 

(6) I = U { y I y: (0,1) ~ M is a null geodesic, {y(O), y(l)} caM} , 
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and the y are disjoint and without conjugate points. Thus, any weakly spacelike 

hypersurface spanning iJM (in the T-homotopy class) must contain 1.:. The theorem 

can be extended to allow for immersed surfaces and to allow a class of C1 spacetime 

metrics [B2]. 

The proof starts by showing an interior gradient bound from a maximum 

principle similar to [Bl]. A simple form of this estimate in Mikowski space is 

reminicent of [CY] and the interior gradient estimate for minimal surfaces [K] - we 

briefly describe this : 

Let M c Rn,l be a regular hypersurface with mean curvature HM = FIM 

wh.ere FE Cl(Rn,l). Set 't = --ft2 -I X 12 , 'f =at ' T* = 't-1x and 

v = -(T,N) N)' 

where N is the future unit normal to M. Now suppose M satisfies 

(i) ,;0 = u(0)/2 > 0 , 

(ii) M n { 't ~ 1:0 } cc M n { (x,t) : I xI :::; R , 0 S: t :::; R } . 

Clearly, by shifting the origin we can arrange that (i) and (ii) hold, for some 1:0 > 0. 

Since T*) =- tlt, from (ii) and the triangle inequality ((Bl] lemma 3.3) we have 

v :::; 2Rij',; ~ :::; 2Rv/'t . 

We have the identities [BS] 

:::: 



and the estimates 

IAI 2 ~ (1 + - tP , 

I Vlogv 12 :;; A,2 , 

lon+1HI :;; iDHI , 

from which we see that, in the region M n { t ~ 1:0 } , 

.&log v ~ 1/n I Vlog v Jz -

Ll.'t ~ - C2~ - lvlogvl 

where Cl' C2 depend only on F, DF, 1:0 and R. Now we can apply the maximum 

principle to f('t) + log v , where =K and K is some large constant to 

be fixed. At the maximum point we have f'('t)V't = -Vlog v and 

0 ~ j'('t)i'l't + j"(1:) I V1: 12 + Mog v 

;;?: (.f"('t) - f'('C)/t + f'('liln) I Vt 12 - c1~2 - Czf'(r)~ 

and substituting for f gives 

Since ~2 -1 = I V't 12 , for K sufficiently large (depending on R, -r0, F, DF) we see that 

at the maximum point, 

v :;; RCI't0 :;; C(R, 't0, F, DF) . 

This gives the estimate 
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in M n { 't;::: 1:0 } and in particular, v(O) :S: C(R, t 0, F, DF) . 

To generalise this argument it is necessary to find a time function 't such 

that 0 * M n {'t>O} cc M , for any M"" S :reL as Such time functions are 

constructed by smoothing the Lorentzian distance from S+ = H-(I+(D-(8))) and S_ = 

H+(I-(D+(S))) -the singular set L arises naturally here since S+ n S_ = CJS u :E and 

the :regions where the Lorentzian distance gives a time function cover M - ::S • 

'ro describe the variational regularity result, let IF(M) denote the variational 

functional (VP). We say M is locally extremal at p if:for any S such that S = M 

outside a neighbourhood of p , we have IF(M) ;::: IF(S) . Clearly this is weaker than 

M being maximal for IF. 

Theorem [B2] Suppose M is a weakly spacelike hypersurface which is locally 

extremal for IF(M). Then M is regular except for a singular set :E , defined as 

above (6) except that the null geodesic y c M may have no endpoints (eg. a closed 

null loop). 

We note that the hypotheses are completely local, so the result holds 

regardless of the causal stn1eture of the spacetime - even time-orientability can be 

dropped if a suitable variational functional can be defined. The thorem reduces the 

problem of finding a smooth spacelike extremal to a variational problem to two steps: 

(i) show the existence of a Lipschitz hypersurface, extremal for the 

variational problem - by the semi-continuity of the area mentioned above, this 

amounts to showing that any sequence of weakly spacelike hypersurfaces which is 

maximising for IF is a priori uniformly bounded, 

(ii) show that the limiting hypersurface does not contain any entire null 

geodesics (i.e. the singular set :E is empty). For example, this follows immediately if 

the spacetime is globally hy-perbolic. 

The regularity of the limit surface then follows from the theorem. 



42 

The p:roof is based on a foliation uniqueness identity : suppose 't is a local 

time function with level sets Q" having mean curvature F , and M is a weakly 

spacelike hypersurface, T~homotopic to Q0 , Then by applying Stokes' theo:rem to the 

identity divMT "'F, where T is the unit normal vector of the foliation, we get 

(7) 

with equality exactly when M coincides with a level. set of 1: • Here v is derived from 

the foliation normal vector, The difficulty in applying this result lies in constructing 

a time function/foliation with mean curvature F , In Minkowski space this is easy 

(if we also assume atF = 0)- just t-translate . This gives a special case of (7), 

J (H(u)-
n 

-v)dx :s; 0 u = u onan, 

where u, v E C0•1(Q) are variational solutions with mean curvatures H(u), H(v) 

respectively. This identity is similar to that used in the proof of the height estimate 

for asymptotically flat maximal surfaces. To construct local foliations in general we 

use the implicit function theorem and this requires a new estimate for the first 

eigenvalue of the linearisation LM (see (3)) for all regular prescribed mean 

curvature surfaces in a small cylinder-neighbourhood f{lR . By estimating the 

Raleigh quotient directly we show that 

where A,1(t.; BR) is the first Dirichlet eigenvalue for the standard Laplacian on the 

ball of radius R. 

This foliation argument also gives local uniqueness, without any further 

conditions on the spacetime. Uniqueness also holds if the timelike convergence 
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condition is satisfied or if there is a timelike isometry. Clearly the optimal 

conditions for uniqueness have not been found - there are large gaps between these 

conditions. 

4. Some Applications. 

As mentioned in the introduction, there is an interesting application of these 

results to cosmological space times. If the spacetime o/ also satisfies 

(G) rf) - I(p) is compact, for one point p E o/, 

then there is a regular constant mean curvature Cauchy surface in o/ . This is 

proved by considering the family of constant mean curvature surfaces passing 

through p , and showing that exactly one of these surfaces is regular at p . It is 

interesting that although the regularity results described above make no 

assumptions on the curvature apart from boundedness, this result definitely needs 

the timelike convergence condition. By Hawkings singularity theorem and 

Gerhardt's splitting result, the spacetime is then either timelike incomplete (i.e. 

singular) or it is static. This is Galloway's splitting theorem [Ga], which however 

assumed (G) holds at every point in o/, We note that the condition (G) was first 

introduced by Geroch [Gel] with the aim of proving exactly this singularity result, 

The necessity of some condition like (G) is shown by the example [B3] of a 

cosmological spacetime admitting no constant mean curvature Cauchy surface. 

Using the regularity theory and the nature of the spacetime singularities of the 

example, we can show however that there are complete noncompact constant mean 

curvature surfaces, which are not Cauchy surfaces. 
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More recently J.-H. Eschenburg [EJ] has used geodesic methods to prove 

Yau's splitting conjecture [Y]- a timelike geodesicaHy complete, globally hyperbolic 

spacetime satisfying the timelike convergence condition and having a line a 

doubly infinite timelike which realises the distance between any two of its 

points) is necessarily a metric product. This does not any compactness 

condition and generalises the result of [B3], since a cosmological. spacetime 

satisfying (G) is either timelike geodesically complete or admits a line. Using the 

regularity theory of [B2], G. Galloway [Ga2] has shown the assumption of timelike 

geodesic completeness can be r,smoved from this result. 

The argument of [Gel], [B3] leads to surfaces which are singular at an 

isolated point. In Minkowski space such singularities have been classified by Ecker 

[E], using barrier arguments and results from [CY], [BS]. "vVe note that numerous 

examples of singular surfaces in R 2•1 have been given Kobayashi [Kbl], using the 

Weierstrass representation for maximal surfaces (this was also known to Calabi), 

whilst [Kb2], [AN] used this representation to study the Gauss map. In [B4] the 

results of [E] a:re extended to non-flat spacetimes and the interior gradient bound of 

[B2] is adapted to prove a removeable singularity result. It may be possible to 

improve this result to allow for singular sets larger than just points. A similar 

question is that of deterr.ojning the regularity of a maximal surface near a nuH ray 

- L. Simon has conjectured the surface is Cl,l. 
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