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Let the leading k x k p:rinci.pal submatrix of a:n m }{ n 

matrix A be nonsingular for k = L, .. �,�m�i�n�{�m�~�L�n�}� . Then A = LR , 

where L is a m x m lower triangular matrix with l's on the diagonal, 

and R is an m x n. upper trapezoidal matrix; if, in particular, 

m = n and A is �n�o�n�s�i�n�g�~�l�a�r�,� then L and R are unique. 

The factors L and R can be computed employing Algorithm 

4.2-1 of However, this procedure can fail. on. simple-looking 

matrices like �[�~� t] , if a leading principal subrnatrix is singular. To 

take care of such a sl.tuatimil also to achieve stability in case the 

pivots are nonzero but small), one can �i�n�t�e�r�c�P�~�e� the rows of A . 

An m x m matrix P is called a permutation matrix if 

is a one to 

one map, Le., a permutation of {l, ... ,m} ; P is obtained by permuting 

the columns of Im according to �~� Note that Pis unitary, i.e., 

so that -1 p corresponds to the permutation 

-1 
1r If A is an m x n matrix, then the matrix PA l.s obtained from 

-·1 A by· permuting its :rows according to the permutation �~� 

In Gaussian elimina.t:l.on with mrt:i.al nivoting, one performs 

Gaussian elimination process with the following interchange of rows. 

Suppose the matrix A (= A{O}} is reduced to a matrix 

(3) 

at the (k-l}st step. 

A(k-1) A(k-1) 

A(k-1) 1' 1 1,2 
= 

0 A(k-1) 
2,2 

Then search the first column of A(k-1) 
2,2 for an 

entry with the largest absolute value, say j-th entry, and then swap the 

th .th k and the J rows of We have the following result. 
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Let the rank of an m x n matrix A be r Then PA = LR , 

where P is an m x m permutation matrix, L is an m x m lower 

triangular matrix with 1 's on the diagonal and R is upper trapezoidal: 

(4) R 

r n-r 

where Rl,l is an upper triangular matrix with nonzero diagonal entries. 

Because the choice of an entry with the largest absolute value in 

the first column of A(k-l) is not unique, k = 1,2, ... , the 

factorization in the above result is not unique. It can be computed by 

using Algorithm 4.4-2 of [GV], which requires llllilS - {m+n)s2/2 + s3/3 

flops, where s = min{m-l,r} and comparisons. A flop is 

basically one floating-point multiplication and addition of subscripted 

arg,umen ts. 

Having found the factorization PA = LR , we proceed to solve 

Ax = il as follows. Since L is lower tri&"lgular and invertible, we 

can find ~ € ~n such that ~ by forward e1imiv~tion. Next, we 

consider the equation 

It has a solution only if the last (m-r} entries of :iS are zero. In 

case ~ = Q , there are (n-r) linearly independent solutions. The 

solutions can be obtained back#ard substitution since Rl,l is upper 

triangular and invertible. 

Cbolesky factorization and least squares problem 

If A is an n x n positive (definite) ;natrix, i,e., 

for every ~ :;£ 0 then all the leading principle 

submat:rices of A are nonsingular, and we have 
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A= LR 

where L is an n x n lower trim1gular ma:trix with 1 's on the diagonal 

and R is an n x n upper triangular matrix with positive diagonal 

and. since A is self-adjoint, 

But H -1 -1 R diag(d1 , ... ,d11 ) is lmwer triangular with 1 's on the diagonaL 

and diag(d1 , ... ,dn}LH is upper triangular. Hence by the uniqueness 

part of Theorem 1, we have 

This is called the Cholesky fa,ctorization of a positive (definite) 

matrix A To implement it, OJneJ can use Algoritto..m 5.2-1 of [GV], which 

requires n3/3 flops (and no comparisons). 

Coming back to a general m x n matrix A , we note that the 

n x n matrix B = AHA satisfies <Bx,x) = <Ax.Ax> l 0 for all x € X , 

and if A is one to one, then B is, in fact, positive (definite). 

Now, A is one to one if and only if rank A = n Consider, then, an 

m x n matrix A with rank n (in particular, m ~ n), and let ~ E ~m 

If there is an :5 € ~n such that iqs = l then it can be found as 

follows. Form B = AHA and solve the so-called normal 

equations B~ ~ yielding 
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2 
See Algorithm 6.1-1 of [GV]. This algorithm requires ~ (m + ~) 

2 3 
flops. 

Even when there is no ~ E ~· such that ~ = ~ , the vector 

H -1 H 
~· = A(A A) A ~ 

is the best approximation to it from the range of A . This follows by 

noting that for every ~ E ~n , 

so tnzt ~· - ~ is orthogor~l to the range of A . (See [L], 23.2.) 

In other words, the vector 

H .-1 H t 
~ = (A A) A ~ A it , say 

is the (unique) solution of the least squares problem 

(5) ' Find :15 E iCn 

For this reason, ~ = is called the least squares solution of 

A2 = ~ ; the operator (or the matrix) 

is called the llfoore-Penrose .inverse of the m x n matrix A of rank 

n Note that it satisfies the four Penrose equations: A A ' 

At Alit = At (AAt)H = AAt and (A1A)H = A1A In particular, if ;y: 

belongs the of A and ~ = ~ then i (AHA)-lAHAx = to range 
' A 'l = ~ 

i.e. , the least squares solution of A~ = ;e; is, in fact, the solution 

of = ~ . In case m = n , At = A-l , 

There is an alternative, and perhaps better, way of finding the 

least squares solution. To describe it, we go back to the upper 
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triangularization of an m x n matrix A . 

For ~ € em , consider 

{" if ~=Q 

:s = ~2~2 if ~;.!Q 

Then t:he matrix 

(6) 

is called a Householder matrix. Note that H is an elementary matrix, 

while Hx = ~ if 
H 
~x=o H is called the reflector 

which reverses ~ . Observe that H is self-adjoint as well as unitary. 

G:i,ven ~ € em , let ~ = ~ - 11~112£1 , and H be the reflector which 

t reverses ~ . Then ~ = [11~112 ,0, ... ,OJ . Thus, like a Gauss matrix, 

a Householder matrix can be used to introduce zeros in all the entries 

of a vector except possibly the first. 

Let A= [~1 .... ,~J be an m x n matrix. Let ~ be the first 
1 

nonzero column of A . Find a reflector H1 , as above, such that 

If 

0 

0 

t 
= [II~ 112 ,0, ... ,OJ 

1 

0 

0 

II~ 112 * ... * 
0 1 

0 

we repeat the process for the (m-1) x (n-k1) matrix A(2) to find an 

appropriate reflector ~ which is an (m-1) x (m-1) unitary matrix. 

Let H2 = diag(I 1 .~) , which is also unitary. Continuing this 

process, we find that 
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r 
(7) 

m-r 
n 

where r is the raD~ of A , and R is upper trapezoidal with 

nonnegative diagoD~l entries. Letting U = H1 ... Hr, we obtain the 

following result. 

~ 3 Let the rank of an m x n matrix A be :r Then 

A = uR , where U is an m x m unitary matrix and R is an m x n 

upper trapezoidal matrix. 

Having found the factorization A we proceed to determine 

the solutions of A~=;(, as follows. Since U is unitary, we find 

~ € such that U~ = ;(, by letting ~ "' tfi;t . Next, we consider the 

equation 

It has a solution only if the last (m-r) entries of ~ are zero. In 

case ~ = Q , there are (n-r) linearly independent solutions. The 

solutions can be obtained backward substitution since R. is upper 

trapezoidal. 

Let us consider the case when A l~s rank n, i.e., r = n ~ m. 

In this case the n x n upper triangular matrix R. is invertible. Let 

and UH 
~ = ;(, = 

every ~ E Cn , we have 

t 
[c{l), 000 ,c(n),d(l), ... , d(m-n}] . Then for 

It is then clear that the quantity !IA~-;t!l2 is minimized exactly when 

is given by :5 

-1 
~ = R £ Tims, the least squares solution of A~ = ;t 

-1 
R £ where the n-column vector £ consists of the 
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first n entries of 
t -1 

In other words, A ~ = R £ , This is 

known as the Householder orthogonalization method for finding the least 

squares solution of an m )< n linear syst<em of rank n . It requires 

2 n n (m - 3) flops. 

While on the subject of factoring an m x n matrix A as a 

product of a unitary and an upper trapezoidal matrix, we state the 

following result. 

~ 4 (QR factorization) Let A be an m x n matrix of rank r 

Then A = QR where Q is an m x r matrix satisfying and R 

is an r x n upper trapezoidal matrix with nonnegative diagonal 

entries; Q and R are unique, If r = n , then R is upper 

triangular with positive diagonal entries. 

The proof of the existence is immediate since A tffi = U [~] and 

we can let Q = UI ' where I consists of the first r columns m,r m,r 

of I Note that if A= QR then m the Jr columns of Q form an 

orthonormal set in since QHQ = I are obtained by 
r 

successively orthonormalizing the linearly independent columns of A in 

the order ,.o.,~ by the Gram-Schmidt process. The fact that the 

diagonal entries of R are nonnegative then gives the uniqueness of this 

construction. 

Perturbation of the solution 

We now consider the sensitivity of the solution ~ of A~ = ~ to 

the changes in the coefficient matrix A and in the given right hand 

side ~ . 

First, let m = n and the matrix A be nonsingular. By (9.1} and 

Problem (9.1) , we obtain the following result. 
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~~5 Let A and A be :n )( :n ma.trice:s, fu!d A be :nonsingular. 

If 
-1 ~ < 1 then ~A also nonsingular. Also, if 

~ 

IIA (A-A)I! ' 
is il ' ?.5 y 

"' 

and 
A 

in (;n 
?.5 are such that il~ Q 8.!10 

then 

- ;til IIA- All 
II~ - ?,SII ll;tll + liAII 

(8) 
II?,Sii ~ !I Ail IIA-111 

!I 

If we let 

-]. 2 
--:.,...-;-;- :<;; 2.s11AII !lA !1(1 + i5 + 5 + ... ) 
il~ - ?,Sii 

+ ... ) . 

In other words, 

(9) -1 2 
II?,SII ::: 211AII HA lie. + 0( c. ) , as .s ~o. 

This shows that the relative cha.nge 11~-?,SII / I!?,Sii in the solution x of 

A~ = ;t is bounded essentially by 211A!I IIA -l 11 times the larger of the 

relative changes in A and in y For this reason, the quantity 

(10) 

is called the condition number for the linear system having the 

nonsingular matrix A as its coefficient matrix. 
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If we use the Euclidean norm II 11 2 , then the condition number 

-1 k2{A) = IIAII2 IIA 112 can be given another interpretation. First note 

H 2 H 2 that since IIA All2 = IIAII2 = IIAA 112 , we have 

(11) 

Let A1(A) •... ,An(A) denote the eigenvalues of A arranged so 

that IA1(A)I ~ ... ~ IAn(A)I # 0 Let B be an m x n matrix. Then 

a.(B) = JA.(BHB) is called the j-th singular value of B it is the 
J J 

positive square root of the j-th largest eigenvalue of BHB Notice 

that if A is normal, then so that 

{12} a .(A) = lA .(A) I = JAj(AHA} (A normal} 
J J 

Now, since AHA is always normal, 

(13} 

and since for j = 1, ... ,n, we have 

IIA-1112 = II(AH}-1112 = JA1 ((A-1(AH}-1 

= JA1((AHA}-1} = 1/JA (AHA} = 1/a (A} 
n n 

Thus, we have 

(14} 
a (A} n 

Let us now consider a more general case when A is an m x n 

matrix of rank n 

for every ~ € em 
Then the equation A2 = ~ has at most one solution 

Unless m = n , there exists y € em for which 

there is no solution. All the same, there is a unique least squares 

solution for every y € em In analogy with the square nonsingular 
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matrix case, we define the condition number of an m x n matrix A of 

rank n by 

{15) k{A) = IIAII IIAtll . 

Note that for the Euclidean norm II 112 , 

2 H IIAII2 = IIA All2 • 

{16) 

Hence by (12) and (14) 

as in (10) and (14). 

Let ~ € em . In the method of normal equations to find the least 

squares solution of A~ = ~ , we let B = AHA and find ~ such that 

B~ = AH~ . Let 1J be another n x n matrix such that 

ll(fi-AHA)(AHA)-111 < 1 , so that fi is nonsingular. If fi~ = z , then 

since k2{AHA) =~(A) by {9), 

(18) 

A H H ... H H 
where c = max{II~-A ~112 / IIA ~112 , Jljj-A All2 / IIA All2} . 

In case ~ belongs to the range of A , the relative change in 

the least squares solution of A~ = ~ has a better bound, as the. 

following result shows. 

11IEOREil 6 Let A and A be m x n matrices and let A have rank n . 

If IIA t {A-A) II < 1 , then A is also of rank n . Let ~ and i be in 

em . and ?S and ?S be in of such that 
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Assume that 

Then 

as 

The first part of the above theorem is easy to prove: Let 

A~ Q Since IIAt (A-A) II < 1 and 

I!~ II IIAtA~II t A 

IIA (A~-A~) ~~ 5: IIAt (A-A)Ii !lull 

we see that ~~~~~ = 0 , Le., ~ = Q . · This shows that A is one to 

one, i.e., rank A= n The second part of the theorem is difficult to 

prove and we refer the reader to pages 141, 143 and 144 of [GV]. 

While solving a system of linear equations ~ = ~ on a computer, 

we have to use the floating-point representation of the entries of A 

and ~ ; thus the entries are only approximately correct. Further, in 

the process of solving the problem, round-off errors arise due to the 

floating-point arithmetic of the computer. (See Section 18 for some 

details.) For many well known methods of solving a linear system, it 

can be shown that the computed solution ~ , in fact, satisfies a 

nearby system AxAA A 

~ = ~ . In these cases, the perturbation analysis of 

the solution given earlier becomes applicable. 

In the case of Gaussian elimination with partial pivoting for an 

n x n nonsingular system, the computed solution satisfies a linear 
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system v;ith coefficient ma.trix A such that 

(19) 

where 0 = 1 1-t 
2!3 with the machine base and t the machine 

precision, and p is a certain growth factor which measures how large 

the entries become in the solution process. Empirically p is known to 

be of modest size ([GV], p.67). 

If m ;fi n , then a round-off error analysis for Gaussian 

elimination with partial pivot:i.ng for an m x n system is not feasible, 

because the pivots are not uniquely determined. Thus, it is not 

possible to associate a unique ~ € as the ''solution' of y_, for 

an arbitrary 

In the case of the Householder method for the m x n least squares 

problem Au ":l of rank n , it can be sh.o11111 that the computed solution 

>' x satisfies 

liA;!5 

where A and ":l satisfy 

(20} 

with 

IIA - All2 = no(6m-3n+41)a + O(o2 ) 

2 n ') 
a = L Ia .. !"" . 

i,j=l l,J 
(See p.149 of [GV].} 

While Gaussia..l. elimination with partial pivoting has a smaller flop 

count, the Householder method r~s guara..l.teed stability. TI1ere are 

several other methods for solving linear systems. But the above two are 

often recommended from the point of economy and numerical stability. 


