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15. METHODS RELATED TO PROJECTIONS

In this and the next section we describe some concrete practical
ways of constructing sequences of operators which approximate a compact
operator T in the norm, or in the collectively compact manner. As
such, they give resolvent operator approximations of T . The spectral
considerations of the previous section are then applicable.

In the present section we consider a group of methods which arise

from a sequence of (bounded) projections oG X=X . For T € BL(X)

and n=1,2,..., we say that the operators
(15.1) ergT, ©=Tr and T =uTr
n n n n n n n

give the projection method, the Sloan method and the Galerkin method

for approximating T , respectively. If each wh(X) is finite
dimensional, then the above operators are of finite rank. We now

consider the convergence of these approximation methods.

THEOREM 15.1 Let w_ 25 T, the identity operator on X . Then

(TE) . (Ti) and (Tﬁ) are pointwise approximations of T .
If T 1is compact, then TE E—ﬂa T ., while Ti L€, T and
¢ <51 .
n

If, in addition, . 51 , then Ti B, 1 and Tg LI

particular, this is the case when X 1is a Hilbert space and each m

is an orthogonal projection.

Proof It is easy to see that TE P, T and Tﬁ P, T . Also, for

x € X ,

1% - Txil < i TS - Txll + 0T x - Txll .
n n n n
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Since ™ N , we see by the uniform boundedness principle that
(Ihrnll) is a bounded sequence. Hence T1G1 2,7

Let, now, T be compact. Then the pointwise convergence of LS
to I 1is uniform on the totally bounded set {Tx : x € X , Ilxll { 1}

([L]. 9.3(b)). Thus,

IITP—TII=II7TT—TI|->O .
n n

Next, by letting An =w_, A

I and B =B =T in (13.4), we see
n n

that

BA ZS5BA=T.
nn

5t
1
3
il

Again, letting A =7, A=1,B =Tr and B=T in (13.4), we
n n n n

have

T 7 Tr =AB S5 AB=T .
n n n nn

Finally, let ": P51 , in addition. Then
(1) = 77 B ™ anda (9™ = 7% B 7°,
*'n n n n n
as before. Hence by Theorem 13.5(b),

TIS1 ————9” i T and Tg ——9" L T . Ved

We remark that the condition L L2571 is not really needed for

concluding TIIZ P51 or TIP; I_[__II_% T ; it is enough to have mX X
for every x in the range of T . In fact, we shall later give

examples to show that the projecions m need not even be defined on

the whole of X . We shall also give an example to show that ’I‘IS1 <57

is possible without having L N
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We consider some necessary and sufficient conditions for L 2,71 .

PROPOSITION 15.2 Let (wn) be a sequence of (bounded) projections
defined on X , and let Y be a dense subspace of X . Then the

following conditions are equivalent:

(1) = 251
(ii) (Il'n'nll) is a bounded sequence and X X for every x €Y
(iii) (II1rnII) is a bounded sequence and for every x € Y , we have

dist(x,wn(X)) =0 .
Proof We have for every x € X ,

(15.2) dist(x.vrn(X)) < llx—wnxll .

and on the other hand, for all y € 1rn(X) .
le—~1rnx|| = II(I~1rn)(x—y)|I < III-1rnII -yl
so that
(15.3) IIx—1ran| < III—-'n'nll dist(x,wn(X)) < (1+Il1rnll)dist(x,1rn(X)) ,

by taking infimum over all y € wn(X) .

Let T 251 . Then (|I1rnll) is bounded, and by (15.2) ,
dist(x,'trn(X)) - 0 for every x € X . Hence the conditions (ii) and
(iii) follow.

Let, now, (Il‘n'nll) be bounded. Then (15.2) and (15.3) show that for

every x €Y ,
™X X if and only if dist(x,wn(X)) -0,

and in that case, the denseness of Y in X implies that mX X for

every x € X, i.e., the condition (i) holds. Va4
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We now give several constructions of bounded projections on X and
examine their pointwise convergence to the identity operator.
Truncations of a Schauder expansion

Let X be a (separable) Banach space with a Schauder basis

{xk tk=1,2,...}, i.e., % € X, kaH =1, and for every x € X

s kZI ak(X)Xk

for some unique ak(x) € C . Define

n
15.4 = .
(15.4) m X k§1 a, (x)x,

Since each linear functional x » ak(x) is bounded ([L], 11.6) , we
see that each L is a bounded projection. Also, by the very
definition of a Schauder basis, we have L £, 1 . Note that each m
is of finite rank.

As a special case, let X be a (separable) Hilbert space and let
{xk :k=1,2,...} be an orthonormal basis for X . Then

a, (x) = x.%> , so that

n
mX = )} <x,xk>xk .
k=1
Then each L is an orthogonal projection and anH =1.

We consider some concrete examples.

(i) Let X=6°, 1<¢(p<®, and for k=1,2,...
X, = [o,...,0,1,0,0,...71°% ,

where 1 occurs only in the k-th place.
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(ii) Let X = C([0,1]) . For t €R , let xo(t) =t,

Xl(t)=1—t,

V]
2
1t

g
o
7Y
<-r
IN

1/2
%5(t) =922t , if 1/2<t <1

0 ., if t<

o

or t>1,

and for n=1,2,... , j=1,...,2%, let

n_ .
x2n+j(t) = x2(2 t-j+1) .

Then {xkl[o,l] :k=1,2,...} 1is a Schauder basis of X consisting of

saw-tooth functions ([L], p.69).

(111)  Let X =L1%([0,1]) . For t € [0,1], let x, (t) =1,

1, if 0 <t<1/2
x; o(t) =9-1 . 1f 1/2<t<1

0 , if t=1/2 s

and for n=1,2,... , j=1,...,2° , let

P, i (5-1)72" < ¢ < (25-1)72"

n+1

%, 5(t) = {om . if (25-1)72" <t < 2t

0 , otherwise.

Then the Haar system {xn j} is an orthonormal basis of X consisting

of piecewise constant functions ([L], p.198).

(iv) Let X = Lz([—w,w]) . The functions xk(t) = eikt/JEF .
k =0,+1,42,... form an orthonormal basis of X , consisting of
trigonometric functions ([L], p.194). If X = L2([O,w]) , then
xk(t) =sinkt , k=1,2,... , or xk(t) =cos kt , k=0,1,2,... also

form orthonormal bases of X .
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(v) let X = Lz([—l,l]) . If we orthonormalize the set

{1,t,t2,...} by the Gram-Schmidt process ([L]., p.187) , then we obtain

the orthonormal basis of X consisting of Legendre polynomials X of

degree k = 0,1,2,... . Note that
xo(t) = INZ . x (1) =372 t , xy(t) = (3/4NT0 (t7-13) . ete.

Again, if we orthonormalize the same set with respect to the weight

function w(t) = 1/J1—t2 (resp, Jl—tz ) . t € (-1,1), then we obtain the
Tchebychev polynomials of the first kind (resp., second kind) (cf.[L],

p.189).

Orthogonal projections onto piecewise polynomials

Let X = Lz([a,b]). For n=2,3,... , consider a partition
(n) , ((n) n (n) _
a=t5) o™ i et o
of [a,b] . Let hn = max{t(n)—t(n) =1,...,n} be the mesh of this

partition. For a fixed integer k > O , let Pk denote the set of all
polynomials of degree less than or equal to k , and let

P o= {% : [a.b] »C ; xl(tgnz’ gn)) for i = 1,...,n} .

If we identify functions on [a,b] which equal almost everywhere,

Pk n becomes a closed subspace of Lz([a b]) . Let an) denote the

orthogonal projection from L ([tgn%, gn)]) onto the space of all

polynomials of degree { k on [t(n) gn)] . Define LA L2([a,b]) -

L%([2.b]) by

(15.5) 7 x(t) = 7Vx(t) . x € L3([ab]) . ) < e P
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It is clear that T is a projection onto the set Pk n of piecewise

polynomials. Further, L. is orthogonal. To see this, let

xgn) = Xl[t§fi,t§n)] for x € L2([a,b]) , and consider y € R(rn) ,

z € Z(wn) . Then

n
y.z> = ) <y§n),z§n)> =0,
i=1

since y§n) € R(wgn)) and zgn) € Z(wgn)) ., where the projection wgn)
is orthogonal. Thus, L. is an orthogonal projection, and as such
lr =1 .
n
Let hn >0 . We show that w_ £ I . Since ™ is orthogonal,

n
HI—wnH =1 . Hence by (15.2) nad (15.3),

anx - xH2 min{Hy—tz ty € Pk,n}

< m1n{l|y—x|l2 Ty € PO,n} .
since PO n C Pk n This shows that it is enough to consider the case
k=0, 1i.e., when L is the orthogonal projection onto piecewise

constant functions. By Proposition 15.2(ii), we need only prove that
X X for every x € C([a.b]) , since C([a.b]) is dense in

L2([a,b]) . Let x €C([a,b]) and e >0 . Find 6 > O such that
[t-s| < 6 implies Ix(s)-x(t)| < e , and choose n, so large that

n 2 n, implies hn <6 . Now,

I x - xllg - él Ilwgn)xgn) - x§n) ||§ .

But since k = 0 , we see that

NONRCHPNOIROMON

where cgn) is the constant function defined by

cgn)(t) =17/ (tgn)—t§§%)1/2 , tgﬁi <t< tgn) .
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Hence
Hw§n)x§n) - <2 f o o lw§n)x§“)(t) x(t) [%at
Ley1-t5 7]
< 62(t§n)—t§n%) ,

since

wgn)xgn)(t) - x(t) = tfn)itgf{ [t(?zstgn)][x(s)—x(t)]qs .
Thus, we have

i x - iy, < [e2§1<t§“>—t§‘:3>]1’2 - 53,

for n 2 n, . This completes the proof of w > .

Interpolatory projections

Let X = C([a,b]) with the supremum norm. For n = 1,2,...

consider the n nodes t%n),...,tgn) in [a,b] :
- ¢(n) (n) (n) (n) _
a = tO < tl < ... < tn < tn+1 =b .

Let u§n) € C([a,b]) satisfy
ugn)(tgn)) = 5i,j iij=1,...,n .

For x € C([a,b]) . let
SEPR VNI CY
™ x(t) = .21 x(ts ug(t) -
i=

Since wnx(tgn)) = x(tgn)) s le., wmx interpolates x at

say that L is an interpolatory projection. Note that

S
1

we
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nh(X) = span{u( ),...,ugn)} , and hence L is of rank n . We show
(15.6) lm I = sup E Iugn)(t)l .
" te[a,b] i=1

It is clear that Hwnﬂ does not exceed the‘right hand side. Now, since

[a.b] is compact, let tg € [a.b] be such that the right hand side

n
equals ) Iugn)(to)l - Choose x, € C([a.b]) such that
i=1 .

xo(a) = x(t(™) . x () = x(tgé)) ,

o , if ugn)(to) =0
O(t(n)) -
|u§n)(to)| / ugn)(to) , otherwise
and xq is linear on [t(n), 53%] ., 1=0,....n . Then
n n
(tg) = 2 ey = (™ ()
*ol*o) izl v (o) tGE:?b] 121 )

This completes the proof of (15.6).

Methods related to interpolatory projections are known as

collocation methods. Now we consider several specific choices of the

(n)

functions ug i=1,....,n .

(n)

(i) Lagrange interpolation. In this case the function ug is

chosen to be the polynomial egn) of degree (n-1). In fact, we have

(15.7) egn)(t) ﬂ (t- t(n)) / H (t(n) (n))
=1
J#l J¢1

It is clear that egn) vanishes precisely at s, j=1,....,n,

R
J

J #1 . Hence the support of egn) is the whole interval [a.b] .
This usually creates problems in convergence and numerical stability of

the computations.
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Let Ln denote the interpolafory projection corresponding to

; it is known as the Lagrange interpolation. A result of
Kharshiladze and Lozinski says that if T isa (bounded) projection of
C([a,b]) onto Pn ., n=1,2,... , then there is x € C([a,b]) such
that the sequence (llx - wnxﬂw) is unbounded ([CN], p.214). In

particular, we do not have Ln—E% I.

A variation of the Lagrange interpolation is the Fejér-Hermite
(n)

interpolation. Here the function ug is chosen to be the polynomial
fgn) of degree (2n-1) whose derivative is zero at all tgn),...,tﬁn) .

In fact,
2
SIOE [1 - 2(t—t§n))(£§n))'(tgn))] [e§“)(t)] :

: Let Fn denote the interpolatory projection corresponding to
fgn),...,fgn) . If the nodes are the n roots of the Tchebychev
polynomial P of the first kind, then we have

2

PG00 = S5 040 D (oMo 0/ (e-ef)
n i=

for x € C([-1,1]). (See [CN], p.70.) It follows by Korovkin’s theorem

([L]. 3.18) that F_ L1,

Al though Ln 251 does not hold, we show that the projection and
the Sloan methods defined with the help of the Ln’s can converge.

Let w be a continuous positive function on (a,b) . If we
orthonormalize the set {1,t,t2,...} with respect to the weight
function w , then we obtain polynomials PgePys--- o which satisfy

J:pi(t)pj(t)w(t)dt = 6i,j , 1,3 =0,1,...
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Note that the degree of Py is i . These polynomials are known as the

orthogonal polynomials with respect to the weight function w . Let

Lﬁ([a.b]) denote the set of all Lebesgue measurable functions x on

[a.b] satisfying

llly = Ub 'Ix(t)lzw(t)dt]l/z <w,

a

where we identify functions which are equal almost everywhere. Then

Lﬁ([a,b]) is a Hilbert space with the inner product

.y = Jb x(t)F(Ew(t)de , x,y € L2(fa.b]) .
a

We now state an interesting result.

THEOREM 15.3 (Erdos-Turan) Let PgePys - be the orthogonal
polynomials on [a,b] with respect to the weight function w . Let the
nodes tgn),...,tﬁn) be the roots of the polynomial P, - If Ln

denotes the Lagrange projection, then
HLnx - x"2,w -0,
for every x € C([a.b]) .

We refer the reader to [CN], p.137 for a proof. For n = 1,2,...

let

HLnH = sup{HLan solixll ) <1} .

2,w

Then by the uniform boundedness principle, we see that HLnH' {a for

some constant a and n=1,2,... . It can then be seen that

(15.8) 0L x - xlly < [a + Ub w(t)dt]z] dist(x.P_,) .

a
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since for every y € an_1 , we have

Ianx - X"2,w < Ian(x-y) - (x—y)llz’w

I~

"Ln(X—Y)“2,W + IIx—yll2,w

allx=yll, + Ub w(t)dt]l/ Zlise-yll .
a

I~

THEOREM 15.4 For n =1,2,... , let Ln be as in Theorem 15.3.
(a) (Vainikko) Let T : L‘%([a,b]) -)L‘%([a,b]) be a linear

operator with R(T) C C([2,b]) . Then

=T 2T.
n n

If, in addition, T 1is compact, then TIP; &)T .

(b) {Sloan-Burn) Let the weight function w satisfy

Jh [lrw(t)]de < « .

Let T : C([a,b]) = C([a,b]) be defined by

Tx(s) = Jb k(s,t)x(t)dt , x € C([a,.b]) , s € [a,b] .

a

where k(s,t) is a continuous complex-valued function for

s.t € [a,b] . Then, with respect to the sup norm,

™o SS, 7T,
n n

Proof (2) By Theorem 15.3, we have Tllzx = LnTx - Tx for every
X € Lv2‘_([a,b]) , since Tx € C([a,b]) . If, in addition, T is compact,

then the pointwise convergence of Ln to I is uniform on the totally

bounded set {Tx : x € vav([a,b]) i {1} . Hence Tlli —-)" I T .

2,w
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(b) Let x € C([2.b]) . For s € [a,b] .

ITL x(s) - Tx(s) 1% = Hb k(s, t)[L x(t) - x(t)]dt|2

Ub l%)- (t)dt]x

U: IL_x(t) - x(t)lzw(t)dt] ,

by the Holder inequality for the space Lv2'([a,b]) . Hence

dt 11/2
ITLnx(s) - Tx(s)! £ IlkllmUb ] L x - xll2’w

w(t)

Again, by Theorem 15.3 we see that TLnx(s) converges to Tx(s) ,
uniformly for s € [a,b] . Hence TLn L57T in C([a.b]) . To

conclude TLn <L, , it is enough to show that the set

E=U {TL x ¢ x € C([a.b]) ., Uxlij £ 1}
n=1

is totally bounded, since T itself is a conipact operator. For this
purpose, we show that the set E is uniformly bounded and
equicontinuous. Let x € C([2,b]) and Iixll < 1 . Then for all

x‘-€ [a.p] .

ITL_x(s) | < NTL xli,, < WTL Il < B

by the uniform boundedness principle. Also, for all in [a,b] .

51+ 59

we have.

ITL x(s,) = TL x(s5) 1> U: [k(s,.t) - k(sz,t)]Lnx(t)dtlz

U: Ik(sl.t) - k(s, 1) 2w‘(1§)] x
U: anx(t)lzw(t)dt] ,

I~
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as before. Let € > 0, and find &6 > O such that |sl—sgl <&

implies lk(sl,t) - k(s2,t)| <e for all t € [a,b] . Then

dt |1/2 .
E[J: ;RTSJ HLnH

dat |1/2
S “-“U: m] ’

by (15.8). Thus, Ascoli’s theorem ([L],3.17} shows that the set E is

[ZaN

ITLnx(sl) - TLnx(sz)I

totally bounded in C{[a.,b]) ., and the proof is complete. Ved

We remark that the projections Ln in part (a) of the above
theorem are not even defined on the entire space X = Li([a,b]) ; yet we
have the norm convergence of the projection method. Similarly, in part

(b). we have TLn <€, T without having Ln L1

(ii) Piecewise linear interpolation. In this case the functions
ugn) are chosen to be the functions egn) which are linear on each of
the subintervals [tgn),tgfi] , 1i=0,...,n and satisfy

eM@) = 1= .

e§n)(a) =0 for i=2,...,n, egn)(b) =0 for i=1,...,n"1.

Thus, egn),...,egn) are the hat functions introduced in Example (iii)
of Section 3. We shall make use of the properties of these functions

discussed there. Let, as usual,

7 x(t) = .El x(t™)el™ | x e c(ra.p])
1=
1 (n) S CY PR g
ince e; (t) 20 and ‘21 e (t) =1 for all t € [a,b] , it is
i=

easy to see from (15.6) that HwnH =1 . Also, wnx(tgn)) = x(tgn))

for i=1,...,n and ﬂnx(a) = x(t§n)) , wnx(b) = x(tgn)) . Hence
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(15.9)

'x(tgn)) ,if £ <t

x(tM) - x(:{))

L x(t) = 9 x(t( )) + ) (i;l (t—t(nl) if t§?% <tg tgn)
50 T Ha o _
i=2,..., n-1

hx(tl(ln)) ,if € t1(1n)

We show graphically some x € C([a.b]) and wn(x) :

N G
N i
A e @ Ny
2 _____
Figure 15.1
Let hn = max{tgn)—tggi ti=1,..., n+l} be the mesh of the
partition, and assume that hn - 0 . We show L L1 Let

x € C([a.b]) and e >0 . Find & > 0 such that |s-t] < & implies

Ix(s)-x(t)| < e , and choose n, such that n > n, implies h <5 .

0
Then
Ix(tgn))—x(t)l e for tX< tgn)
lwnx(t)—x(t)l =
Ix(tgn))—x(t)l <e for t> tﬁn) .
and for tgn) <t ¥ tgn) , we have
i-1 i

[x(e ) () 18-y o fe (el )y 3062 (R))

+

lm x(e)=(t)] < () _ . (n)
i i-1
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[x(e PN x(0)I(£8-1) + [x(ePyx() 3¢ P))

SRR

A

i

et + eceme1 £ o)

=€ .

Thus, "ﬂhx -xll  { e, and we see that L 251, 1f x€ Cl([a,b]) .
i.e., x 1is continuously differentiable on [a,b] , then the above

argument shows that “wnx -xll < lIx'lIwhn , by the mean value theorem.
We consider some special choices of the nodes t§n) in [O0,17 .

1. tgn) =ri?, i=1,....n.

o
J =
Sl 4
=RE
I.’S
[=1 I
—
o

Figure 15.2

/\

n n n

Similarly, tgn) = 11 i=1,...

o

=R

Figure 15.3
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2. t(n) = 2i-1 i=1, ,n
i
0 \ A /1
1 3 2i-1 2n-3 2n-1
2n 2n 2n 2n 2n
Figure 15.4
3. ™oLy n.n=23
i n-1
1 i n-2 .
0 -1 a1 !
Figure 15.5
4. Compound two point rules. Let n be even, n =2m . Let r1
and ry be such that -1 < Ty < Ty < 1 , and consider the nodes
2j-1+r 2j-1+r . .
_1 and -2 in the interval [21_% , 24] , 1< j<m. Thus
n n n n
(i+r1)/n , if i=1,3,...,n-1,
() 2

(i—1+r2)/n , if i=2,4,...,n.

ol T
=]
U
N

Figure 15.6
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Some specific cases are worth mentioning. We have the compound Gauss
two point rule when Ty and r, are the roots of the Legendre

polynomial % 41O(t2—%) of degree 2, i.e., r, = -1A3 and r, = 13 .

1° 2
Next, if T and r, are the roots of the Tchebychev polynomial of the
first kind 2 (2t2—1) of degree 2, then r, = -1/A2 and r, = IAN2 ,
5 1 2

and we have the compound Tchebychev two point rule.

Similar examples can be given for 3 point and 4 point rules. These
repeated quadrature rules give, in general, better approximations than

ordinary quadrature rules.

(iii) Cubic spline interpolation. Consider the partition

) (
0= tgn < té“) <...<tnf% < tl(ln) =1
of [0,1] , and let
Cn = {x € Cz([O,l]) : x][tgn)’tgz%] is a polynomial of

degree { 3 , i = 1,...,n—1} .

Cn is called the set of cubic spline functions on the given partition.

The dimension of the subspace Cn of C([0,1]) is n + 2 , as can be
verified by noting that a cubic polynomial on each of the (n-1)

intervals has 4 degrees of freedom, which are constrained by 3

continuity conditions at the (n-2) points t;n),...,tég% . In fact, it
can be shown that for i =1,...,n , there is unique cubic spline

function xgn) € Cn such that xgn)(tgn)) = 5i j and which has zero

derivatives at O and 1 . For x € C([0,1]) , let, as usual,

X = %1 x(t§n))x§n)

Pede
1l

If tgn) = %E% , i=1,...,n, then for t € [;—— s —;—} , we

have, in fact
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1 [ i-1.3 S
(15.10) an(t) = é—(-;l:ﬁ i ai+1[t T + ai[r-;:l- t] ]
1 [, i-1 i-1,. i
Yooy G - = xR tl]
n-1) [ i-1 i
-~ | mwalt ot Al tl] '
where CORRRRRL satisfy
T r . - 1
2 1 al . X(I':'l—) - X(O)
1 4 1 0 :
1 i i-1 i-2
= 5 | (G - =G <D
(n-1)
0 1 4 1
1 2] ]a [x(1) - x(22)] J
4 " - - n-1
THEOREM 15.5 Let h_ = max{t™-¢(® : i -1,....n} . & =
n i i-1 ‘ n
min{tgn)—tgn) ti=2,...,n} ,and r_=h /h_ . Then
i i-1 n n n

2
lhr_Hl, < 8 + 1,
and if x is continuously differentiable on [0,1], then
Hwnx - xll, < 4(rn+1) fx' Nl hn .
In particular, if h -0 and (r ) is bounded, then m 251 .
For a proof, we refer the reader to p.144 and Problem 5.26 of [CR].

Other end conditions such as x"(0) = 0 = x"(1) for x € Cn can
also be used to define pointwise convergent interpolatory projections

using the cubic spline functions. (See [LS], p.169).
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Problems

15.1 Let T € BL(X) . and (1rn) , (;n) be sequences of projections

in BL(X) such that w -1 and 7 -E5I . Let T =wTr . Then
n n n n n

Tn LPsT . If T is compact, then Tn N , and if, in addition,

ﬂ:-ﬂp—)l as well as %’:—E-)I , then Tn"—"—-)T.

15.2 Let S EREREA N be distinct points in [a,b] , and let
Xiseoonx € C([a.b]) be such that det(xi(tj)) # 0 . Then there exist
unique LOERERL N € span {xl,...,xn} such that ui(tj) = Bi.j s
i,j=1,...,n .

15.3 Let a = tén) < tgn) < ... < tﬁn) =b ., and h denote the mesh

of this partition. If X = Lm([a,b]) , the averaging projection

m_ : X =X is defined by

n
XQ
i

an(t) = J( ) x(s)ds / (t§n)—t§1_12) . tﬁr_’% <tg tgn) , i=1,...,n.
((n
i-1

If X denotes the set of all bounded complex-valued functions on [a,b]

with the sup norm, and for i = 1..;.,n , sgn) € (tsl_lz , tgn)] , then

the piecewise constant interpolatory projection 1rn : X » X with nodes

at a and sgn) , i=1,...,n, 1is defined by
= = x(s(™ (n) (n) .
1rnx(a) = x(a) , wnx(t) = x(si ) . ti ] <t( ty7 = 1,....,n .
1 .
Then for every x € C ([a.b]) . Ihrnx -xly < lix llmhn . If hn =0,
then for every x € C([a.b]) . llr x - xll, >0 . Is this true for every
x €X7?

Let T € BL(X) be such that R(T) C C([a,b]) . Then

Trli = 1rnT L5T, and if T is compact, then Ti H—LT , provided

h -0 ..
n
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15.4 Let X =C([2,b]) . For i=1,...,n, let sgn) € (t§?z , t§“)) .

where a = t(()n) < tgn) < ... < tr(ln) = b . Consider the piecewise

quadratic interpolatory projection LS X =X, where 7 xl[t(n) (n)]

is the unique quadratic polynomial which agrees with x at tgf_lz . sgn)

and t'gn) , 1 <i<n. Then L 251 need not hold even if

h -0, where h_= max{t(n) (n) :i=1,...,n} . However, if
n n ti-1

there exist constants a and f such that

0<acg (tgn) - sgn)) / (sgn) (n)) < /B

for all n=1,2,... and i=1,...,n, and if hn-)O, then

r BT
n

15.5 Let O = t{“) <oo.<t™® 1. For 1=1,....n. there isa
n
unique cubic spline §§n) € C_ such that §§n)(t(.n)) =6, .,
i n i J i,J
j=1,...,n, and which has zero second derivatives at 0 and 1 .
n

. ) -
For x€C([a.b]) . let 7x= 3 x(e(F . 1 o™ oL 5.
i=1

1,....n, then 1rnx has the same expression as (x) of (15.10),

except that a; = 0= a . while 85...-,2 4 are determined by

ai-l + 4ai + al = [X(_) - Z{( 1) + (n 1)]/(11—1)

as before.



