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16. HETHODS FOR INTEGRAL OPERATORS

In this section we describe some methods of approximating an
integral operator of the following kind. Let X denote either

L2([a,b]). or C([a,b]) . and accordingly, let ¥ denote either

L2([a,b]x[a,b]) or C([a,b]x[a,b]) ; we shall denote by Il II the
Lz—norm Il H2 in the first case and the supremum norm |l Il | in the
second. Let k € ¥ , and consider the Fredholm integral operator

T : X=X with kernel k given by

(16.1) Tx(s) = Jb k(s.t)x(t)dt , x € X , s € [a,b] .
a

It is well known that T is a compact operator and

(16.2) IITII2 < Ilkll2 ,

I, < (b—a)ikil .
{cf. [L], 17.5(d).) We shall also compare the methods introduced in

this section with those related to projections, as described in

Section 15.

Degenerate kernel method

A kernel k € X is said to be degenerate if

(16.3) k(s.t) = § xi(s)yi(t) , s.t € [a,b] ,
i=1

where Xy and vy belong to X, i=1,...,m . Notice that an
integral operator with a degenerate kernel is a bounded operator of
finite rank. For the kernel given by (16.3), we have for x € X and

s € [a,b] ,
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m
Tx(s) = Jb [ ) xi(s)yi(t)]x(t)dt
a *i=l
m
= ) Jb yi(t)x(t)dt]xi(s) .
i=1 a
Thus, the range of T 1is contained in the linear span of {xl,...,xm} .

THEOREM 16.1 Let T be given by (16.1) and let (kn) be a sequence

of degenerate kernels such that Hkn - kil =0 . Let

(16.4) x(s) = Jb k (s.t)x(t)dt , x €X , s € [a,b] .
a

Then u—ﬂe T .
n

Proof We note that Tg - T 1is an integral operator with kernel

kn -k . Hence by (16.2),

02 - T < Mk - kIl max{1,b-a} .
n n

Stnce Ik - kil 50 , we see that TE nu, 7/

We now describe some ways of constructing a sequence of degenerate

kernels which converges to a given kernel k in X .

First, let X = L2([a.b]) , and k € X = L2([a.b]x[2.b]) . Let

Ugolg, .- be an orthonormal basis of X , and consider

ki,j = Jb Jb k(s,t)uj(t)ui(s) dtds , i,j =1.2,...

a“a

If we let
i,ji

k (s,t) = ) k, au(s)u(t), n=1,2,...,
n i,j<n J

then llkn - kH2 >0 in X . This follows by noting that
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k(s.e)1%asdt = T Ik, F<e,
i,321 -J

Ik(s,t) - kn(s,t)lzdsdt = z e, .1

P N a9
o e
N

(cf. [L], p.267.) It can be easily seen that in this case

n
=T =w Tw_, where wx = ) <x,uu
n n n

n j=1 J
Various other degenerate kernels in Lz([a,b] x [a,b]) are

considered in [SN].

Next, let X = C([a.b]) . We approximate the kernel k(s.,t) by

interpolation in the second variable. Let

- @), ((n) (n) . (n) _
a = to < tl <00 K< t < tn+1 =b ,
and ugn) € C([a.b]) be such that ugn)(t?) = 6i - Consider

n
k(e = 3 koMM

n
Assume that ugn)(t) >0 and ) ugn)(t) =1 for all t € [a,b] .
i=1

We recall that this is the case for the piecewise linear hat functions.

Now for s,t € [a.b] .

n
k(s t) - Kk (s.6) = l '21 Fk(s,t) - k(s,tgn))]ugn)(t)l
i=

< max{Ik(s.t) - k(s.t™)1 : st € [a,b]} .

The uniform continuity of k shows that Ik - kn"m -0 if hn -0,
where hn is the mesh of the partition. If the kernel k(s,t) is
approximated by interpolation in the first variable, then it can be
noticed that TD = TP =7 T , where w_ 1is the interpolatory
n n n n
projection..
Another way to approximate a continuous kernel k 1is to consider

the Bernstein polvnomials




k (s.t) = % k(t.d) ["] [?]siu—s)n’itju-t)n'j ,
n 1,30 n'n’ i) j

where for simplicity we have taken a =0 and b =1 . Then
Hkn - kii, » 0 by a proof analogous to Korovkin’s classical theorem.
(See [L]. 3.18 and 3.19.)

In case the function k 1is real analytic., and has a uniformly and

absolutely convergent double Taylor series expansion

o
k(s.t) = Y k., .(s-s.) (t-t.)9
i,3=0 i.J 0 0
for s,t € [a,b] . then we can consider the truncations
k (s,t) = k. .(s-s,) (t-t,)
n i,3=0 i, d 0 o]
so that Ik - ki, >0 . A simple example is given by k(s,t) = e°" .
«© 3
Often k(s.t) has an expansion of the type Y slyi(t) or
i=0
i) . ‘
z xi(s)t1 , Wwhere Xy and y; are polynomials.
=0

We remark that the degenerate kernel method can be employed in
conjunction with methods related to projections, thus giving rise to
additional approximations: If L N , and Tn = nth , then it is’

easy to see that Tn i, T (cf. Problem 13.4), while if either

T =T or T =wTor , then T -S5T by (13.4)
n nn n nnn n

Quadrature methods

First we briefly discuss approximate quadrature rules. Let

X = C([a,b]) and consider the nodes

a=tl® el ¢ e oy,
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(n)

and correspondingly, the weights we ,i=1,....,n . We assume that
tgn) = tgn) implies wgn) = wgn) . For n=1,2,... consider the
quadrature formula
T @) ()
(16.5) £ (x) = ) weUx(tV) L xeX;
n jo1 J

fn(x) is supposed to approximate Jb x(t)dt . A famous theorem of
a

Polya says that fn(x) - Jb x(t)dt for every x € C{[a.,b])
a

if and only if

n
(1) sup{"fnﬂ tn=1,2,...} = sup{ ) lwgn)l n=1,2,...} <
j=1
and

(ii) fn(y) - Jb y(t)dt for every y in a dense subset of X .
a

For example, one can consider the dense subset span{l,t,t2,...} of
C([a.b]) in the condition (ii} above. In case the weights w(n) are

all nomnegative, then

LRII)

(n) _
& ; wil= fn(l) .

1

Hence it follows that the conditions (i) and (ii) can be replaced by the
condition (cf. [L], 9.5.)

g () - mI* eIty / (541) for j=0.1.2,... .

We now describe two methods of approximating an integral operator
T given by (16.1), which are based on an approximate quadrature rule.
Let a quadrature formula be given by {16.5). The most natural

approximating operator

(16.6)  Thx(s) = ) wgn)k(s,tgn))x(tgn)) . x € C([a.b]) . s € [a,b]
j=1
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gives the Nystrom method for approximating T . Note that if we let
kJ.(s) = k(s,tg.n)) ., 8 € [a,b] . then the range of Tg is contained in
the linear span of {kl,. .. ,kn} . Thus, Tg is of finite rank.

Let T C([a.b]) = C([a.b]) be a (bounded) projection for n =

1,2,... . Then the operator
(16.7) U
n nn
gives the Fredholm method for approximating T . Since Tﬁ is of
F a 3¢
finite rank, so is T . If wmx= ) <x,e.ve, , with e, € X,
n n iz1 i"7i i
e).e € X* such that <e.,e9.‘> =06, ., then
i jvi i,
n .
TFx = 3 <’I‘Nx,e).e>e.
n 4op mT
n n
= ) [z w(.n)x(tgn))<k(-,t(.n)),eas]e. .
i=1l “j=1 J 1 J 1 1

THEOREM 16.2 (Anselone) Let fn(x) —)Jb x(t)dt for every

a
x € C([a.b]) . Then Tl:l =L, 7.
If (1rn) is a sequence of projections such that L 251, then

Proof Let x € C([a.b]) . For fixed s € [a,b] . let
ys(t) =k(s,t)x(t) . a{t<{b.

Then

n
(n) (n)
jz.l vilyg(ey)
n

(n) (n) (n)
jzl s k(s,tj )x(tj )

Tﬂx(s) .

£.0vg)
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Since fn(ys) - Jb ys(t)dt = Jb k(s,t)x(t)dt , we see that for each
a a
fixed x ,
Tgx(s) - Tx(s) .

We must show that this convergence is uniform for s € [a,b] to

conclude Tg L5 T . For this purpose, consider the set
Y = {ys : s € [a,b]} C C([a.b]) .
Y is uniformly bounded, since
Ilysllco < RN Nl for all s € [a,b] .

Also, for t and t

1 in {a.,b] . we have

2

Iys(tl) - ys(tz)l < lk(s,tl)x(tl) - k(s,tz)x(tl)l
+ |k(s,t2)x(t1) - k(s,tz)x(tz)l

< ki, sup Ik(s,tl) - k(s,t2)|

s€fa,b]
+ Ix(tl) - x(t2)| sup  lk(s,t)l
s€fa.b]
By the uniform continuity of k and x , we see that for every

e >0, there is 8 > 0 such that Itl—tzl { & implies

lys(tl) - ys(t2)| < e for all s € [a,b] . This shows that the set Y
equicontinuous. Now by Ascoli’s theorem ([L], 3.17), E is totally
bounded. Hence the pointwise convergence of the continuous linear
functionals fn is uniform on E . Thus, [l 2T Txll - 0 for every

x € C([a.b]) .

To show Tg =L, T, it is enough to prove that the set

0
E= U {Thx : lixll, < 1}
n=1
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is totally bounded, since T 1is compact. The set E is uniformly
bounded since IITﬂII { a {® by the uniform boundedness principle.

Also, for s, and sy in [a,b] ,

N

n
ITﬂx(sl) - Tﬂx(sz)! < J‘El Iwg.n)l lk(sl,tgn)) - k(sz,tgn))l Ix(tg.n))l

I~

max Ik(sl,t) - k(sz,t)l lixl E Iw(.n)l
t€[a,b] T

n
But by Polya’s theorem, ) Iwgn)! {B<®; also, k is uniformly
J=1

continuous. Hence the set E 1is equicontinuous. Again, by Ascoli’s
theorem we see that E is totally bounded. This completes the proof of
™ ee, |
n .

Let, now, L. L , in addition. Then letting An =T ,

n

A=I,B =T and B=T in (13.4),
n n

T orm™ A8 <S5AB=T. V7
n nn nn

We now prove a negative result regarding the norm convergence of

the Nystrom approximation (’Iﬂ) to T .

PROPOSITION 16.3  2lTH < lim I|T?1 - T .
n-=0

Proof Let e > O . Then there exist x € C([a.b]) and s € [a,b]

such that Ixll = 1 and
ITx(s)| > UTH - & .

As 'IJ;x(s) - Tx(s) , there is n,

0 such that for all n 2 n

0 we have

IT:x(s) - Tx(s)| < e .
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Now, by altering the function x only on small nighbourhoods of

t%n),...,tgn) , Wwe can construct, for each n 2> n

, a function x
0] n

such that Han =1,

xn(tg'n)) = —X(tg.n)) s i=1,....n,

ITxn(s) - Tx(s)| < e .
‘ Thén Tgxn(s) = —Tﬁx(s) . Hence

I(T-T)x_(s) = ITx_(s) + Tﬁx(s)l

[\

2|Tx(s) | - 2e .

N

20TH - 4e .
Since "Xn" =1, we see that
NCT-T 0 > WT-Tx Il > 20TH - 4e .
n n° n

Thus, lim H(T—Tg)" 2 2lITI - 4e . But as e > 0 is arbitrary, the
n-x»o

proof is complete. /7

The above result shows that the Nystrom approximation (Tﬁ) does
not converge to T in the norm except in the trivial case T =0 . It
was for this reason, that the theory of collectively compact
approximation was developed (cf.[AN]), and has proved to be very useful.
In case the kernel k of the integral operator T is smooth and fn
is a repeated quadrature formula, then we do have Hﬂi - Tl - 0, where

the underlying space Cl([a,b]) is equipped with the norm
sl = sl )+ Nk M, .

(Cf. [B], p.109 and 112.)
On the other hand, if the kernel k is discontinuous but satisfies
some regularity conditions, then by considering the underlying space to

be the set of all Riemann-integrable functions, a partial extension of
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Theorem 16.2 regarding the convergence of the Nystrom approximation can
be obtained. (See [AN], Theorem 2.13.)

It can be easily observed that Proposition 16.3 (along with its
proof which is due to Anselone) holds for any sequence (Tn) in place
of the Nystrom approximation (Tg) , provided Tnx(s) - Tx(s) for

every s € [a,b] and x € C([a.b]) , and T x =Ty whenever

x(tgn)) = y(tgn)) , J=1,...,n, n=1,2,... . In particular, it
holds for Tn = TE , and if ™ is an interpolatory projection then
for T = TS =Tw_ as well as for T ='ﬁ3 =w Tmr_ .

n n n n n nn

We now give examples of some well known quadrature formulae which
can be used while employing the Nystrom or the Fredholm approximations.
Many of these arise from interpolatory projections. As in Section 15,

consider the nodes

a = t(()n) < tgn) < ... < tl(ln) < tx(llg =b ,
and let ugn) € C([a,b]) be such that ugn)(tgn)) =08, 5 1<1i,j<n.

Using the interpolatory projection
T (e, ()
Tx = ) x(ty)ur’ , x € ¢([a.b]) .
n i=1 i i

we define the quadrature formula

£ (x)

Jb vnx(t)dt

a
[ Jb u§“)(t)dt] x(t™)y

1 a

(16.8)

)
i=
so that the weights are

wgn) = Jb ugn)(t)dt .

a
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Note that for i = 1,....,n ,

£ @™y - J: al™ (e)a

Thus, the quadrature formula fn is exact on the linear span of

{u§n),-."u£n)} . Also, for x € C([2,b]) and s € [a,b] , we have

n
T (r x)(s) = §1 w§n)k(s,t§“))(1rnx)(t§n))

J
T w®hers, M (e ()
= 3w k(s tV N )x(eVY)
iz J J J
J._
= nx(s) .
Hence
(16.9) Ty =1,
nn n
when L is an interpolatory projection and the quadrature formula fn
is induced by ™ - If we employ an interpolatory projection %n with
nodes at zgn) , i=1,...,n, while considering the Fredholm
approximation Ti = %nTﬁ , then for x € C([a,b]) and s € [a.b] .
F ~
Tnx(s) = wnTgx(s)

(16.10)

2 (o) (¥ yu ) ()
1=

i
[agl=]

2 [ 31 wgn)k("{g‘),tgn))x(tgn))]ugn)(s)
i= J=

Observe that in the Nystrom approximation, the kernel k(s.,t) is

discretized only in the second variable, while in the Fredholm

approximation it is discretized in both the variables.

If T £, 1, then clearly fn(x) = Jb an(t)dt - fb x(t)dt ,
a a

i.e., the quadrature formula is convergent. Thus, Theorem 16.2 becomes
applicable. But the quadrature formula fn may be convergent although

(Fn) is not a pointwise approximation of I .
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Various interpolatory projections discussed in Section 15 yield

interesting quadrature formulae.

(1) Lagrange interpolation. In this case, span{ugn),...,ugn)}
is the set of all polynomials of degree at most n - 1 . so that the
quadrature formula fn is exact on 1,t,...,tn_1 . Hence by Polya’s

theorem, we see that fn(x) - Jb x(t)dt for every x € C([a,b]} if and
a

n
only if > Jb ugn)(t)dtl {a< o . If the weights
i=1 a

wgn) = Jb ugn)(t)dt are nonnegative, then this condition is
a

automatically satisfied.

If a=-1,b=1, and the nodes tgn) are the Gauss points
(i.e.. the roots of the Legendre polynomial of degree n — 1}, or the
Tchebychev points ({i.e., tﬁe roots of the Tchebychev polynomial of
degree n ~ 1 (of the first. or of the second kind), then the weights
are positive, and the corresponding quadrature formulae are convergent.
In the case of Gauss points, the quadrature formula fn is, in fact,
exact on all polynomials of degree at most 2n - 1 . (See [D]. 2.5.5
and 2.7.)

If the nodes are equidistant, i.e., tgn) =a + (i-1)(b-a)/(n-1) .
i=1,...,n, then the corresponding quadrature formula is known as the

Newton-Cotes rule. The weights are of mixed signs and it was shown by

Polya that for some x € C([a,b]) ., this rule does not converge to

Jb x(t)dt .

a

(ii) Piecewise linear interpolation. If the mesh

hn = max{tgn)—tggi ti=1,...,nt1} -0 as n->®, then we have seen
in Section 15 that L. L5 , and consequently the corresponding

quadrature formula is convergent. In this case, fn is exact on the

linear span of the hat functions egn),...,eﬁn) . In particular, this
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is so for any x(t) =ct +d , where ¢ and d are constants, since
n
then x(t) = ) (ctgn) + d)egn)(t) . The weight wgn) = Jb egn)(t)dt
i=1 a
can easily be calculated by considering the area under the graph of the
hat function egn) . In fact, we have
(n) _ (n) _ . (n) ir =
tg a + (t2 tg 2, if i=1
(n) _ (n) _ ((n) ie o _
wil o= ('cJ.+1 tj—l)/z , if i=2, ,n-1
b-t™ 4 ® )y yr o0
n n n-1

For various choices of the nodes considered in Section 15, we obtain the

following weights and the corresponding quadrature formulae:

1. t§“) =i/n,i=1,....n: wgn) = 3/2n , wgn) = 1/n for
i=2,...,n-1, and wﬁn) = 1/2n , so that
-1
1 [3x(i/n) + x(1) , ™ i
£ (x) =~ [ 5 + ) X(E)] .
i=2
2. tgn) =(2i-1)/2n , i = 1,...,n : wgn) =1/n for i , and we

have the compound mid-point rule

n .
£ (x) = L 2 (2

3. tgn) = (i-1)/(n-1) , i =1,...,n : wgn) = 1/2(n-1) = wﬁn) .
and wgn) = 1/{n-1) for i =2,...,n-1 ; this gives the compound

trapezium rule

1 0 1y . =g
£, = & [x( Ll Z x(j;;T]
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4.
(i+r1)/n ., if i=1,3,....,n"1
RO
i
(i—1+r2)/n , if i=2,4,....n ,
T 4T
where n is even, and -1 {r, {(r, <1 . Then ( ) = L + L2 s
1 2 Y1 n 2n
wgn) = L for i=2,...,n-1, and w(n) = L_ 1 T2 In case
i n n n " 2n
Ty + Ty = 0, as is the case for the compound Gauss two point rule
(r1 = -1/43 , T, = 1/J§) and the compound Tchebychev two point rule
(r1 = -1AZ , Ty = iA2) , we have,
i+r n i-1+r
1 1 2
woo = [ 2 5, =)
i=2
i odd i even
There are several other convergent quadrature formulae such as the
compound Simpson rule : n odd, n 2> 3 ; tgn) = %E% , i=1,...,n,
the weights being
1/3(n-1) , if i =1i,n
wgn) =< 4/3(n-1) , if i=2,4,...,n1
2/3(n-1) , if 1 =3,5,...,n~2 ,
so that
1 n-2 n-3 5
fn(x)=3(n—_1-)—[x(0)+x(l)+4 Z X( =) t+2 i§2 X(;;'f]
i odd i even

1
Then fn(x) - f x(t)dt for every x € C([a,b]) . (See Problem 15.4
0
with sg ) o (t(n) + t(n))/2 )
We conclude this section by comparing methods related to

projections discussed in Section 15 with methods introduced in the
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present section. Let X = C([a.b]) and (Trn) be a sequence of

interpolatory projections:

X = E x(tgn))ugn) , Xx € X .
1

i=

Let the quadrature formula fn be induced by LA Then we have
'I‘N = TN1T . TS =Twr_;
n nn n n
TF=1rTN1r . TG=1rT1r .
n nnn n n n

THEOREM 16.4 let 7 -1 , and assume that the functions

n
ugn),...,ur(ln) satisfy
sup{lt—tg.n)l : ug.n)(t) £#0, j=1,....,n} =0 .

Then IITN - Tsll = 0 and IITF - TGII -0 .
n n n n

Proof For x € C([a,b]) . we have

n
(n) (n) (n)
jzl v k(s,tj )x(tj )]

n
(n) (n) (n)
jzl [J:uj (t)dt]k(s,tj )x(tj )

Tﬂx(s)

and

Tsx(s)

o k(s, 'c)‘rrnx(t)dt

(n) (n)
& [J:k(s,t)uj (t)dt]x(tj ) .

i
B P &

Let E ;= {t€[ab]: ugn)(t) #0} . and
o (s) = sup{lk(s,tg.n)) —k(s,t)l : t€E ., j=1,....n}

n,J

Then for Iixll, {1 , we have
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ITx(s) - Tox(s) | < |k(s,t§“)) ~ k(s.t) | Iugn)(t)ldt

I~
o
RS l=]
faey

E .
n,J

I

a_(s) ) Iu(n)(t)ldt :
j=1

Let € >0, and find &6 > 0 such that the conditions s € [a,b] and

ltl_t | <6 imply Ik(s.t;) - k(s,tz)l { & . By our assumption on the
o)
J

., j=1,...,n, we can choose oy such that for all
i=1,...,n} <6 .

functions
n 2 n, , Wwe have sup{lt—tgn)l : ugn)(t) #0 ,

Then an(s) {e forall n2»n, and s € [a,b] . Also, by (15.6)

0
3 (n)
Y i (e)ldt = lim it { a C @,
. J n
j=1
since . -5 1 . Hence for all n 2 ng we Bave

HTN - TSH { ex .
n n

Thus, IITN - TSH -0 . Also,

n n

HTF - T = liw (TN - T )H < aHTN - T .

Hence IITF - TGH =0, as well. //

n n

Note that the hypothesis of the above theorem is satisfied if

ugn),...,ugn) are the piecewise linear hat functions, and the mesh of

the partition tends to zero.

To sum up, we list several ways of approximating the integral

operator
Tx(s) = Jb k(s.t)x(t)dt , x € C([a,b]) . s € [a,b] .
a
by considering the nodes a £ tgn) < ... < tgn) { b, and the functions

u§n) € C([a,b]) such that u§n)(t§n)) = 6i,j .
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]

x(s) 3 [ Jb k(tgn),t)x(t)dt]ugn)(s)
=1 a

i

E x(t(.n)) Jb k(s,t)u(.n)(t)dt
je1 9 a J

Tsx(s)

n

n n
x(s) = 3 [ y x(tgn)) J: k(t§n),t)ugn)(t)dt]ugn)(s)

i=1 L j=1
(16.11)
3 (n) (n)
Tgx(s) = -21 [ x(tyu! (t)dt]k(s,tj )
i= a ‘
Tx(s) = -31 [x(tgn)) Jb ugn)(t)dt]k(s,tgn))
= a
Tix(s) = 1211 [ %1 X(tgn))k(tgn)’tg-n)) Jb ugn)(t)dt]ugn)(s) .
i= j= a
Problems

16.1 Let T be an integral operator with a degenerate kernel given by
(16.3), and assume that Xys.-.s¥X ~are linearly independent in X .

Then the operator T‘s {x %} is represented by the matrix
F 1°°"""n

{ Jb xj(t)yi(t)dt] , i,j=1,...,n, with respect to the basis
a

KpseoosX o The nonzerc eigenvalues of T are obtained by solving this

matrix eigenvalue problem.

16.2 Let T be a Fredholm integral operator on C([a,b]] with a
continuous kernel k(s,t) . Let a ¢ tgn) <. .. K< tﬁn) {b ., and
ugn) € C([a.b]) be such that ugn)(tgn)) = 5i,j . For x € C([a,b])
and s € [a,b] , let
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n r I
T x(s) = 121 -jzl [ J: x(t)ugn)(t)dt]k(tgn),tgn))]ugn)(s)
n r N
T - (n) (n) (n) (n)
Tnx(s) = j§1 -izl [ J: uy (t)uj (t)dt]x(ti )]k(s,tj ) .
# n r n
The(s) = i§1 -m§1 x(tgn))jz []: uén)(t)ugn)(t)dt]k(tgn),tgn))]ugn)(s) .
Then T T, T 57T and T: 57T if the mesh h_ of the

partition tends to zero.

16.3 Consider the piecewise constant interpolatory projection L

given in Problem 15.3. The quadrature formula induced by L is
T om_ () (n)
£ (x) = j§1 (tj —tj_l)x(sj ).

where sgn) € (tgfi,tgn)] , j=1,...,n . The Riemann sum fn(x)

gives a rectangular rule and converges to Jb x(t)dt for every Riemann
a

integrable function x on [a,b] .

16.4 1If we approximate the integrals appearing in Tix(s) and Tgx(s)
of (16.11) by the quadrature formula induced by ™o then we obtain

Tﬁg(s) . If we do this for Tgx(s) and Tgx(s) ., We obtain Tgx(s) .



