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In this section we describe some methods of approximating an 

integral operator of the following kind. Let X denote either 

L2 ([a,b]). or C([a,b]) , and accordingly, let X denote either 

L2 ([a,b]x[a,b]) or C([a,b]x[a,b]) ; we shall denote by II II the 

2 
L -norm ll 112 in: the first case and the supreml!m norm II !I"" in the 

second. Let k E X , and consider the Fredholm integral operator 

T : X ..., X with kernel k given by 

(16.1) Tx(s) = J: k(s,t)x(t)dt , x € X , s € [a,b] . 
a 

It is well known :hat T is a compact operator ru1.d 

(16.2) 

(d. [L], 17.5(d).) We shall also compare the methods introduced in 

this section with those related to projections, as described in 

Section 15. 

A kernel k E X is said to be degenerate if 

m 
(16.3) k(s,t) I xi{s)yi(t) , s,t € [a,b] , 

i=l 

where x 1 and y 1 belong to X, i = 1, ... ,m. Notice that an 

integral operator with a degenerate kernel is a bounded operator of 

finite rank. For the kernel given by {16.3), we have for x EX and 

s € [a,b] , 
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Tx(s} = S: [ i!l (s)yi(t)]x(t)dt 

I [ rh Y:i.(t)x(t)dt]xi(s} 
i=l a 

Thus, the range of T is contained in the linear span of , ... ,X } o 

m 

1HEOREM 16.1 Let T be given by (16.1) and let (kn) be a sequence 

of degenerate kernels such that Hk - kll -} 0 
n 

Let 

(16.4) yllx(s) 
n 

,t)x(t)dt , X EX , B E [a,b] . 

Then TD T . 
n 

Pro~f We note that ~- T is an integral operator with kernel 
n 

- k . Hence (16. 

Since Ilk - kll ~ 0 , 
n 

- Til 5; Ilk - kll max{l, b-a} 
n 

we see that ~ !!J!., T . 
n 

We now describe some ways of constructinga sequence of degenerate 

kernels which converges to a given kernel k in X 

First, let 2 
X = L ([a,b]} Let 

u 1 ,u2 , .. o be an orthonormal basis of X, and consider 

k .. = f f k(s, t)u o(t)u. (s) dtds 
l,J Ja Ja J l 

i,j 1,2, .... 

If we let 

k (s,t) 
n 

I k. .u. (s)u .( t} 
i.j~n l,J 1 J 

n = 1,2, ... , 

then llkn - kil2 ~ 0 in X . This follows noting that 
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tt 
tt 

lk(s, t) 12dsdt =. I 
i.j~l 

2 lk .. I <co . 
1,J 

lk(s,t)- k (s,t)l2dsdt = I 
n i.j~n 

2 lk .. I 
1,J 

(cf. [L], p.267.) It can be easily seen that in this case 

n 
_n = TG -- - T- h ~ < > '1- .. .. w ere 1T x = L x, u . u . 

n n n n n j=l J J 

Various other degenerate kernels in L2([a,b] x [a,b]} 

considered in [SN]. 

are 

Next, let X= C([a,b]} . We approximate the kernel k(s,t) by 

interpolation in the second variable. Let 

(n) (n) n and u. € C([a,b]} be such that ui (t.) = o . . 
1 J 1,J 

Consider 

k (s,t) = I k(s,t(n))u~n)(t) 
n i=l i. 1 

Assume that u~n)(t) ~ 0 and 
n 
I u~n)(t) = 1 for all t € [a,b] . 

i=l 

We recall that this is the case for the piecewise linear hat functions. 

Now for s,t € [a.b] , 

lk(s,t)- k (s,t)l = I I [k(s,t)- k(s,t~n))]u~n)(t)l 
n i=l 1 1 

~ max{lk(s,t)- k(s,t~n))l : s,t € [a,b]} 

The uniform continuity of k shows that llk-kll -+0 if h -+0, nco n 

where hn is the mesh of the partition. If the kernel k(s,t) is 

approximated by interpolation in the first variable, then it can be 

noticed that -tJ = Tp = 1T T , where 1T is the interpolatory 
n n n n 

projection .. 

Another way to approximate a continuous kernel k is to consider 

the Bernstein polynomials 
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where for simplic:i ty we have taken a "" 0 and b = 1 . Then 

Ilk -
n 

~ 0 by a proof analogous to Korovkin"s classical theorem. 

(See [L], 3.18 and 3.19.) 

In case the function k is rea.l analytic, and has a uniformly and 

absolutely convergent double Taylor series expansion 

00 

k(s,t) I 
i,j:::::O 

for s,t E [a,b] , then we can consider the truncations 

k (s,t) = 
n 

so that ilk - kll~ ~ 0 . A simple example is given by k(s, n ~ 

00 

Often k(s,t) bas an expansion of the type or 

st = e 

We remark that the degenerate kernel method can be employed in 

conjunction with methods related to projections, thus giving rise to 

additional approximations: If and then it is· 

II II easy to see that Tn ~ T (cf. Problem 13.4), while if either 

T = TD~ or T = ~ TD~ then T ~ T by (13.4) n nn n nnn n 

First we briefly discuss approximate quadrature rules. Let 

X= C([a,b]) and consider the nodes 
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and correspondingly, the weights (n) wi , i = 1, ... ,n . We assume that 

t~n) = t~n) 
1 J 

implies For n = 1,2, ... consider the 

quadrature formula 

{16.5) f (x) n 

fn{x) is supposed to approximate J: x(t)dt A famous theorem of 
a 

Polya says that fn{x) ~ J: x(t)dt for every x € C{[a,b]) 
a 

if and only if 

{i) sup{llfnll : n = 1.2 .... } sup{ I lw~n)l n = 1,2, ... } < 00 

j=1 J 
and 

{ii) fn{y) ~ J: y(t)dt for every y in a dense subset of X . 
a 

2 For example, one can consider the dense subset span{1,t,t .... } of 

C([a,b]) in the condition {ii) above. In case the weights w~n) are 

all nonnegative, then 

n 
I 

j=1 
lw(n) I 

j 
n (n) 

= I wj = 
j=1 

f {1) . 
n 

Hence it follows that the conditions {i) and {ii) can be replaced by the 

condition {cf. [L], 9.5.) 

' fn{tj) ~ {bj+1-aj+1) / (j+1) for j = 0,1,2, ... 

We now describe two methods of approximating an integral operator 

T given by {16.1), which are based on an approximate quadrature rule. 

Let a quadrature formula be given by (16.5). The most natural 

approximating operator 

(16.6) ~x(s) n 
= I w~n)k(s,t~n))x(t~n)) , x € C([a,b]) • s € [a,b] 

j=1 J J J 
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gives the Nystrom method for approximating T . Note that if we let 

k .(s) = k(s, t~:n)) s E [a,b] then the range of is contained 
.l J 

the linear span of {k1 .... ,kn} Thus, TN is of finite rank. 
n 

Let : C([a,b]) ~ C([a,b]) be a (bounded) projection for n 

1,2, .... Then the operator 

(16. 7) 

gives the Fredholm method for approximating T . 

finite rank, so is 

* * e. € X such that 
l 

If "IT X= 
n 

0. . 
l,J 

n 
I <x. 

i=l 

then 

Since yN is of 
n 

with € X 

~ 16.2 (Anselone) Let fn(x) ~ J: x(t)dt for every 
a 

x € C([a, b]) 
_N cc Then r· __,T. 

n 

in 

If ("~~"n) is a sequence of projections such that 

TF="~~"~~T. 

1r ~I, 
n 

then 

n n n 

Proof Let x € C([a,b]) For fixed s € [a,b] , let 

y 8 ( = k(s,t)x(t) , a~ t ~ b 

Then 
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Since f (y) ~ rh y (t}dt = rh k(s,t)x(t}dt 
n s j_ s L we see that for each 

a a 

fixed x , 

~x(s) ~ Tx(s) . 
n 

We must show that this convergence is uniform for s € [a,b] to 

conclude ~ ~T. For this purpose, consider the set n 

Y = {y : s € [a,b]} C C([a,b]} . s 

Y is uniformly bounded, since 

Also, for t 1 and t 2 in [a,b] , we have 

lys(t1)- ys(t2 )1 ~ lk(s,t1)x(t1)- k(s,t2)x(t1)1 

+ lk(s,t2)x(t1)- k(s,t2)x(t2)1 

~ llxll00 sup lk(s,t1)- k{s,t2 )1 
sE[a,b] 

+ lx(t1}- x(t2 }1 sup lk(s,t}l 
sE[a,b] 

By the uniform continuity of k and x , we see that for every 

c > 0 , there is o > 0 such that lt1-t2 1 < o implies 

lys(t1)- ys(t2 }1 < c for all s € [a,b] . This shows that the set Y 

equicontinuous. Now by Ascoli's theorem ([L], 3.17), E is totally 

bounded. Hence the pointwise convergence of the continuous linear 

functionals f is uniform on E . Thus, ll~x - Txll ~ 0 for every n n 

x € C([a,b]) 

To show ~ ~T, it is enough to prove that the set n 

co 

E = U 
n=l 
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is totally bounded, since T is compact. The set E is uniformly 

Also, 

But 

since IITNI! ,. a < ''" n " 
for s1 and s2 in 

n 

I 
j::::l 

n 
Polya's theorem, I 

j~l 

by the 

[a,b] ' 

un.ifo:rm boundedness principle. 

) I lx( . 
J 

fn) 
lw': ·· I 

J 

I ~ ~ < ro ; also, k is 

) I 

continuomL Hence the set E is equ:!.continuows.. Aga:i.n, .Ascoli ~ s 

theorem we see that E is total bounded. 'fhis completes the proof of 

A 

T 

Let, now, 

I ' B 
n 

I :Ln addition. Th.en letting 

and in (13. 

/.1 

We now prove a negative result regarding th.e norm convergence of 

the Nystrom apprmdmation (~) to T . 

HIDPOSITIOO 16.3 211Til ::; lim 
n-)00 

Proof Let E > 0 . Then there exist x E C([a, b]) a.D.d s E 

such that llxll = 1 and 

ITx(s) I > !!Til - c . 

As ~x(s) ~ Tx(s) , 
n 

there is such that for all n ;:: n0 . 

l~x(s)- Tx(s)! <c. 
n 

we have 
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Now, by altering the function x only on small nighbourhoods of 

(n) t(n) 
' ... ' n ' we can construct, for each n 2: n0 , a function x 

n 

such tl>..at llx li = 1 
n 

Then ~x (s) = 
nn 

= -x(t~n)) 
J 

ITxn(s)- Tx(s)l < c 

Hence 

!Tx (s) + 
n 

2: 21Tx(s)l- 2E. 

2 21!Til - 4c . 

Since llx II 
n 

1 , we see th..at 

s)l 

T'nus, lim II(T-~)11 2 211T!I - 4e. . 
n 

But as E. > 0 is arbitrary, the 

proof is complete. // 

The above result shows that the Nystrom approx:imaticm does 

not converge to T in the norm except in the trivial case T = 0 It 

was for this reason, t:hat the theory of col compact 

approximation was developed (cf.[lL~]), and h..as proved to be very useful. 

In case the kernel k of the integral operator T 

is a repeated quadrature formula, then we do have 

is smooth and f 
n 

m~- Till~ o . 
n 

where 

the underlying space 1 
C ([a,b]) is equipped with the norm 

lllxlll llxll00 + llx' 1100 • 

(Cf. [B], p.109 and 112.) 

On the other hand, if the kernel k is discontinuous but satisfies 

some regularity conditions, then by considering the underlying space to 

be the set of all RiemaTh"'l-integrable functions, a partial extension of 
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Theorem 16. 2 regardb1g the convergence of the Nys t:rom approxilli2L t ion can. 

be obtained, (See [AN], Theorem 2. 13. ) 

It can be easily observed th_at Proposi Hon 16.3 with its 

proof which is due to ft .. n:selone) holds for any sequence (T ) 
n 

in place 

of the Nystrom app:roximati.on 

every s € [a, 

( fn). 
X t~ j = 

J 

and x <E and 

T x(s} -~ Tx(s) for 
n 

whenever 

n- L2, .... In part:l.cular, it 

hol.ds fm· :s:.:nd if 1r is an interpolatory projection then 
n 

for as well as for 
G T 
n 

We now give examples of some well knovm quadrature formulae which 

the o:r the Fredholm approxtmations. 

of these arise from tnte.rpoVJthW!J Z:J!'Ojections. As in Section 15, 

consider the nodes 

a b ' 

and let € [a,b]) be such that o .. , 1 S Lj ~ n 0 

l,J 

Using the interpolatory projection 

, X E C([a,b]} , 

we define the quadrature formula 

(16.8) 

so that the weights are 
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Note that fori= 1, ... ,n, 

fn{u~n)) = S: u~n)(t}dt . 
a 

Thus, the quadrature formula f is exact on the linear span of 
n 

(n) (n) {u1 , ... ,un } . Also, for x € C{[a,b]) and s € [a,b] , we have 

~{1r x){s) 
n n 

Hence 

{16.9} ~'lr =~ n n n 

when 1r 
n 

is an interpolatory projection and the quadrature formula f 
n 

is induced by 1r If we employ an interpolatory projection v with 
n n 

nodes at t~n) i = 1, ... ,n, while considering the Fredholm 
1 

approximation 
F ~ _N 

T = 1r r·. n n n then for x € C([a,b]) and s € [a,b] 

TFx(s) = v ~x(s) n nn 

(16.10) I (~x)(t~n))u~n)(s} 
i=1 n 1 1 

I [ I w~n)k(t~n), t~n))x( t~n) >]u~n) (s) 
i=1 j=1 J 1 J J 1 

= 

Observe that in the Nystrom approximation, the kernel k{s,t) is 

discretized only in the second variable, while in the Fredholm 

approximation it is discretized in both the variables. 

If 'lrn ~ I , then clearly fn(x) = S: 1rnx(t)dt ~ S: x(t}dt , 
a a 

i.e., the quadrature formula is convergent. Thus, Theorem 16.2 becomes 

applicable. But the quadrature formula f may be convergent although 
n 

(1r ) is not a pointwise approximation of I 
n 
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Various interpolatory projections discussed in Section 15 yield 

interesting quadrature formulae. 

(i) Lagrange interpolation. In this case, 

is the set of all polynomials of degree at most n - 1 , so that the 

quadrature formula 

theorem, we see that 

only if .r a 

f 
n 

( 

is exact on 
n~l 

1, t, ... 't . Hence by Polya's 

.., t x(t)dt for every x € b]) if and 

~ o; < oo . If the weights 

(t)dt are no~~egative, then this condition is 

automatically satisfied. 

If a = -1 , b = 1 and the nodes are the Gauss points 

(i.e. , the roots of the Legendre poljmomial of degree n - 1), or the 

Tchebychev points (i.e., the :roots of the Tchebychev polynomial of 

degree n- 1 (of the first, or of the second kind), then the weights 

are positive, and the quadrature formulae are convergent. 

In the case of Gauss points, the quadrature formula is, in fact, 

exact on all polynomials of degree at most 2n- 1 . (See [D], 2.5.5 

and 2.7.} 

If the nodes are equid:istant, Le., t~n) = a + (j.-l)(b-a}/(n-1} , 
1 

i 1, ... ,n, then the corresponding quadrature formula is known as the 

Newton-Cotes rule. The weights are of mixed signs and it was shown by 

Polya that for some x € C([a,b]} , this rule does not converge to 

i x(t)dt 
a 

(ii) Piecewise linear interpolation. If the. mesh 

h = mruc{t~n)_t~nl) : i = l, ... ,n+l} ~ 0 as n ~ ro, then we have seen 
n 1 1-

in Section 15 that 1r ~I and consequently the corresponding 
n 

quadrature formula is convergent. In this case, f is exact on the 
n 

linear span of the hat functions 
(n) (n) 

el , ... ,en In particular, this 
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is so for any x(t) = ct + d , where c and d are constants, since 

then x(t) = I (ct~n) + d)e~n)(t) . 
i=1 1 1 

The weight w~n) = f e~n)(t)dt 
1 j_ 1 

a 

can easily be calculated by considering the area under the graph of the 

hat function (n) 
ei . In fact, we have 

t(n) - a + (t(n) - t(n))/2 
1 2 1 if i=1 

if i = 2, ... ,n-1 

b - t(n) + (t(n) - t(n))/2 , if i = n . 
n n n-1 

For various choices of the nodes considered in Section 15, we obtain the 

following weights and the corresponding quadrature formulae: 

1. t~n) = 1/n, i = 1, ... ,n: w~n) = 3/2n 

i = 2, ... ,n-1 , and w(n) = 1/2n, so that 

w(n) = 1/n for 
i 

2. 

n 

f (x) = ~ 3x(1/n) + x(1) + I x(~) . [ n-1 ] 

n n 2 i=2 n 

t~n) = (21-1)/2n, i = 1, ... ,n: (n) = 1/n for wi 

have the compound mid-point rule 

1 
f (x) = n n 

I x(2i-1} 
. 1 2n 1= 

i • and we 

3. t~n) = (i-1)/(n-1) , i = 1, ... ,n: w~n) = 1/2(n-1) = w~n) 

and w~n) = 1/(n-1) for i = 2, ... ,n-1 ; this gives the compound 
1 

trapezium rule 

f (x) 
n 

1 x{O) + x(1) + I x(i-1) . [ 
n-l ] 

(n-1) 2 i=2 n-1 
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4. 

where n is even, and -1 < r 1 ( 

1 
n 

for i "" 2, ... ,n-1 and 

if i. 

if i 

( 1 

(n) w· 
n 

1,3, ... ,n-1 

2,4, ... ,n 

Then 

1 In case 
n 

0 as is the case for the compound Gauss two point rule 

and the compound Tchebychev two point rule 

we have? 

f_(x) 
h 

1 [ I x[Hrl] + 
n i=l n 

n 

I X c-l:r2]] 
i=2 

i odd i even 

There are several other convergent quadrature formulae such as the 

compoUJ1d Simpson rule : n odd, n ?: 3 
i-1 

the 

so that 

f (x) 
n 

(n) w. I' 

1 

1 
3(n·-lf 

= 

r 1/3(n-1) if i i ~n 

l 4/3(n-1) if i 2,4, ... ,n-1 

) ·£ i 3,5, ... ,n-2 1., 

n-2 ~ n-3 
+ 1) + 4 i~l x(U:.T) + 2 I 

:i.=2 
i odd i even 

i = 1, .. ,n , 

xl _!__)] 
'n-1 

Then f (x) ~ J1 
x(t)dt for every x E C([a,b]) . (See Problem 15.4 

n 0 

with s~n) = (t~nl) + t~n))/2 . ) 
1 1- 1 

We conclude this section by comparing methods related to 

projections discussed in Section 15 with methods introduced in the 
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present section. Let X = C([a,b]) and (~ ) be a sequence of n 

interpolatory projections: 

n 
~ x = I x(t~n))u~n) , x € X . 

n i=l 1 1 

Let the quadrature formula fn be induced by ~n . Then we have 

~ = ~~ -rS = T~ n n n n n 

1lJEOREII 16.4 Let ~ ~ I , and assume that the functions 
n 

(n) (n) 
u1 , ... ,un satisfy 

sup{lt-t~n)l 
J 

u~n)(t) ¢0, j = l, ... ,n} ~ 0. 
J 

Proof For x € C([a,b]) , we have 

and 

~x(s) = i k(s,t)~nx(t)dt 
a 

= I ( f k(s, t)u~n) (t)dt]x(t~n)) 
j=l Ja J J 

Let E . = {t € [a,b] : u~n)(t) ¢ 0} , and 
n,J J 

a (s) = sup{lk(s,t~n))- k(s,t)l t € E . , j = l, ... ,n} 
n J n,J 

Then for llxll00 ~ 1 , we have 
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_N s 
1·1-x(s)- T x(s)l 

n n 

Let c > 0 , and find fj > 0 such ttat the condi ticms s E b] and 

I < i5 imply , t 2 ) I < 6 . By our assumption on the 

functions 1 .... ,ll ' we can choose such that for all 

we have !t-t~n}l 
J 

(n) u. (t);£0, j=L ... ,n} 
J 

Then ~ ~ for all n l and s E [a,b] i\J.so, by (15.6) 

since 1r ~ I . Hence for all n :2 
n 

we have 

ca: . 

Thus, Also, 

Note that the hypothesis of the above theorem is satisfied if 

u~11J, ... ,u~n) are the piecewise linear bat functions, and the mesh of 

the partition tends to zero. 

To sum up, we list several ways of approximating the integral 

operator 

Tx(s) = J: k(s,t)x(t)dt , x E C([a,b]) , s E [a,b] , 
a 

by considering the nodes a~ t~n) < ... < t~n) ~ b 

u~n) € C([a,b]) such that u~n)(t~n)) l5 • • 
1 l J l,J 

and tbe functions 
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Froblems 

p 
T x(s) 

n 

i'x(s) n . 

.-..JJ . ' 
1 x(sj 
n 

301 

.:;_

ni,·. 1 ~l. Jba. '1 (n.1 . j fn) • 
t 1 1 , t.}x(t)dt u~ {sJ 

n 

I 
j=l 

n 

"' L 
1=1 

[
n () .. 1 ·'·) !b 
);' ·dt' n 'kftln. t''-n ) . 
l.o X,, J• } ' :[ ' J• j 

j=l a 

16.1 Let T be an integral operator with a degenerate kernel given by 

(16. , and assume trat are linearly independent in X 

Then the operator T I ( is represented by the matrix ,span· x 1 , .. 

i, j = L ... ,n , w·i th respect to the basis 

The nonzero eigenvalues of T are obtained this 

matrix eigenvalue problem. 

16.2 Let T be a Fredholm integral operator on C([a,b]] with a 

(n} ( ... < t 
n 

continuous kernel k(s,t) . Let aS S b , and 

( n) 
u. ' E C([a,b]} 

l 
For x € [a, b]) 

a_nd s € [a, let 



T x{s) n 

T x{s) n 

# 
T x{s) n 

n 

I 
i=1 
n 

= I 
j=1 
n 

= I 
i=1 

302 

Then T ~ T , T ~ T and T# ~ T if the mesh h of the n n n n 

partition tends to zero. 

16.3 Consider the piecewise constant interpolatory projection v , , ;, n 

given in Problem 15.3. The quadrature formula induced by v is 
n 

n 
f {x) 
n = I 

j=1 

where s~n) € {t~n)1 ,t~n)] J J- J 
j = 1, ... ,n The Riemann sum f {x) 

n 

gives a rectangular rule and converges to J: x{t)dt for every Riemann 
a 

integrable function x on [a,b] . 

16.4 If we approximate the integrals appearing in 

of {16.11) by the quadrature formula induced by v 
n 

~x(s) . If we do this for Tpx(s) and TGx(s) , n n n 

~x(s) and ~x{s) n n 

then we obtain 

we obtain TFx(s) 
n 


