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We leave the mathematicians' ideal world of real and complex 

numbers to see how the algorithms considererd in the last section can be 

implemented on a computer. We shall also estimate the effects of 

numerical errors. 

Computer arithmetic 

It is not possible to represent an arbitrary real number on a 

computer. Given a machine base f3 , precision t , underflow limit 

L , and overflow limit U , we can represent only the numbers 

together with the number 0 . These are known as the floating-point 

numbers. The value of (13,t,L,U) for Cyber 180 IJ!odel 840 is (2, 48, 

-4096, 4095), while for Cray-1 it is (2, 48, -16384, 8191). An 

arbitrary real number is 'approximately represented' by its nearest 

floating-point neighbour if rounded arithmetic is used; in case of a 

tie, it is rounded away from zero. A complex number is represented by 

the pair of floating-point representations of its real and imaginary 

parts. The errors introduced this approximate representation while 

performing the arithmetic operations + , - , x , / are known as the 

round-off errors. One of the ways of reducing these errors is to carry 

out certain operations in higher precision, like double (2t) precision 

or extended (4t) precision. Taking the inner product 

(18.1) x(l)y(l) + + x(n)y(n) 

of two n-vectors ~ and ~ is one such operation. In the 
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multiplication of two single precision numbers, some computers calculate 

the entire 2t-digit product. If the additions in (18.1) are also 

performed in 2t precision, then we obtain the so called double precision 

accumulation of inner products. (See [ST], p.73.) This is particularly 

useful in calculating the residual £o = ~ - ~ in double precision, 

where is an approximate initial solution of the linear system 

:i.n this case -1 
?51 = ~ - A £o turns out to be a refinement of 

(Cf. Problem 5.1.} A similar remark holds for the iterative 

refinement cigenelements. Problem 11.7.) (See [ST] Algorithms 

4.5.1 and 5.4.1; [FM], pp.49-54.) 

If a Banach space X is finite dimensional, then it can be 

identified with ~~ , where M is the dimension of X . Also, x EX 

can be represented by a column vector ~ with M complex entries. If X 

is infinite dimensional, we consider a sequence (11" ) 
n 

of projections in 

such that 1r x ~ x for every x E X , and for a large enough 
n 

positive integer Ioi , approximate x by 'IT,!.Ix Then there are f 1 , ... ,fM 

in X and * * * f 1 , ... ,fM in X such that 

We say that x € X is discretized by the column vector 

Let T € BL(X) and x E X . Then Tx is discretized by the 

column vector 
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Often it is not possible to find = l, ... ,M) exactly, in 

which case we approximate it by Then Tx is 

(approximately) discretized by the column vector 

[TM]?S , 

where 

* [TM] = [<Tf .,f.>] , i,j = l, ... ,M. 
J 1 

Thus, essentially we replace T by vMTvM . If even the scalar 

products i,j=l, ... ,M, cannot be calculated exactly, we 

consider a close approximation T of the operator T and calculate 

~ * <Tfj,fi) instead. For example, let X= C{[a,b]) and T be the 

integral operator 

Tx(s) = S: k(s,t)x(t)dt , x € X , s € [a,b] , 
a 

where the kernel k is continuous. Then we can consider 

where the nodes 

Tx{s) 
M 
I 

j=l 

(M) {M) 
tl , ... 'tM in [a,b] and the weights 

w~M>, ... ,w~M) in~ give a convergent quadrature formula (cf. (16.5)) 

Coming now to the algorithms given in the last section, we observe 

that they depend on the choice of a finite rank operator T0 € BL(X): 

with in X and in x* . 
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In the first step of the algorithms we solve an eigenvalue problem 

for the matrix 

1,. 0 0 'n . 

We look for a nonzero simple eigenvalue of A 0 Depending on which 

eigenvalue ~ of T we wish to approxima.te, we choose such a and 

find a corresponding eigenvector 2 € of A . In order to economize 

computer memory and time, we choose n relat:i.vely small; in fact, much 

srrall~;H" than M , say, n = 1:0 , if M = 100 . We then find a_n 

eigenvector X E en of 

corresponding to x0 

,x.>], i,j = l, ... ,n, 
:t 

which satisfies 

In the second step, we calculate for j = 1,2, ... , the 

eigenvalue iterate a:nd the eigenvector iterate ~j 

with, we let 

~O = u(l)x1 + ... + 

Since 

* * t x. = [<x.,f.>, ... ,(x.,fu>] 
~1 1 l l N 

i 1, ... ,n , 

we see that is discretized by 

£o [AV]~ , 

where 

* [AV] = [<x.,f.>] , i 
• ] l 

l, ... ,M, j = l, ... ,n . 

This matrix is vertical in the sense that it has many more rows 

To start 

than 

columns; * it is, so to say, the matrix A= [<x.,x.>] made vertical. 
J 1 

Hence the name [AV]. 
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To calculate the eigenvalue iterates 

A. ~ * --
J 

L <T~. 1 ,x.>v(i) , 
i=l J- l 

* we must find <Tx,xi> i 1, ... ,n, for various x € X o Replacing x by 

[TAH];15 , 

where 

* [TAH] = [<Tf o,x.>] 
J 1 

i 1. ... ,n , j 1,. 0. ,M 0 

This matrix is horizontal in the sense that it has m2my more columns 

than rows; hence the letter H in its name. For the algorithms 17010 

and 17.11, we also need to find 

n 2 * ---
pJ. I <T ~- 1 ,x.>v(i) 

i=1 J- ]. 

This can be done by noting that 

[T2AH];15 , 

where 

[T2AH] 2 * [ (T f 0 ,x. >] 
J l 

i 1. ... ,n ' j 1, ...• r•t 0 

Thus, if ~j-1 is discretized by .£j-1 
E c}-1: then 

A. l[TAH]£j-1 and 
H 

J pj Y., [T2AH].£j-l 

To calculate the eigenvector :i.terate <pj , we need to solve a system 

of n + 1 equations in then unknowns a(1), ... ,a(n) ; the given 

vector satisfies H 
V R. 
~ K.J 0 ' and is determined by the information 

available at this stage. Let us denote the solution by 
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The iterate ~j is a linear combination of x1 , ... ,xn 

Top. l and rp. l whose coefficients are determined by 
J- J-

Mj , aj(l), ... ,aj The rratrices [AV]. [TM] and 

i,j =1, ... ,M , 

allow us to discretize <P. , j = 1,2, ... . ] For example, in Algoril thm 

17.9 for the fixed point iteration scheme we have 

It is discretized by 

~ (rAV]a. + 0 ·- ~J 
)c. 1 + [TM]c. ,] . 
~J~ ~.]-A 

Accuracy of the approxi~~~ations 

In the case of all the algorithms of Sect:l.on 17, the eigenvalue and 

eigenvector iterates A. 
J 

and <P. 
J 

converge, under suitable conditions 

(given in Section , to a nonzero simple eigenvalue ?\ and a 

corresponding eigenvector <P of T , which satisfy 

where * ~0 * * v(l)x1 + ... + v(n)xn. For the 

Rayleigh-Schrodinger scheme (11.18) and the fixed point scheme (11.19), 

this eigenvalue A of T is the nearest spectral point of T to A0 . 

(cf. Theorem 11.8.) Since we have replaced the possibly infinite 

dimensional operator T on X by the M-dimensional operator [TM] , 

and X € X by 1frr in the discretization procedure, the computed A.'s 
J 

will converge to a nonzero simple eigenvalue A(M) of [TM] , and the 

discretizations c. 
~·J 

eigenvector £(M) 

of ~j will converge to the corresponding 

of [TM] which satisfies 
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The whole point of going through the iterations is to approximate 

the nonzero simple eigenvalues of [TM] (or T) as closely as we wish 

without solving the large (or infinite dimensional) eigenvalue problem 

for [TM] T) . However, for illustrative purposes we may compute 

the eigenelements X(M) and of [TM] directly to get an idea of 

the actual accuracy reached at the j-th iteration, j = 1,2, .... 

All the same, we must have criteria for deciding when a sufficient 

accuracy is reached without actually knowing and (M) 
'P If such 

criteria are satisfied, the iteration should be stopped. The degree. of 

accuracy can be measured either by the norm of the residual 

r. 
J 

j 

or by the relative increment 

d . II<P . -<P • 111 / li<P .II 
J J J- J 

between two successive iterates. Note that if is actually an 

eigenvector of T , then since we see that 

X. 
J 

* <T.pj-l'"'o> lil1.1St be the corresponding eigenvalue ofT , so that 

0 . If X is a Hilbert space, then one can compute the Rayleigh 

quotient 

and the corresponding residual 

r '. = IIT<P. 1-q(.p. 1}<P. 1 112 J J- J- J-

in view of the minimum residual property (8.9) of 
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Thus, we stop the iteration if 

-t 

il ( 15 ° and/or 

where 15 is the machine base, and t 0 is a given positive integer less 

than or equal to the machine precision t . In order to avoid being on 

the boundary of the precision, we take t 0 = t - 1 or t - 2 If 

X = [0,1]) with the sup norm, then we can employ the II 1100 norm on 

[;M and if X is a Hilbert space, we can use the Euclidean norm II 112 

on 

There is usually a trade-off between the size n of the matrix A 

of the initial eigenvalue problem and the number of iterations needed to 

?Lttain a desired accuracy. It is economical to choose a smaller n and 

opt for a greater YillH!her of iterations. The example in Table 19.9 will 

illustrates this point. 

'If one needs a highly accurate eigenvalue approximation but only a 

moderately accurate eigenvector approximation, then it is perhaps more 

practical to carry out two iteration processes simultaneously: one on 

- * and the other on the eigenpair (:A0 ,.p0 ) of 

as pointed out in Remark 11. iv). The generalized Rayleigh 

quotient based at namely 

will then be an approximation of the eigenvalue h of T of a much 

* * * higher order, provided II (T - T 0 ).p0 11 and are small. (Cf. 

(11.28).) If T and T0 are self-adjoint, then it is easy to compute 

since so that we do not need to carry out two iteration 

processes. In this case, for the Rayleigh-Schrodinger iteration scheme 

(11.18), the eigenvalue iterates and i\2j+l can also be computed 

on knowing ~j (cf. (10.9)). 
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Finally, we make some comments on the relative merits of the 

algorithms for the four iterations (11.18), (11.19), (11.31) and 

(11.35). The P~yleigh-Schrodinger iteration involves computing the sum 

at the j-th step, where the coefficients (A.-A. 1) become progressively 
J r 

small as j increases. This is undesirable in a floating-point 

arithmetic. From this point of view, the fixed point iteration (11.31) 

should be preferred. The modified fixed point iteration (11.31) and the 

? 
Ahues iteration {11.35) involve additional computations of r-~. 1 and 

J-

2 * <T ~j-1 .~0> at the j-th stage and as such, are more expensive than the 

fixed point iteration (11.18). However, the numerical experiments given 

in Tables 19.3, 19.4 and 19.5 indicate that the :i. terat:i.ons (11.31) and 

(11.35} give the desired accuracy very fast; the iteration (11.31) often 

converges faster than the iteration (11.35), which was regarded as the 

best among those considered in [A]. (See p.157 of [A].) 

Numerical s"tabilHy 

The round-off errors caused by floating-point arithmetic can 

sometimes assume alarming proportions. A minor change in the data can 

give rise to a major deviation in the solution of an eigenvalue problem, 

or of a system of linear equations. If we employ a 'DO' loop in an 

iteration process, the errors can accumulate and cause an overflow or ru1 

underflow. It is advisable, then, to consider some conditions which, 

when satisfied, preclude the possibility of small errors in the initial 

stage leading up to large errors in the final stage. In that case, the 

computations are said to be numerically stable. 
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While implementing the algorithms of Section 17, questions of 

numerical stability arise at three places: {i) calculation of the 

eigenelements AO and ~ of A , {ii) calculation of the eigenvector X 

of A* nd correspo ing to ~0 • and {iii) solution of the system 

of linear equations,.. We shall now take up these questions one by one. 

Inil:ial eigenvalue problem for A 

The entries i,j = 1. ... ,n of the matrix A can, in 

general, be calculated only approximately. For some important 

eigenvalue routines, the computed eigenvalues are in fact, the 

eigenvalues of a nearby matrix A {[GV], p.200). Thus, instead of 

finding 0 ~ AO € ~ and Q ~ ~ € cn such that 

we actually find 0 ~ ~0 € ~ and Q ~ Q € cn such that 

Let E = A - A denote the error matrix as well as the induced operator 

on Let ~ and denote the spectral projection and the reduced 

resolvent associated with A and AO , respectively. 

Let II II denote a norm on cn , and let II II* be the induced 

norm on the adjoint space. For example, if II II = II II 
p 

then 

II II* = II llq , where 1/p + 1/q = 1 , 1 ~ p ~ ro •• 

Assume that A has a simple nonzero eigenvalue AO and a 

corresponding eigenvector ~ , and let ~ denote the eigenvector of 

A* corresponding to ~O such that H 
~ ~ = 1 . {See Theorem 8.3.) 
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Assume that 

0 < -r0 = max{IIE~II 11!11*11!111 , IIE!fll} < 1/4 . 

By applying Theorem 11.5 to r 0 = A and T = A , we see that A has 

an eigenvalue ~O and a corresponding eigenvector 2 satisfying 

HA 
! ~ = 1 such that 

where 2 g{t} = 1 + t + ~t + ... is the function defined by {11.1} for 

ltl ~ 1/4 . {See {11.20} and {11.21}.} Also, Theorem 11.8 can be 

employed to conclude that ~O is a simple eigenvalue of A . It will be 

nonzero if it is sufficiently near x0 . 

Now, assume that the eigenvector ~ of A is scaled so that 

11~11 = 1 . Then 

~= II !'fill 

Also, 

l{g{t}-1}/tl 1 + O{ltl} = lg{t}l as It I~ 0, 

and 

-r0 ~ IIEII 11!'/ill 11!111 • 

Hence 

{ 18. 1} 

{18.2} 

Thus, a small error of size IIEII in the formation of the matrix A can 

cause an error of size at most IIEII 11!'/ill in the eigenvalue x0 of A and 

of size at most IIEII 11!111 in a corresponding eigenvector ~ of norm 1 . 
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For this :reason, 11~!1 is called the condition number for finding the 

simple ~ x0 , and i!:fll is called the condition number for 

finding the corresponding unit eigenvector ~ of A . If a condition 

number is small, the relevaJlt problem is said to be well-conditioned, 

otherwise it is ill-conditioned. Here are some lower bounds for 11~11 

and 1181'11 

(18.3) 1 s !lwll llqiU 1 
r (:f) $; ll:fl! 

~* 
, 

dist(/\0 ,a(A)\.{:?\0}) a 

by (2.1) a. Old (7 .3}. Notice that (18.:!.) gives a bound on the absolute 

error in H is small compared to liE!! , then the relative 

small. On the other hand (18. gives a bound on the relative error in 

~ , since IIJtil = 1 . 

eigenvector ~ corresponding to is ill-conditioned if A.0 is not 

well-separated from the rest of the spectrum of A 0 Of course, in 

general, the condition :number IISI'II can be large even if A.0 is well 

separated from a{A) \. 

Let us now consider the Euclidean. norm on 

( 

It can be readi checked that 

is the best approximation to M from the o:rthogo1~l complement {w}1· 

of {~} o (See [L], 2302.) Hence 

(18.4) 1 1 

II?S-M11 2 = dist(M, {!}l.) 
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Note that if e denotes the acute angle between £ and ! then 

Now, .1 {;!!} is the null space of the spectral projection ~ 

associated with A and x0 ; it is spanned by the generalized 

eigenvectors of A corresponding to its eigenvalues other than AO , 

as we see by .18}. 

If the eigenvector £ corresponding to AO is 'close' to the other 

generalized eigenvectors of A (i.e., ~ is nearly a linear combination 

of them, or the acute angle e between ~ al1.d ;{1: is close to v/2). 

then the eigenvalue x0 is ill-conditioned. 

On the other hand, the condition number for :is best when 

i.e.' is an orthogonal projection, or H 
~ = ~. 

happens if a.<J.d only if ~ is orthogonal to { w} .1 , i.e. , w = u 

because 

H 
1 = £ £ 

In this case, it follows by Problem 8.7 that 

(18.5) 

where p is the smallest nonzero eigenvalue of 

This 

If A is a normal operator, then 11~11 2 = 1 (Theorem 8.4 and 

Proposition 2.3), ~ is normal, and by (8.14), 

Thus, for a normal operator A , the stability of the eigenvalue 

problem A£ = Ao£ depends solely on the distance of AO from the rest 

of the spectrum of A . 

It is interesting to note that the condition number for the 

eigenvalue involves the 'distru~ce' of the corresponding unit 
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eigenvector ~ from the remaining generalized eigenvectors of A , 

while an estimate for the condi t:i.on number for the eigenvector ~ 

involves the distance of the corresponding eigenvalue AO from the 

remaining eigenvalues of A . 

Since is a simple eigenvalue of A :A0 is a s:i.mple 

eigenvalue of AH (Tl1eorem 8.2(c)). Let 2 be an eigenvector of A 

corresponding to ''o We wish to find an eigenvector of 
H 

X: A 

corresponding to 5\0 such that H 
1/Ao X~ 

In case the eigenvector ~ of A corresponding to is knoV~rn 

to be orthogo:n.al to all the other generalized eigenvectors of A 

corresponding to the remaining eigenvalues, i.e.. :!;!; is orthogonal to 

.1 
{v} . then 

Hence there is no need to do any further work. In the absence of the 

knowledge of the orthogonality of ~ to all the other generalized 

eigenvectors of A , there are two ways of proceeding to find X . 

Firstly, we can solve the eigenvalue problem for AH Observing 

that 5\0 is one of the eigenvalues of AH 
' we pick a unit eigenvector 

of AH corresponding 5\0 and let ~0 / 
- H (Note: :!;!; to X = "o2' 2 

(8.7).) As before, the condition number for finding 

2 in this manner is II~' II , where 'd'' is the reduced resolvent 

associated with AH and 5\0 . But ';/' = 'd'tt by 

the reduced resolvent associated with A and :A0 

condition number is * ll'd' II= 11~11 , as earlier. 

4} , where ~ is 

Thus, the desired 
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Alternatively, (8.7) shows that there is a unique eigenvector 

of AH - 1,1-_H'!. corresponding to 11.0 which satisfies ·- ·- = 1 Then ! is 

the unique solution of the system 

{18.7} 

of (n+l) equations in the n un~owns x(l), ... ,x(n) . Solving this 

system is much simpler than solving the eigenvalue problem for AH 

Consider the (n+1) x n coefficient n~trix 

(18.8) 

of the system (18. 

is an eigenvector of 

by (8.7) that 0~ = 0 

is one to one, i.e., 

C= [
u(l) ... u(n) 1 

AH - );: I n 
0 

Since ?;:0 is a simple eigenvalue of 

(AH)H -- A d. ~ "' correspon 1ng to AO = AO , it follows 

implies ~ = 0 Thus, the map C : [;n -> [;n+ 1 

the matrix C has rank n The system then can 

be solved by reducing C to an upper trapezoidal form either by the 

Householder orthogonalization method or by Gaussian elimination method 

with partial pivoting. (See Theorems 3 and 2 as well as other relevant 

comments in Appendix II.) The unique solution of the linear system 

(18.7) is given by 

-t - t X= C [1JA0 ,o, ... ,OJ 

where ct IJ!l-+1 ~ ll:n is the Moore-Penrose inverse of C IJ;Tl ...;, ll:n+l 

(See Appendix II, especially (5).) 
n 

For every z E 0:: , there is a 

unique ~ € ~n+l {known as the least squares solution) such that 
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Theorem H.6 shows that the relative change in the (least squares) 

solution X due to perturbations of C and [1JA0 ,o, ... , depends on 

the condition number 

We have 

(18. 

Let (resp., a (C)) denote the positive square root of the 
n 

lar~est (resp., smallest) eigenvalue of CHc . Then 

/ a (C) 
n 

by ('7) of Appendix IL This perturbation analysis is applicable to the 

round~off errors that arise while solving the linear system (18. 7) by 

the Householder orthogonalization method. (See of Appendix IL) 

We now take up the last question regarding numerical stability that 

arises while implementing the algorithms of Section 17. Let ~ be an 

eigenvector of A corresponding to a nonzero simple eigenvalue A0 

such that Let X be the eigenvector of AH 

corresponding to such that The following linear 

system occurs in the calculation of the eigenvector iterates 

'f'. , j = L2, ... . ] 
H 

X :S o 

(18. 

""'h~~e R E ,..n t' f' HR 0 "' ~· t;;, .,_, sa 1 s H:ls ! 12. = o 
{See, e.g., Step 2(ii) of Algorithm 
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17.8.) While the right hand side {! changes from iterate to iterate, 

the coefficient matrix 

(18.11} c 
... -.v(n) ]1 

A - "A0I 
n 

n 

of the system remains unchanged throughout the iteration process. 

The spectral projection associated with A and is given by 

Since 

7.1(b) that 

so that 

is simple 

R(.A-7\ I) 
0 

Z(?Ji) {{! € H"' Yk 0} . 

hence semisimple), it follows from Lemma 

Z(§l) Also, the operator is 

invertible. Thus, for every f!. E satisfying 
H 

;Cf!. = o the system 

(18.10) has a unique solution :lS ·€ !Cn in fact, ~ where Y' 

is the reduced resolvent associated with A and Again, the 

solution can be calculated by reducing the system {18. to an upper 

trapezoidal. form by the Householder orthogonalizat:i.on method or Gaussian 

elimination with partial pivoting, Appendix IL) 

Now, the m£ttrix C has rank n . For an arbitrary 1 E !Cn the 

unique least squares solution of system 18.10) is given by 

1)'. ,. ' is the ~!!oore-Penrose 

inverse of C As in the case of the matrix C given by {18.8), we 

see by of Appendix II that the condition number for the (least 

squares) solution ~ of Cx @, , where 0 is 

where is the positive square root of the largest 

. , smal Note tl:-.ta t 
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(18. 

Assume now that iJl = '!/' • (We l1ave seen earlier that this case 

arises when the eigenvector M of A corresponding to x0 is 

orthogonal to all the generalized eigenvectors of A corresponding to 

the remaining eigenvalues of A . This is certainly true if A is 

normal.) We then have 

'!/' H-
~~2 + (A -1\0I) 
IX ! 0 

Since H H-= 0 = '!/' (A -X0I) we see that cf!c commutes with ~ . 

If we let Y = R(~) and Z = then by (6.2) 

a(dHc) = a(CHcly) u a(CHc!z) 

Now, -H 1 , _H H -
c·ciY = ~1-2 I !Y a.,Tla c-clz = (A -?,0I) lz · 

(fi}1-~0I) } = R(AH-~01) = Z(~H) = Z(~) = Z , and 

Z((AH-~0I)(A-X0I)) = Z{A-/\0I) = R(~) = Y . Hence 

Let M1 ~ ~2 l ... Mn-l be the nonzero eigenvalues of 

H :;-(A -A0I)(A-X0I} . Then 

Also, 

a1(C) =max{~, 1/l/\01}, an(C) = min{~~n-l , 1/IX01}, 

(18.13) 

Now, since 

max{~, 1/l/\0 1} 

min{~~n-l , 1/i/\0 1} 

is self-adjoint, we have 
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Also, since ~ is orthogonal, we see by Problem 8.7 that 

Hence 

{18.14) 

In particular, let A be normal and let x1 , ... ,An_1 be the 

eigenvalues of A other than x0 , arranged so that 

i = 1, ... ,n-1 Thus, 

{18.15) 

Thus, in this case, the condition number of C depends on 1/IX0 1 and 

on the distances from x0 to the remaining eigenvalues of A . 

Finally, we remark that the first equation XH~ = 0 of the system 

{18.10) can be scaled by multiplying it by a constant r ¢0 ' without 

affecting the solution of the system. In that case, the coefficient 

matrix 

{18.16) 

of the scaled system has the condition number 

{18.17) 
max{~. lr/A0 1} 

min{~lln_ 1 , IC/A0 1} 

= max{IIA-X0III2 , IC/A0 l}max{ll9'112 , IX0/C I} . 

If we choose the scaling factor such that IC/A0 1 equals {or is close 

to) either ~ or ~1Ln_1 , then k2{Cr) equals {or is close to) 

~ / ~1Ln_1 = IIA-X0III2 119'112 Thus, k2{Cr) is smallest if the first 
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row of C is changed to 

where ~ is an eigenvector of AH corresponding to such that 

H H 
AQX~=l=~~·· 

H In case '!/> ¢ '!/> it is not clear how k2 (C() depends on 

Here is a most simple-

Let 

so that '!/> = 

and Then On the 

oth~;n· hand, with t = (,'A.0 , we obtain 

Ia 

For C we have 

We now describe another way of finding ~ E ~n such that 

(18.10) 

H where X ~ = 0 Consider 

(Note: '!/> = \JSXH . ) We show that ~ satisfies (18.10) if and only if 

If ~ satisfies {18.10), then 
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B?$ = A?$ - Ao(?S + Q) = A?$ - AQ?S = ft . 

Conversely, let B:s = ft, i.e., 

{18.19) 2 H Ax-AX-AUVX=R 
~ (}'V ~~ ~ 

Since H 
we have X (A-A0I) = Q . Also, 

Hence taking inner products with X on both sides of {18.19), we obtain 

H H 
-Ac}t ?$ = X ft = Q · 

Since AO ¢ 0 , this implies XH?$ = 0 Also, {18.19) gives 

as desired. 

Now, the operator B commutes with the projection ~ . With 

Y = R(~) and Z = Z(~) , it follows by {6.2) that 

a(B) = a(Biy) U a(Biz) 

and the spectral decomposition theorem {Theorem 6.3) gives 

Let, as before, A1, ... ,An_1 be the eigenvalues of A other than 

Then 

(18.20) 

Since AO ¢0 and AO ¢ Ai , i = 1, ... ,n- 1 , we see that B is 

invertible. The solution ?$ of {18.10) can thus be obtained by solving 

B:s = ft , by Gaussian elimination with partial pivoting or by the 

Householder orthogonalization method, the condition number for the 

solution being 
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k(B) = IIBII IIB-111 

For the Euclidean norm II 112 , we have 

(resp .. a (B)) 
n 

is the largest (resp., smallest) 

eigenvalue of BHB . Now, 

where 

Recalling (18.12) and (18.16), we see that 

where C = IX 12 
0 

H - H - -H If ~ is orthogonal, then (A -X0I}~ = (A -X0I)~- = 0 and similarly 

~{A-X0I) = ~(A-X0I) = o . so that E = o . Thus. BHB = ~r with 

r·= IX0 12 • and the stability considerations are exactly as before. In 

particular, 

(18.21} ~(B) 

where M1 is the largest eigenvalue of 

is its smallest nonzero eigenvalue. (See (18.17).) In case A is 

2 2 
normal, then M1 = IX1-X0 1 and Mn_1 = IXn_1-x0 1 • This result also 

follows directly if we note that B is normal and use (18.20). 


