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8. SPECITRUM OF THE ADJOINT OPERATOR

In this section we investigate resolvent operators, spectral
projections, reduced resolvents and quasi-nilpotent operators associated
with the adjoint T* of an operator T € BL(X) . The underlying story
behind these results is that the operation of taking an adjoint_of an
operator in BL(X)} 1is like the operation of taking the complex
conjugate of a complex number. We shall see that points in the discrete
spectrum of T* correspond to points in the discrete spectrum of T ;
thus the situation here is analogous to the finite dimensional case.

The concept of a Rayleigh quotient‘is introduced and used to obtain
estimates for an eigenvalue. We conclude this section by proving the
spectral theorem for compact normal operators, and by pointing out some

special results for self-adjoint operators.

THEOREM 8.1 Let T € BL(X) . Then

(2) p(T) ={z : z € p(T)} .

(8.1) o(T) = {X : A €o(T)} .

and for z € p(T) . we have

(8.2) [R(T.z)T = R(T".Z) .

(b) Let I Dbe a (positively oriented simple rectifiable closed)

curve in p(T) , and let T be the conjugate curve. Then
% >
{(8.3) [PF(T)] = PT(T )
»* 3% -
(8.4) [SF(T,Z)] = Sf(T .z} for z €T ,

(8.5) [Dp(T.2)T° = DR(T".Z) for z€C .
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Proof (a) Let z € p(T) . Then
(T-zI)R(T,z) = I = R(T,z)(T-zI) .
Taking adjoints on both sides, we have
[R(T,z)TH(T-2I) = I = (T -zD)[R(T.2)T" .
~ This shows that z € p(T*) and
R(T.Z) = [R(T.2)T" .

€ p(T*) . Then by Proposition 1.3(c),.

N

Conversely, let
[(T-zI)(X)T' = Z(T*-2I) = {0} .

so that the range of (T-zI) is dense in X . That it is also closed
in X (and hence equals X) can be seen as follows. Let x € X and

find x* € X* such that
& x> = Ixll and IxH = 1

by Corollary 1.2. Then

& = (T2 (T2 K o
= (T2 L (TzD)o .
Thus,
% = -1
(8.6) lixll < W(T-zI) 710 1(T-zI)xli

by the fundamental inequality (1.3). Since X is complete, (8.6)
implies that the range of (T-zI) 1is closed in X . Thus, (T-zI) is
onto. The inequality (8.6) also shows that (T-zI) 1is one to one, and
that its inverse is bounded by H(T*—EI)_IH . Hence =z € p(T) . Now,

(8.1) follows.
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{(b) By (4.19), we have

[;—%i- L‘ R(T,z)dz}*
e [—Jf [R(T,G)]*dw]
T

[P.(D7T"

i}

_R(T . w)dw , by (8.2)
T

i}

£
PT(T ) -
Similarly, for z ¢ 1T .,

[Sp(T.2)1"

W—=Z

e ], 2 o]

1'J‘ [RgT,w)]xdw
2ri Jx | =
r ‘wz
3
- 2"-1—_ J RT %) 4y , by (8.2)
i = -
r w-z
3% -
SI—..(T ,Z) .

il

Finally, for z € C ,

[D(T.2)T" = [(T-2D)PR(T)T" = [PL(T)(T"-21)

PR(T)(T-2I) . by (8.3)

(T-ZI)PE(T)

DT:(T*QE) ) V7

COROLLARY 8.2 (a) A 1is an isolated point of o(T) if and only if A

is an isclated point of U(T*) .

(b) A is a pole of R(T,z) of order £ if and only if N is a

pole of R(T*,z) of order £ .

{c) A 1is a discrete spectral value of T 1if and only if X isa
discrete spectral value of T* : the algebraic (resp., geometric)
multiplicity of A as an eigenvalue of T equals the algebraic (resp.,

- %
geometric) multiplicity of A as an eigenvalue of T .
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Proof (a) is a direct consequence of (8.1).

(b} A is a pole of order & of R(T,z) if and only if A is an

isolated point of o(T) and

[D(T.01° =0, BTN %0 .
But this happens if and only if A is an isolated point of U(T*) and
DT 0)1° =0 . g 01 £ 0
since by (8.5), we have DX(T*,X) = [DA(T,A)]* . (Recall Proposition
1.3(a).)

(c) We have A\ € Ud(T) if and only if A 1is an isolated point of

o(T) and rank PA(T) {® . By (8.1), (8.3) and Theorem 3.7,
rank P5(T") = rank[P,(T)]* = rank P,(T) .

Also, N € oa(T*) iannd only if XA is an isolated point of a(T*)

and rank Pg(T) < ® . Thus,
e S
o (T°) = {X : A€ ay(M)} ,

and the corresponding algebraic multiplicities of A and N are equal.
Finally, let Y = R(PA(T)) and Z = Z(PA(T)) . Then by (2.2).
z" = R([P\(T)T") = R([P5(T)] . which is the spectral subspace
associated with T  and A . The map A = (T--?\I)*lz_L can be

identified with the map B* , where B = (T—AI)lY . by Proposition

1

2.2. Since Z((T-AI)") € Z" and Z(T-AI) CY , we have

dim Z((T-AI)™) = dim Z(A) = dim Z(B) .

dim Z(T-AI) = dim Z(B) .



116

But since dim Y < ® , we have
% 3% 3%
rank B + dim Z(B) = dim Y =dim ¥ = rank B + dim Z(B ) .

As rank B = rank B" , we see that dim Z(B) = dim Z(B*) . This shows

that the geometric multiplicities of A and A are equal. Vo4

Part (c) of the above corollary extends some well known linear
algebra results to the discrete spectral values of an infinite
dimensional operator T ; in particular, these results are applicable
to the nonzero spectral values of a compact operator. Also, if A €

od(T) ., then the nature of the solutions of the operator equation
Tx -~ =y, x,y €X

can be described in terms of the solutions of the equation

T*X* _ )_\X* - y* . x*,y* e X* .

See Problem 8.2, which gives an analogue of the Fredholm alternative.

If, however, an eigenvalue A of T 1is not in the discrete
spectrum of T , then A need not be an eigenvalue of T . For

example, let X = 82 , and for [x(l),x(2),...]t € £2 , let

Trx(1).%(2)....1% = [x(2).x(3)....1° .

Then every A with |A]l < 1 1is an eigenvalue of T , but T* has no

eigenvalues at all ([L], 12.6(c) and Problem 12(vii)}.

We now state a useful result which shows that if A € ad(T) . then
the associated spectral projection has a simple representation that does

not involve an integral.
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THEOREM 8.3 let A € ad(T) , m bg its algebraic multiplicity, and ¢
be the order of the pole of R(z) at A . Let Kpowe X form an
ordered basis of the generalized eigenspace Z((T—AI)E) of T
corresponding to A .. There is a unique basis {xT,...,x:} of the

generalized eigenspace Z((T*—XI)B) of T corresponding to A such

that

Kex.>=6, ., 1<i.j<m.
J 1 1.)

Also, if P (resp., P*) denotes the spectral projection associated with

T and AN (resp., T and X ) . then

L %
(8.7) Px = ) <x,x0%x, ,x €X

j=1 .

% 3% o 3% % 3 %

(8.8) Px = ) <x.x)>x, ,x €X .

j:l Jd
If, in particular, A is semisimple, then Kpseoos X
resp., x*,...,x* form, in fact, an ordered basis of the eigenspace of

1 m

T (resp., T*) corresponding to A (resp., A) .
Proof We have R(P) = Z((T-AI)®) by Lemma 7.1(b), and
z((4An?) = Ry = z(p)t .

by Corollary 8.2(b) and (2.2). Letting Y = R(P) and Z = Z(P) in

Theorem 3.2, we see that there are unique xT,...,x: in
7 - z((T"R1)®) such that <x§,xi> =5, ; - The formulae (8.7) and

(8.8) then follow from (3.3) and (3.4).
If A is semisimple, i.e., & =1, then R(P) = Z(T-AI) is the
eigenspace of T corresponding to A , and similarly for R(P*) . The

last statement of the theorem now follows. //
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If X is a Hilbert space, T € BL{(X) and O # x € X , then the

complex number

q(x) = <Tx,x> / IIxH2

is called the Rayleigh quotient of T at x , and the vector

r{x) = Tx - q(x)x

is called the residual of T at x . Clearly, r(x) is orthogonal to

x and hence for any complex number =z , we have

ITx - sz2 WTx - q{x)x] + [q(x)x - zx]ll2

L1}

2

ITx - q(x)xh + la(x) - z12uxl
Thus,

(8.9) minliTx - zxll = iTx - zxll if and only if =z, = q(x) .
z€C @ 0

This is known as the minimum residual property of the Rayleigh quotient.

Note that x is an eigenvector of T if and only if r{x) =0, and
in that case q(x) is the corresponding eigenvalue.
The set of Rayleigh quotients of T 1is sometimes called the

numerical range of T . It is a bounded set since [q(x)| < ITH for

every x # O . An interesting property of the numerical range is that
it is a convex subset of € . (See [K], 2. of p.571 for a simple
proof.)

More generally, 1if X 1is a Banach space, T € BL(X) , x € X and

x* € X* with (x,x*> # 0 , we define the generalized Ravleigh quotient

f T at (x,x*) by

q(x,x*) = (Tx,x*> / <x,x*> .

o 3 Y 3 *
Notice that in case X 1is a Hilbert space and we let x =x # 0 ,

then q(x,x*) = q(x,x) = q(x) . as defined earlier.
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Let ¢ be an eigenvector of T‘ corresponding to an eigenvalue
A . Assume that A is an eigenvalue of T* with w* as a
corresponding eigenvector. We have seen in Corollary 8.2(c) that this
assumption is satisfied if A € Ud(T) . Now, let ¢y € X and ¢* ex”
be such that <¢,w*> # 0 . Then writing ¥ = ¢ + (y—-¢) and

W* = ¢* + (¢*—¢*) , we have

%, (Tp,0 > + <To b =9 > + g, T (9 )> + <T(Y=p) ¥ =0 >
a(v.¥') = E3 % 3 EE
Kp,9 > + Lo, p —p > + {Ymp,p > + Pgp,p =@ >
- A<, 0> + <o, —p > + W9 ] + <T(o=p) @ =P > )
<4>,<P*> + <<p.\lf*—<p*> + <\IJ—<p,<P*> + <‘P—‘P,<P*-\P*>
Hence
3% 3¢
(8.10) Ay - a = LMol b2
R

(8.11) (e, vy = Al ¢ BRI o gy g g

<y ¥ >l

The above relation is useful.in estimating the eigenvalue A by
q(¢,¢*) if we know some approximations ¥ and w* of the eigenvectors
¢ and w* , respectively. In case X 1is a Hilbert space and
INl = UTH , then A is, in fact, an eigenvalue of T* and w* = ¢ is
a corresponding eigenvector. (See Problem 8.4.) If T is normal, then

this is the case for every eigenvalue A of T since by (1.8) we have

H(T*—i)wu = [I{T-A)¢ll . Thus, in these cases if we take w* =y , we
have
(8.12) © ety - Al ¢ MR e g®

Il

If llp—¢ll is of order e , then I[q(y) - Al 1is of order ez . This

phenomenon is called the superconvergence of the Rayleigh quotient.



120

We now prove some special results regarding the spectrum of a

normal operator.

THEOREM 8.4 Let T be a normal operator on a Hilbert space X .

(a) HTil ra(T) ,
and for z € p(T) . we have

(8.13) IR(z)1l

]

1 / dist(z.o(T)) .

(b) Let A be an isolated point of o(T) . Then A is a
semisimple eigenvalue of T , Pk is the orthogonal projection onto the
eigenspace of T corresponding to A , DA =0 and

(8.14) IS\l = 1 / dist(N,o(TINA}) .

Proof (a) For x € X, we have

IT2x2 = <T2x, T2 = <T T2, Tx>

TTTx,Tx> = <TTx, T Tx>

T

Hence HT2H = HT*TH = |IT|I2 . For j=2,3,... , we have

J j-1 j-1
T2 = (T2 )2 ., where T2 is normal. Hence by induction on j ,

J J
i = i,
for all j =1.2,... . The spectral radius formula (5.10) now gives
23 1729

r (T) = lim NT
o o0

= ITH .

Since T 1is normal, we see that R(z) is normal for every z € p(T) .

and
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IR(z)Il = rU(R(z)) =1 / dist(z,0(T)) .
by (5.6).

(b) Let XA be an isolated point of o(T) . Then since

[PA(T)]* = PX(T*) by (8.3) . and since R(T,z) commutes R(T*,W) for

zZz near A and w near A , we see that PA is a normal operator.
» But since PA is a projection, it follows by Proposition 2.3 that
I{(P7\)'L = Z(PA) , i.e., PA is an orthogonal projection.

Next, since DA = (T—AI)PA is normal, we have

ID, Il = r (D) =0 ,

1}

by (7.4). As P, #0 and D,

pole of order 1 of R(z) ., i.e., A 1is a semisimple eigenvalue of T .

0 . we see from (7.7) that A 1is a

(cf. Proposition 7.3.) Thus, by Lemma 7.1(b), PA(X) is the eigenspace

of T corresponding to A .

Lastly, since SA = 5%; gi%lx-dz is likewise normal, we have
r
by (7.3).
HSAH = ra(SA) =1/ dist(N.o(T)\{A}) . //

THEOREM 8.5 Let T be a normal operator on a Hilbert space X .

(a) Let A € o(T) . Then there is a sequence (xn) in X such

that lix Il =1 and
n
(8.15) Tx - =0.
_ n n
For this sequence, we have

(8.16) <Txn,xn> = q(xn) = A
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(b) (Krylov-Weinstein) Given x € X with lxll =1 and z €C ,

there is A € g(T) such that
(8.17) N - z] < ITx - zxIl .

Proof (a) Since (T-AI) is not invertible in BL(X) , either its
range is not dense in X , or it is not bounded below. In the former

case, by Proposition 1.3(c) . we have
* — 1
Z(T -AI) = R(T-AI)™ # {0} .

Hence there is x € X with lixll =1 such that H(T*—XI)XH =0 . By
(1.8), we have I(T-AI)xll = 0 and (8.15) is satisfied. In the latter

case, it is obvious that (8.15) holds. Next,

Iq(xn) - Al = l(Txn—)\xn,xn>|

Hence (8.16) holds.

(b) If z € o(T) , there is nothing to prove. Let z € p(T) .

Then x = R(z)(Tx-zx) , so that
1 = lixll < IR(z)I ITx — zxIl ,
i.e., dist(z,0(T)) < ITx - zxll by (8.13). This shows that there is

N € o(T) satisfying (8.17). //

We now prove the spectral theorem for a compact normal operator.

We have seen in Section 7 that if T 1is a compact operator on a Banach

Space X , then o(T) consists of a countable number of points, and
each such point, except possibly the point O , is in the discrete
spectrum of T . If, in addition, T 1is a normal operator on a Hilbert
space X , then we get a complete description of T 1in terms of its

nonzero eigenvalues and corresponding eigenvectors.
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THEOREHM 8.6 Let T be a nonzero compact normal operator on a Hilbert
space X . Let Rl,k2,... be the distinct nonzero eigenvalues of T ,

arranged so that
L2 g2

Let Pj denote the orthogonal projection onto the eigenspace of T

corresponding to Aj . Then each Pj has finite rank and

For n=1,2,..., we have

n
(8.18) T - Y A

&4 ijH = Ikn+1| .

which tends to zero whenever the sequence (Rj) is infinite, so that

4]
(8.19) T= 3 AP, .

jop 43
Let’ (uk) ., k= ﬁj—l + 1 ,...,nj . denote an ordered orthonormal basis
of the eigenspace Z(T—RJI) , i= 1,2,...,(nO =0} , and let by = Aj

for n. + 1 <{k<{n., . Then
j-1 J

[+
(8.20) Tx = ) &x,udu , x €X .
o
Also, if PO denotes the orthogonal projection onto Z(T) , then

(8.21) x=POx+2PJ.x, x €X .

Proof Since T is compact, we know that

o(T) \ {0} = oy(T) \ {0} = (ApA,---} .

where Ikll > IA2I > ... . Since T is normal, each xj is a
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semisimple eigenvalue of T , and the associated spectral projection is
the orthongonal projection Pj onto Z(T—AJI) {Theorem 8.4{b)). Since

A, €0,(T) ., each P_, is of finite rank, and since A, ., We see
J a™ J J;”\k

k
For n=1,2,..., let

from Lemma 7.8 that PjP =0 if j#£k .

Since Dj = (T—AJI)PJ =0 ., we have

TQn=TP1 + ... +TPH=?\1P1 + ... +)\nPn.

Now, by the spectral decomposition theorem {cf. (6.10)), the spectrum

of T(I—Qn) can differ from {Anﬁl’xn+2""} only by O . Hence

ro(T(1-0)) = I\, |

i _ * i
But since TQn = QAT and Qn = Qn , we conclude that T(I—Qn) is

normal. Hence
n .
T - 321 AP = IT(I-Q ) = r (T(I-Q.)) .
by Theorem 8.4(a}. This proves (8.18). Now, whenever (Aj) is

infinite, it must tend to 0O , since 0 1is the only limit point of

n
o(T) . Thus, T is the limit in BL(X) of 3 A
j=1

.P. . In other
J ]

words, {8.19) holds. The representation {8.20) is immediate from (8.19)

n,
since P.x = Z <x,uy 2w, .
k=n_, _+1 Kk
j-1
Now consider the orthogonal projection PO onto Z(T) . Let
x € R(PO) , and y € R(Pj) for some j = 1,2,... . Then by (1.8),
IT%N = ITxll = 0 , while Ty = Ay . Hence

Xj<x,y> = <, Ty> = <T*x,y> =0 .
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But kj #0 , so that <x,y> = 0 . This shows that P Pj =0 for

0
i=1.2,...
It is clear that {ul,uz,...} is an orthonormal set in R(PO)'L .

Llet x € R(Po)'L and <x,uk> =0 for each k=1,2,... . Then by
(8.20), we see that Tx =0, i.e.., x € Z(T) = R(PO) . But since

x € R(Po)l , we have x = 0 . The Fourier expansion theorem ([L],

‘ 22.10) now shows that {ul,u2,...} is, in fact, an orthonormal basis
)l

of R(PO Since x - Pox € R(PO)l for every x € X , we have

L] «©
x-Px= ) <&Xxudu = Y Px .
A e R j=1 4

This proves (8.21). Ve

A self-adjoint operator T on a Hilbert space is normal, and hence
the results of Theorem 8.5, and of Theorem 8.6 (in case T is also
compact) hold for T . There are some interesting results regarding the
spectrum of a self-adjoint operator. By (1.9), the Rayleigh quotient

q(x}) of T at O # x € X is a real number. Let

1}
1} .

i

m. = min{gq(x) : x € X , lixl

MT = max{q(x) : x € X , lxll

THEOREM 8.7 Let T be a self-adjoint operator on a Hilbert space X .

(a) The spectrum o(T) of T is contained in the closed interval

[mT,MT] of the real line, and m. as well as MT belong to o(T) .
(b) (Kato-Temple) Let x € X with lxll =1 . Then
(8.22) dist{q(x).o(T)) < lUr(x)ll .

Consider A € o(T) such that |gq(x) - Al = dist(q(x).o(T)) . Then
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(8.23) la(x) - Al < Ir(x)I2 7 dist(q(x).0(TI\A}) .

Proof (a) By part (a) of Theorem 8.5, we see that every A € o(T) is
the limit of a sequence of Rayleigh quotients. Since each Rayleigh
quotient belongs to [mT’MT] , it follows that o(T) C [mT,MT] .

We show that my, € o(T) . Let x € X be such that Han =1 and
q(xn) =y . Then <(T—mT)xn,xn> =0 . It can be verified by using the

generalized Schwarz inequality for ((T—mTI)x,y> that
ITx_-mx 1% < 1T-m 1013¢(T-mT)x_,x >
n "T°n - T B ¥ %n” -

(cf. [L], p.257.) Hence HTxn—menH = 0 . This implies that (T—mTI)
is not bounded below, so that my. € a(T) . The proof for MT € o(T) is

very similar.

(b) Let x€X with lixll =1, and q = q(x) . By part (b) of
Theorem 8.5 with z = gq ., we immediately obtain (8.22). Let A € o(T)

such that |g-A| = dist(q,o(T)) , and
d = dist(q.o(T)\{7A}) .
For t € ["'T‘MT] , consider the function
£(t) = (t-A)[t-(a-d)] = £ - (A+g-d)t + A(q-d) .

Since no t € (gq-d.,\) lies in o(T) . we see that f(t) 2 O for all
t € o(T) . Hence ([L]. 31.4 and 32.6)

J‘ f(t)da(t) 2 0,

.

where at) = <Ptx,x> . {Pt} being the normalized resoltuion of the

identity associated with the self-adjoint operator T . But
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.

r

tzda(t) = (sz,x> = IITxII2 . J t de(t) = Tx,x> =q ,
m.

J da(t) =<x,x> =1 .

i

_?

Thus,

ITh? - (Mg-d)q + AM(g-d) > 0 , or ITxI® - q© » d(A-q) .

IlTxII2 - q2 . we have

Since llr(x)ll2 = {Tx-gx,Tx—qx>
2
AN=-gq < lie(x)l™ /4.

Similarly. by considering the interval (A.q+d) and the function

g{t) = (t-A)[t—-(q+d)] . we obtain
a-A<rE)I2 /4.

The above two inequalities imply (8.23). Va4

Problems

8.1 Let X be a Hilbert space, and T € BL(X) . Then ITIl =
[ra(T*T)]ll2 . If T is normal and z € p(T) . then

ITR(z) Il = max{IA[/IA-z] : X € o(T)} .

8.2 Let A€ Ud(T) . Then the dimension of the solution space
{x€X : Tx - Axx =0} is the same as the dimension of the solution

% 3 3% 3%
space {x € X : Tx

— 3¢ 3¢ *

-Ax =0} . Let {xl,...,xg} and {xl,...,xg}
3

be bases of these two spaces, respectively. Given y € X (resp.., y €

22
X'} . the nonhomogeneous equation

Tx - & =y (resp.. T - & =y)
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possesses a solution if and only if
(x?,y) =0 (resp., <xj,y*) =0), j=1.....g .

3¢
If Xo (resp.. %0 ) 1is a solution of this equation, then its most

general solution is

+ + + * ¢ * v + *)
Xg * ¢1%g RIS (resp., Xg * 4% v chg
where Cqs---sC, are complex numbers.
8.3 Let X = Cs , and the operators T and T* be given by the
matrices
N1 00O X000 O
0OA100 1 X000
0 0ANOO and 01 AO00O
0 0 0 A 1 0 00 XNO
0 0 0 0 A 0 001X
respectively. Then e and e, are eigenvectors of T , while ey -
eq and ey are generalized eigenvectors. But eq and ey are
eigenvectors of T* , while ey . ey and e, are generalized

eigenvectors. (Cf. Theorem 8.3 for a nonsemisimple eigenvalue A .)

8.4 Let X be a Hilbert space, T € BL(X) and IA]l = ITH . If
Tk~ Ax =0, then Tx-Ax=0. If lxll=1 end

ITx_ - Ax Il -0, then I - A Il » 0 .
n n n n

8.5 Let T be a normal operator on a Hilbert space X , and A be an

isolated point of o(T) . Then by (4.7) and (8.13),

D, = 2—11;; L (z-\)R(z)dz = O ,

where I is a small circle with centre A , proving that every
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isolated point of o(T) 1is a semisimple eigenvalue of T . (This proof

does not use the spectral decomposition theorem.)

8.6 Let x € X with lixll =1 and T € BL(X) be self-adjoint. Let
N € cd(T) be such that [q(x)-Al = d(q(x).0(T)) = do , say. Let P
denote the orthogonal projection onto Z(T-AI) . Assume that Px # O

and let 6 be the acute angle between x and Px . Then

[Ilr(x) II2—dg] 172

2 2
d —do

(8.24) sin 6 ¢

where d = dist(q(x).o(T)\{A}) . In particular,
(8.25) sin 6 < lir(x)ll 7 4 .

8.7 Let X be a Hilbert space and A be an isolated point of o(T) .,

T € BL(X) . Assume that PA is orthogonal. Then

-1
3 % -
S)\s)\IZ(P}\) = [(T —AI)(T—M)|Z(P)\)] ,
(8.26) a(S)\S:) = {0} U {}J— :0#£pu€ a((T*—XI)(T—)\I))}

IS, Il = 1 / inf {G :0Fp€E a((T*—XI)(T-M))} .



