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9. LINEAR PERTURBATION

In this section we study the effect on the spectrum of an operator
T0 € BL(X) when it is subjected to a perturbation Vo € BL(X) . Thus,
if we denote the perturbed operator T0 + VO by T , we wish to obtain
information about o(T) when a(TO) is known. In this process we
shall attempt to allow as 'large’ a perturbation VO as possible.

We start our investigation by considering the invertibility of an
operator which is close to an invertible operator.

We first note that if A and B are both invertible operators in
BL(X), then
(9.1) Bl - a7t o lamat - ala-myE7t

More generally, if =z € p(A) N p(B) . then

(9.2) R(B,z) - R(A,z)

R(B.z)(A-B)R(A,z)

R(A.z)(A-B)R(B.z) .

This follows on replacing A by A -2zI and B by B - zI in (9.1).

The relation (9.2) is known as the second resolvent identity.

THEOREM 9.1 Let A, B € BL(X) and A be invertible. Let
(9.3) r ((AB)ATY) <1 .
Then B 1is invertible, and
1 15 1k < 1 X, -1
(9.4) B =A") [(A-B)A "] = 3 [A (A-B)TA " .
k=0 k=0

If , in fact,

(9.5) [ (A-B)A %0 < 1,
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then
-1 -1
~1 A I HI+(A-B)A "I
(9.6) IB Il £ —15 s
1 - I[(A-B)A "T171
-1 -1 -1
(9.7) "B—l _ Aflu < HA "Il H(A-BYA "1l II+(A-B)A "Ii

1 - npa-B)A~ 1%

Proof let C = (A—B)A"1 . Then ra(C) <1, and it follows by putting

z=1 in (5.8) that I -C = BA™! is invertible and
1 o0
(o) l= 3 &.
k=0

We claim that A_l(BA-_]')_1 is the inverse of B . For,

A lea )y s e e,

and since (BA—l)-l(BA_l) I ., we also have

= A lma e ha

=
i

A el .

Thus, B 1is invertible, and
1 1 1 1 1.k < 1 k,-1
B =A (I-C) " =A ") [(A-BYA 1" = ) [A (A-B)T"A ",
k=0 k=0

which proves (9.4). Now, let (9.5) hold, i.e., MCZH <1 . Then
r (%) <1, (1-C%) is invertible, and since (I-C) ' = (I+C)(I-C%) " .
7 - Aoy (1-cBy 7t .
Also, by (9.1),
-1

Bl - a7l g la-ma! - Bl = ATl (o) (1B e

The inequalities (9.6) and (9.7) now follow easily since by (5.9), we

have N(I-C2) "1 ¢ 17(1-1c2ny . 7/
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COROLLARY 9.2 Let A, B € BL(X) , A invertible and H(A-B)A™lN < 1 .

Then B is invertible, and

TNl
1 - n(a-By)A~tn

s

(9.8) B4 ¢

S T T N I 1)) Wl

(9.9) B - A 3
1 - I(A-B)A "1l

Proof Let C = (A-B)A™! . Then ICH < 1 implies ICH < 1, and
1 - 0C% 3y 1 - Ich? = (1-Icny(1+Icn) .

Hence the results follow directly from {(9.6) and (9.7) V4

If we replace A by A -zI and B by B - zI in (9.3) and
{(9.4), we obtain the following result, known as the second Neumann
expansion: If z € p(A) and ra((A—B)R(A,z)) <1, then z € p(B) ,

and
(9.10) R(B.z) = R(A.z) § [(A-B)R(A.z)T¥ .
=0

In this case, bounds similar to (9.6), (9.7), (9.8). and (9.9) can be

easily written down.

Let, now, E be a closed subset of p(A) . Since by (5.9),
IR(A,z)Il =0 as z -»® and IR(A,z)ll assumes its maximum when z

lies in a compact set, we see that

a = max IIR(A,z)ll < @ .
z€E

It follows by (9.10) that if E C p(A) and IlIA-Bll < 1/a , then E C

p(B) . In other words, if G 1is an open set in C, o(A) CG, and

(9.11) IA-BIl < 1 / max{lIR(A.z)Il : z € G} ,
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then o(B) C G . This property is known as the upper semicontinuity of

the spectrum. Let e > O . By letting
G = {z € C : dist(z,o0(A)) < &}

and 6 to be the right hand side of (9.11), we see that whenever
IA-Bll < 6 , we have dist(u,0(A)) < e for every p € o(B) , 1i.e., if
1 € g(B) , then there is A € o(A) with |p-Al < e . This says that
if the operator A 1is perturbed to the operator B by the addition of
B-A and if IlIB - All is small enough, then the spectrum cannot
suddenly get enlarged. On the other hand, the spectrum can suddenly
shrink, as the following example shows.

Let X = 82(2) , the space of all doubly infinite square-summable
complex sequences. For x = [...,x(—2).x(—l),x(O),x(l),x.(2),...]t €X,

consider the left shift operator

{x(i+1) , if io# -1
Ax(i) = s
o .

, if i =-1
and let
0 , if i # -1
on(i) = s
x(0) , if i =-1
Then for t € C ,
x(i+1) , if i # -1
(A+tA0)x(i) =
tx(0) , if i =-1

It can be seen easily that
ra(A) < HAIl =1,

and every A € C with |A]l <1 1is an eigenvalue of A with
[...,0,0,I.A,kz,...]t as a corresponding eigenvector. Since o(A) is

closed, we have
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o(A) ={r€cC: Il <1} .
On the other hand, if 0 < [t] (1, we show that
o(A+tA)) = A€ C: Il =1} .
First note that rU(A+tAO) < HA+tAOH =1 . Also,
(A+tA)) Ix = [...,x(-—3),x(—2),}%)-,X(O),x(l),...]t .
We can similarly write down [(A+tA,) 1% . k=2.3..... to find that

I (A+tay) " TFN = I—il' .

Hence by the spectral radius formula (5.10),

-1 o1 41/k
r_((A+tA))7") = 11<$ [ =1,

—1) , or {z€C: |z|] <1} is

so that {w € C : lwl > 1} C p((A+tA})
contained in p(A+tA0) . It can be seen that if |A] = 1 and then

A+ tAO - Al is not onto since the vector y defined by y(-1) =1 ,
y{(i) =0, if i # -1 , 1is not in its range. Thus, because of the
perturbation tAO {which is arbitrarily small when |t| is so), the
spectrum of ‘A has shrunk from the closed unit disk to the unit circle.
We note that (A+tAO) has no eigenvalues if t # O .

The above example points out the lack of lower semicontinuity of
the spectrum, i.e., an open set containing a point of o¢(A) may not
contain a point of o(B) even when I[IB - All is arbitrarily small. If,
however, A commutes with B, or if A and B are self-adjoint, we

do have a kind of continuity of the spectrum. See Problem 9.4 and

Proposition 13.1.
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Let us now consider an (unperturbed)} operator TO , a

(perturbation) operator V0 , and let T = T0 + VO be called the

perturbed operator.
This kind of situation often occurs in quantum mechanics, although

the operators TO and VO are usually unbounded; TO is the

Hamiltonian of an unperturbed system and VO is a potential energy

operator, so that T0 + VO

For t € C, we study the family of operators

is the Hamiltonian of the perturbed system.

(9.12) T(t) = T0 + tVo .

Observe that T(O0) = TO and T(1) = T0 + VO . Since the function
te tVO is linear in t , we say that T(t) = TO + tVb is obtained

from TO by a linear perturbation. One can consider quadratic or

higher order perturbations. In fact, a comprehensive treatment of the

analytic perturbation theory when

T(t) = TO + tVO + t2V1 + ...

is an ‘'analytic family of operators' can be found in [K], Chapters II
and VII.
The perturbation analysis given here for a family T(t) of bounded

operators can be carried out if T, 1is a densely defined closed (linear)

0

operator in X (i.e., the domain DT of TO is a dense subspace of
0

X and the graph {(x,TOx) Pox €D } of T0 is a closed subset of
0

X x X ) and if for all small |t| , T(t) is a closed operator with

the same domain as TO . On the other hand, the analysis breaks down if

the domains of T(t) are different from DT . For example, let
0

X = L2(R) , and

T(t)x(s) = x"(s) + szx(s) + ts4x(s) , s€R,

with
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Dp = {% €X: J s4|x(s)|2ds (o, J‘ p4|§(p)l2dp < w}
0 R R

and for t # 0 ,

DT(t) = {% €X: J; sSIx(s)Izds (oo, J; p4I§(p)j2dp < w} ,

where x denotes the Fourier transform of x . In this situation,
Vox(s) = s4x(s) ., s €R, is called a singular perturbation of

Tox(s) = x"(s) + s2x(s) , s €R . Analytic properties of a singular
perturbation are difficult to establish.

For notational ease, we denote R(T(t).z) by R(t,z) when
z € p(T(t)) ., and if t =0 , we denote R(0,z) by RO(Z) . Ve now

prove that for a fixed z , the map t » R(t.,z) is analytic.

THEOREM 9.3 Let t; € C and fix z € p(T(ty)) . If

lt—tol <17/ ro(VOR(to,z)) ,
then z € p(T(t)) and

t k k
(9.13) R(t,z) = R(t,, -V .R(tH., t-t .
(t.2) (oz)kz:o[o(oz)l( o)

The function t » R(t,z) is thus analytic on a neighbourhood of ty -
for every fixed z € p(T(to)) .

Further, let E be a closed subset of p(T(to)) . Then the series
{9.13) converges absolutely and uniformly for z € E and t in any
closed subset of the disk

{t €€ : lt-tyl < /max WV R(ty.z)I1} .
ZEE

Proof Consider t € € such that It-tOI < 1/ra(VOR(t0,z)) . Letting

A= T(to) -zl and B =T(t) - zI , we have A - B = —(t—tO)VO , and

ra((A—B)A_l) = It=tylr_(VR(ty.2)) < 1 .
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By Theorem 9.1, B is invertible, i.e., z € p(T(t)) . and

1

R(t,z) =B L =AY [(a-B)A 1K
k=0

- X k
R(to,z)kzo [-VoR(ty.2) T (t-ty) " .

which proves (9.13), and also shows that the function
t » R(t,z) € BL(X) 1is analytic on a neighbourhood of to by Theorem
4.8.

Next, for a closed subset E of p(T(tO)) , let

B =max IIV.R(t,,z)ll < @ .
z€E 070

If D is any closed subset of the disk
{tec: lt-tyl < 1/B} .
then for all t € D, we have It—tol {86 for some 6 < 1/B . Now, in

Proposition 4.6, let S =E x D, and for (z,t) €Ex D, let

o, (z.t) = [VR(ty.2)T5(t-t5)* . k=0.1,... .

Then

sup Hck(z,t)ul/k < s I-VR(t,.z)l lt-tgl < 66
(z,t)€ExD (z,t)EEXD

Since fB6 < 1, it follows that the series (9.13) converges absolutely

and uniformly for z € E and t €D . V4

We move on to prove the analyticity of the spectral projection
associated with T(t) and a curve I in p(To) . Since T is a
compact set and the function z » ra(VORO(Z)) is upper semicontinuous

for z €T , we see by Corollary 5.5 that

(v
;2? ra"ORO(Z}) (o,
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and that there is z; € I' such that ra(VORO(ZO)) = gzx rU(VORO(z)) .

The following open disk about O in the t-plane, which depends onb
the curve I in the z-plane, will be of special interest to us. It was

first studied extensively in [C]. Let

(9.14) 3. ={tet: lt] < 1/:;2? r_(VoRo(2))} -

z-plane t-plane
/// : spectrum of TO

Figure 9.1

Let us denote the spectral projection PF(TO) by PO .

THEOREM 9.4 Let I C p(TO) . For t € ar ., we have T C p{T(t)) .
The spectral projection P(t) € BL(X) associated with T(t) and I is
an analytic function of t . In fact, for t € ar ., we have the

Kato—-Rellich perturbation series

0
k
9.15 P(t) = P, + P t .,
(9.15) () =P+ I o
where
_1k+1
(9.16) P =

(k) 2mi J; Ro(z)[VoRO(Z)]kdz .
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Proof let z €T, so that z € p(TO) .

9.3, we see that z € p(T(t)) for every t € BF . since

Letting to = 0 in Theorem

ftl < 1/:2¥ r (VoRy(2)) < 1/r (VoRy(2)) -

Thus, T C p(T(t)) for every t € ar .

Now, fix to € Br . letting E =T, in Theorem 9.3, we see that

- for t in some neighbourhocod of to ., the series

0

k k
R(t, = R(t,, -V .R(t., t-t
(£:2) = R(tg.2) T [-VR(to: )1 (e-5)

converges uniformly for =z € I' . This allows us to integrate the series

term by term on I (cf. (4.8)), and obtain

1
-2—?{' J\ R(t,z)dz
r
k

= [_2_'1'_1Ir R(tg.2)-VGR(eg. )Tz (et )* .

P(t)

for t near enough to to - Thus, t » P(t) is amalytic for t ina

neighbourhood of to . But since to is an arbitrary point of ar ,

we see that P(t) is analytic on ar . The Taylor expansion of P(t)
around t = 0 1is given by the series (9.15). The converse part of
Theorem 4.8 shows that this expansion is valid for all t in ar N4
The analyticity of the spectral projection P(t) implies, in
particular, that P(t) depends continuously on t : if £ and t,
are close then so are P(tl) and P(tz) as elements of BL(X) . We
wish to show that in this case, the ranks of P(tl) and P(t2) are

equal. For this purpose, we prove some preliminary results which are

important in their own right.
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LFMMA 9.5 Let P and Q be projections in BL(X) such that
ra(P(P—Q)) <1.

Then the map B : P(X) » P(X) given by Bx = PQx , x € P(X) , is

invertible. In particular,
rank P < rank Q .

Proof Let A = I|P(X) , which is invertible in BL{P(X)) . For

x € P(X) .
(A-B)A™1x = (A-B)x = x - Pax = P(P-Q)x .
Thus, (A-B)A™! = P(PQ) |p(x - But
P(P-Q)P = P(P-Q)P|p(y, © é(P—Q)P|(I_P)(X) .
Since  P(P-Q)P|py) = P(P-Q)|pry, - and P(P-Q)PI (1Pyx) =0 ¢ Ve
have by (6.2) and (5.12),
r_((A-B)A™Y) = r_(P(P-Q)P) = r_(P(P-Q)) < 1 .

Now Theorem 9.1 shows that B : P(X) - P(X) is invertible. In

particular, B is onto. Hence

rank P = dim B(P(X)) = dim PQ(P(X)) < dim P(Q(X)) ¢ rank Q . 7/

PROPOSITION 9.6 Let P and Q be projections in BL(X) such that
(9.17) r (P(P-Q)) <1 and r_(Q(Q-P)) <1 .

Then the map J : P(X) =2 Q(X) givenby Jx=Qx , x € P(X) , isa

linear homeomorphism onte. In particular,

rank P = rank Q .



141

These conclusions hold if
ra(P—Q) <1 .

Proof The map J is clearly linear and continuous. It is one to one
since if Jx =Qx =0 for some x € P(X) , then PQx =0, and this
implies that x =0, as the map B : P(X) = P(X) given by Bx = PQx
is one to one by Lemma 9.5. Next, we show that J is onto. Let y €
Q(X). Then by interchanging P and Q in Lemma 9.5, we see that the

map B : Q(X) » Q(X) given by Bx =QPx , x € Q(X) . 1is onto. Hence

1}

there is x € Q(X) such that QPx =y , i.e., J(Px) =y . As P(X)

and Q(X) are closed subspaces of X , they are Banach spaces. The

open mapping theorem now shows that J-—1 is continuous, i.e., ‘J is a

homeomorphism. |
Finally, let rU(P—Q) <1 . Since P2 =P and

P(P-Q)P = P(P-Q)%P . we see by (5.12),
r (P(P-Q)) = r_(P(P-Q)P) - r_((P-Q)°P) .
Now, (P—Q)2 maps P(X) into P(X) . Hence by (6.2) and (5.11) ,
r((P-0%P) = 1 (-0 [px)) € T, ((P-0P) = [r, (P01 < 1.
But we have seen in the proof of Lemma 9.5 that
I‘U(P(P—Q) |P(X)) = I‘O_(P(P—Q)).

Thus, ra(P(P—Q)) <1 . Also, ra(Q(P—Q)) <1 by interchanging P and

Q . Hence the desired conclusions hold if rU(P—Q) <1. /7

COROLLARY 9.7 lLet I C p(TO) . Then for every t € ar .

rank P(t) = rank P0 ,

rank[I-P(t}] rank[I—PO] .
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If {xi} is a basis of PO(X) , then {P(t)xi} is a basis of

P(t)(X) when [t| is sufficiently small.

Proof By Theorem 9.4, the map t » P(t) is analytic on 9. , and

hence it is continuous. Thus, for every to € Br , there is e(to) >0

such that It—tol <e(t implies

o)
r (P(£)-P(tg)) < UP(£)-P(t )l < 1 .

Hence rank P(t) = rank P(t by letting P = P(to) and Q = P(t)

O) :

in Proposition 9.6. Now, the nonempty set

{t € ar ¢ dim P(t)(X) = dim PO(X)}
is open as well as closed in ar , and as such it coincides with BT
since the disk Br is connected. Thus, for all t € ar .

rank P(t) = rank Py -

The statement about rank[I-P(t)] follows similarly by considering the
continuity of the map t » I - P(t) € BL(X) .
Lastly, let {Xi} be a basis of PO(X) . For t near O,

consider the map J : PO(X) - P(t)(X) ., given by
Jx = P(t)x , x € PO(X) .

By Proposition 9.6, J is linear, one to one and onto, and hence sends
a basis of PO(X) to a basis of P(t)(X) ., showing that {P(t)xi} is a

basis of P(t)(X) . //

Theorem 9.4 and Corollary 9.7 point out the following interesting

facts. If T C p(TO) and the operator TO

T(t) = T0 + tV, , then as long as t € ar , the curve I' continues to

is perturbed to

lie in p(T(t)) and the spectral projection P(t) associated with
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T(t) and I changes analytically with t ; more importantly, the

dimension of P(t) equals the dimension of Po = P(0) for all t € ar .
Since the spectrum of T(t) lying inside I is the spectrum of

T(t)‘P(t)(X) ., we may expect the spectral values of T(t) inside T

to depend analytically on t . However, this is not the case for

individual spectral values. As an example, let X = Cz , and

0 1 0 0
To=[o o]’ Vo=[1 o]'

Let I denote the unit circle, which encloses the double eigenvalue

AO =0 of TO . For z #0,
1/z 1/22 0o o
R, (z) = - , and V.R.(z) = -
0 0 1/z 00 Vz 1722
Hence

o(VRo(2)) = {0.-1/2%} .

2
r (VoRy(2)) = /IzI™ , max r (VR (Z)) =1,
z€l
r={tecC: |t] <1} .

Now, T(t) = rz é] ., and for t € ar , the spectral values of T(t)

lying inside T are + {t . However, there is no analytic function
tp ANt) €o(T(t)) NInt T = {+{t} for t € o
All the same, we prove that if PO is of finite rank, then the

arithmetic mean of the spectral points of T(t) inside I' 1is indeed an

analytic function of t € ar .

THEOREM 9.8 Let rank PO =m, 1 {m<®®_  Then for every t € Gr s
the only spectral points of T(t) inside I' are m eigenvalues, say,

Al(t),...,Am(t) , counted according to their algebraic multiplicities.

The function A 1is analytic on ar ., where

(9.18) A(t) = :-1 A () + ...+ A (8)] = er(T(£)P(c))
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Let x; € X and x? € X' be such that the matrix [(Poxi,x§>] ,

1 <i,j {m is invertible, and for t € Br . let

2, j(t) <P(t)xi,x§> , 1 <¢i,j{m. If A(t) denotes the matrix

[ai j(t)] , then for |tl| sufficiently small, A(t) is invertible; if
-1 3¢ s s
[A(t)] ~ = [bi,j(t)] . ci,j(t) = <T(t)P(t)xi,xj> , i.i=1.....m,

then

(9.19) A(r) = L .
1

i 8
I 18

by (8)ey 4(8) -

1 j=1

Proof By Corollary 9.7, rank P(t) =m < ® for all t € ar . Hence by
Theorem 7.9, the spectrum of T(t) inside I consists of a finite

number of eigenvalues with finite algebraic multiplicities.

Since T(t) and P(t) commute, we have
R(T(t)P(t)) € R(P(t)) .

which is of dimension m . Thus, the operator T(t)P(t) is of finite

rank and Proposition 3.6 shows that

tr(T(t)P(t))

tr(T(t)P(t)lP(t)(x))
e (T08) [pge) x))

the sum of the eigenvalues

of T(t)IP(t)(X) , by {7.18)

Al(t) + ...+ Am(t)

m A(t) .

This proves (9.18).

For t € ar , let

xi(t) = P(t)xi , 1 <idm.
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Then A(t) = [(xi(t),x§>] , 1<i.j<m. Since A(0) = [<Pogi,x§>]
is invertible and the function t » xi(t) = P(t)xi € X is analytic (and
hence continuous) for each i =1,...,m , we see by Theorem 9.1 that
A(t) is invertible if [t] 1is small enough.

It follows by Remark 3.4 that the set {xl(t),...,xm(t)} is

linearly independent and forms a basis of P(t)(X) . Also, if we let

1,...,m,

vie) = 2 B TER g
then

<xi(t),y§(t)> = ,i,j=1,....m .

i,j

(cf. (3.6).) Now, Proposition 3.6 shows that for |t| small enough,

m A(t) = tr(T(t)P(t))

m
) <T(t)P(t)xJ.(t),y’;(t)>

j=1

= § (T(t)P(t)x 2 by (t)x >
j=1
Jm m

= 21 ng bi’j(t)cj’i(t) .

Since the functions t » T(t) € BL(X) and t » P(t)x:j € X are
analytic, we see that the functions t » bi,j(t) € C and

t e Ci,j(t) € C are analytic. (See Problem 4.1.) We conclude that the
function t » A(t) is analytic on a neighbourhood of O ; A very
similar argument establishes the analyticity of this function in a
neighbourhood of an arbitrary point t, € 3. . //

0 r

Let the spectrum of T, inside I consist of a single eigenvalue

0]
AO of finite algebraic multiplicity. Then by (7.8).

k
[ P -1 D
k+1 k 0 0
Ro(z) = z SO (Z—)\()) - A - Z

k=0 R W



146

We can use this Laurent expansion of Ro(z) to calculate the

coefficients

k+1
Pr = lzé%g__ J; Ry (2) [V R, (2)1"dz

in the perturbation series (9.15) for P(t) in terms of P0 , SO s DO
and V0 . These can then be used to obtain a series expansion of the
arithmetic mean A(t) = tr(T(t)P(t)) of the eigenvalues of T(t)
inside I' . These series are considered in [K], p.76 and p.379. We
shall not pursue their study here because the coefficients of these
series cannot be calculated in an iterative mammer. Let AO be a
simple eigenvalue of To . In the next section, we shall consider
series expansions for the simple eigenvalue A(t) of T(t) and for a
suitably normalized eigenvector of T(t) corresponding to A(t) which

can be calculated in an iterative manmner. With this in view, let us

study the important special case of a simple eigenvalue.

COROLLARY 9.9 Let the only spectral value of To inside I be a

simple eigenvalue ko . Then for every t € ar , I' encloses only one
spectral value A(t) of T(t) and it is also a simple eigenvalue. The

function t » A(t) is analytic on BF .

3 % 3¢
Let X, € X and X € X be such that <Poxo,xo) #0 . If Itl

is small enough, we have

CT()P(t)xy. %>

(9.20) A(t) = " H
. <P(t)x ,x0>
also,

P(t)xo
(9.21) x(t) =

<P(t)xy %>

is an eigenvector of T(t) corresponding to A(t) such that
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(x(t),x:) =1 ; x(t) is an analytic function of t in a neighbourhood

of O .

Proof We have m = dim PO(X) =1 . Hence by Theorem 9.8,

t » A(t) = AM(t) 1is analytic on ar . Also, let X =%, and
xT = xg . Then for [t]l small, we have

a, 4(t) <P(t)xo,x’(§> ,
bl,l(t) =1/ <P(t)

cl,l(t)

0 ,
(T(t)P(t)xO o>

Thus, (9.20) follows directly from (9.19). Also, since
<P(0)x, x0> = <P¥y 0) # 0 , we see that for |t| small,

(P(t)x > # 0 , so that P(t)xo #0 . Now, since A(t) is simple,

*o
we have P(t)xo € P(t){(X) = Z(T(t)-A(t)I) . This shows that x(t) is
an eigenvector of T(t) corresponding to A(t) . The relation
(x(t),xS) =1 1is immediate. Since both the numerator and the

denominator of =x(t) are analytic and the denominator does not vanish,

we see that x(t) is analytic on a neighbourhood of O . //

One can give a direct proof of the analyticity of the function
t » A(t) of Corollary 9.9 without invoking Theorem 9.8. Since A(t)
is a simple eigenvalue of T(t) for t € ar , we have T(t)P(t} =
A(t)P(t) . so that

<T(t)P(t)xo,x*> = Nt)<P(t)x .x’é)

As <P(0)x ,xo> = (Poxo,xO

is sufficiently small. Hence the relation (9.20) holds. In particular,

>#0 ., we see that <P(t)x, > #0 if tl

t » A{t) 1is an analytic function on a neighbourhood of O .
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Problems

9.1 Let A € BL(X) be invertible and B € BL(X) satisfy

IAI(AB)I <1 . If Ax=a and By =b , then

AL (b-a) il + nA"L(A-BYI nixil '
1 - uA‘l(A—B)u

lly-xll €

(Hint: (9.4))

9.2 (Iterative refinement of the solution of an operator equation) Let
A €BL(X) and y € X . Consider an invertible A0 € BL(X) such that

-1 .
ra((A—AO)AO ) <1 and AOXO =y . For j=1,2,..., let

Ax

r J_l

F1=Y "

Then A 1is invertible and (xj) converges to the unique x € X such

that Ax =y .

9.3 (General Neumann expansion) Let =z € p(A) . If
ra([(w—z)1+(A—B)]R(A,z)) <1,

then w € p(B) and

R(B.w) = R(A.z) Y [[(w-z)I+(A-B)IR(A.2)T* .
k=0

(A =B gives (5.7) and w = z gives (9.10).) In particular, if

et ey < lIR(A,z)lI“1 . wzl < € and A-BIl < € then w € p(B) ,
IR(B,w)ll < IR(A,x)II/(1-1) ,
IR(B,w) - R(A,z)ll < rliR(A,z)I/(1-1) ,
where r = (|lw-z[+lIA-BI)IR(A,z)Il . The function (A,z) » R(A,z) € BL(X)

is jointly continuous on {(A,z) : A € BL(X) , z € p(A)} CBL(X) xC .
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9.4 Let A, B€BL(X) . Assume either that A and B commute, or

that A and B are self-adjoint. Then

maxq max dist(\,o(B)) . max dist(x,a(A))} < r_(A-B) < UA-BI .

ANEo(A) A€o (B)
9.5 Let I' and I be simple closed curves in p(TO) such that
I CInt T . Assume that PF(TO) is of finite rank and that TO has no
. spectral values between I' and T . Then for all t € ar n af ., T(t)

has no spectral values between I' and F.

9.6 Let P and Q be projections such that ra(P—Q) <1 . Then the
operator QP + (I-Q)(I-P) is invertible. It maps R(P) onto R(Q)

and Z(P) onto Z{(Q) . Hence rank P = rank Q .

9.7 Let D be a connected metric space and for s € D, let Q(s) be
a projection in BL(X) . If s » Q(s) is continuous, then the rank of

Q(s) 1is constant (finite or infinite) for s € D .
9.8 Let m =2 in Theorem 9.8. Then for |t|l small enough,

(a9 9°1,1 ~21,9%,1 ~ 22,1%1,2 * 21,1%,2) (%)

Ae) = 2(a) j2g9 9 = 2y 25 1)(F)

9.9 Under the hypothesis of Coroilary 9.9, let for I|tl < r , with r

small enough,

P(t)x, N [P(6) T,
y(t) = —— , v (t) = ,
J<P(t)xo, ~ J<[P(t)]*x*,xo>

where  denotes the principal branch of the square root. Then the
function t » y(t) € X is analytic, the function t » y*(t) is
antianalytic (i.e., t® y*(f) is analytic) and <y(t). y*(t)> =1.
In particular, if TO and V0 are self-adjoint operators on a Hilbert

3%
space X , t 1is real, and we choose X9 = Xg o then lly{(c)ll =1 .



