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In this section we study the effect on the spectrum of ax1 operator 

T E: 
0 

when it is subjected to a perturbation € BL(X) Thus, 

if we denote the perturbed operator T0 + v0 by T , we wish to obtain 

information about a(T) when a(T0) is known. In this process we 

shall attempt to allow as 'large' a perturbation v0 as possible. 

We start ou:r investigation considering the invertibiiity of an 

operator which is close to an. :invertible operator. 

We first note that if A and B are both invertible operators in 

BL(X), then 

(9.1) 
-1 -1 -1 B -A =B 

I;lore generally, if z E p(A) n p{B} , then 

(9. R(B,z) - R(A, = R(B, (A-B)R(A, 

= R(A,z)(A-B)R(B,z} 

This follows on replacing A by A- zi and B by B- zl in (9.1). 

The relation (9.2) is known as the second :resolvent.identity. 

THEOREM 9.1 Let A, B € BL(X) and A be invertible. Let 

(9.3) -1 
r ((A-B)A ) < 1 . a 

Then B is invertible, and 

00 00 

(9.4) B-1 = A-1 I [(A-B)A-l]k = I [A-1(A-B)]kA-1 . 
k=O k=O 

If , in fact, 

{9.5) 



then 

(9.6) 

(9.7) 
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IIB-1 11 < IIA-111 III+(A-B)A-111 
- 1 - II[(A-B)A-1]211 • 

IIB-1 _ A-1 11 < IIA-111 II(A-B)A-111 III+(A-B)A-111 

- 1 - II[(A-B)A-1]211 

-1 Proof Let C = (A-B)A . Then r (C) < 1 , and it follows by putting a 

z = 1 in (5.8) that I - C = BA-1 is invertible and 

We claim.that -1 -1 -1 A (BA ) is the inverse of B . For, 

and since -1 -1 -1 (BA } (BA ) = I . we also have 

I = A-1(BA-1)-1(BA-1)A 

= [A-1(BA-1)-1]B 

Thus, B is invertible, and 

.. .. 
B-1 = A-1(I-c)-1 = A-1 I [(A-B)A-1]k = I [A-1(A-B)]kA-1 . 

k=O k=O 

which proves (9.4}. Now, let (9.5) hold, i.e., 11c211 < 1 . Then 

r (c2) < 1 , (I-c2) is invertible, and since (I-c)-1 = (I+C)(I-c2)-l a 

Also, by (9.1), 

The inequalities (9.6) and (9.7) now follow easily since by (5.9), we 

have II(I-c2)-111 ~ 1/(1-llc211) . // 
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<DROI.LARY 9.2 Let A, B € BL(X) , A invertible and II(A-B)A-111 < 1 . 

Then B is invertible, and 

(9.8) 

(9.9) 

Proof Let 

IIB-111 5: IIA-111 
1 - II(A-B)A-111 • 

IIB-1 _ A-1 11 5: IIA-111 II(A-B)A-111 

1 - II(A-B)A-111 

-1 C = (A-B)A Then IICII < 1 implies 11c211 < 1 , 

1 - 11c211 ~ 1 - 11cn'2 = {1-IIC11)(1+11CII) . 

Hence the results follow directly from {9.6) and {9.7) // 

and 

If we replace A by A - zi and B by B - zi in (9.3) and 

(9.4), we obtain the following result, known as the second Neumann 

expansion: 

and 

(9.10) 

If z € p(A) and r {(A-B)R(A,z)) < 1 , 
0 

co 

R(B,z) = R(A,z) I [{A-B)R(A,z)]k 
k=O 

then z € p{B) , 

In this case, bounds similar to (9.6), (9.7), (9.8), and (9.9) can be 

easily written down. 

Let, now, E be a closed subs.et of p{A) . Since by (5.9), 

IIR(A,z)ll -+ 0 as z -+ ro and IIR(A.z)ll assumes its maximum when z 

lies in a compact set, we see that 

a = max IIR(A,z)ll < ro • 
z€E 

It follows by (9.10} that if E C p(A) and IIA-BII < 1/a , then E C 

p(B} . In other words, if G is an open set in ~ , o(A) C G , and 

(9.11} IIA-BII < 1 / max{IIR(A,z}ll : z f. G} , 
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then a(B) C G . This property is kno~~ as the upper semicontinuitv of 

the spectrQm. Let c > 0 . By letting 

G E ~ dist(z,a(A)) < c} 

and o to be the right hand side of (9.11), we see that whenever 

IIA-BI! < o , we have dist{t..t,a(A)) < c. for every 11 E a(B) , i.e., if 

11 E a(B) , then there is :>, E o(A) with ltJ:-A. I < E. • This says that 

if the operator A is perturbed to the operator B by the addition of 

B - A and if IIR - All is small then the spectrum cannot 

get enl~rged. On the other l~d. the spectrum cru> suddenly 

the space of all doubly infinite square-summable 

complex sequences. For x :y [ ••• 

consider the left shift operator 

Then for t € ~ , 

tx(i+l) 
i}= 

0 

It can be seen easily that 

,x(-l),x(O) 

if i ;t -1 

if i = -1 

if i ;t -1 

:if i = -1 

if i ;t -1 

if i -1 

and every A. E ~ with ( 1 is an eigenvalue of A with 

as a corresponding eigenvector. Since a(A) 

closed, we have 

is 



134 

a(A) = {7\ E (: 1/d ~ 1} . 

On the other hand, if 0 < It I ~ 1 , we show that 

i/\ I = 1} . 

. ~ ,, 
= [ ... ,x(-3),x(-2). t ,x(O), l), ... r 

We can similarly write down [ k 2,3, ... , to fl.nd that 

-1 k 1 
II[(A+tA0 ) ] II = Ttf 

Hence by the spectral radius formula (5. 

(A+tA0~-l) ~ lim r 1 ] 1/k 1 
J k-900 L TtT "' ' 

so that € IC or { z € IC : I z I < 1} is 

contained in It can be seen that if I/\ i = 1 and then. 

A+ tA0 - 1\I is not onto since the vector y defined by y(-1) = 1 

y(i) = 0 , if i ~ -1 , is not in its range. Thus, because of the 

perturbation tA0 (which is arbitrarily small when ltl is so), the 

spectrum of A has shrunlc from the closed unit disk to the unit circle. 

We note that (A+tA0 ) has no eigenvalues if t "# 0 

The above example points out the lack of l.ower semicontinuity of 

the spectrum, i.e., an open set containing a point of a(A) may not 

contain a point of a(B) even when liB - All is arbi trari small. If, 

however, A commutes with B , or if A and B are self--adjoint, we 

do have a kind of continuity of the spectrum. See Problem 9.4 and 

Proposition 13.1. 
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Let us novr consider an (unperturbed} operator T0 , a 

(perturbation) operator v0 , and let T = T0 + v0 be called the 

perturbed operator. 

This kind of situation often occurs in quantum mechanics, although 

the operators T0 and v0 are usually unbounded; T0 is the 

Ham1iltoniaa1 of an ur1perturbed system and v0 is a potential energy 

operator, so that T0 + v0 is the Hamiltonian of the perturbed system. 

For t E [; , we study the family of operators 

.12) t) 

Observe that T(O) = T0 and T(l) = T0 + v0 . Since the function 

t I+ tV0 is linear in t we say that T(t) = T0 + tV0 is obtained 

from T0 by a line0r perturbation. One cru~ consider quadratic or 

higher order perturbat:Ions. In fact, a comprehensive treatment of the 

analytic perturbation theory when 

T( t) + 
?. 

+ t'\11 + ... 

is an 'analytic family of operators' can be found in [K]. Chapters II 

and VII. 

Tne perturbation ana.lysis given here for a family T(t) of bounded 

operators can be carried out if T0 is a densely defined closed (linear} 

operator in X (i.e., the domain DT of T0 is a dense subspace of 
0 

X and the graph {(x,T0x} : x € DT } of T0 is a closed subset of 
0 

X x X ) and if for all small it! , T(t) is a closed operator with 

the same domain as T0 . On the other hand, the analysis breaks down if 

the domains of T(t) are different from DT 
0 

T(t}x(s) "( • 2 ( ") 4 ( ) X Sj + S X S + ts X S 

with 

For example, let 

s € !R • 
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DTO = {x EX 

and for t '# 0 • 

I 4 2 
ffi s lx(s)l ds < oo, I 4 A 2 } ffi p lx(p)l dp < 00 

where x denotes the Fourier transform of x . In this situation, 

4 V0x(s) = s x(s) , s E ffi , is ealled a singular perturbation of 

r 0x(s) = x"(s) + s2x(s) . s E ffi • Analytic properties of a singular 

perturbation are difficult to establish. 

For notational ease, we denote R(T(t),z) by R(t,z) when 

z E p(T(t)) • and if t = 0 • we denote R(O,z) by R0(z) . We now 

prove that for a fixed z . the map t ~ R(t,z) is analytic. 

1liEDREII 9.3 Let t 0 E IC and fix z E p(T( t 0 )) If 

then z E p(T(t)) and 

(9.13) 

The function t ~ R(t,z) is thus analytic on a neighbourhood of t 0 , 

for every fixed z E p(T(t0)) . 

Further, let E be a closed subset of p(T(t0)) Then the series 

(9.13) converges absolutely and uniformly for z E E and t in any 

closed subset of the disk 

{t E IC : lt-t0 1 < 1/max IIV0R(t0 ,z)ll} 
zEE 

Proof Consider t E IC such that lt-t0 1 < 1/r0 (V0R(t0 ,z)) . Letting 

A = T(t0 ) - zl and B = T(t) - zl . we have A - B = -(t-t0 )V0 • and 
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By Theorem 9.1, B is invertible, i.e., z E p(T(t)) and 

ro 

R(t,z) = B-l = A-l I [(A-B)A-l]k 
k=O 

00 

= R(t0 ,z) I [-V0R(t0,z)]k(t-t0)k 
k=O 

which proves (9.13), and also shows that the function 

t ~ t,z) E BL{X) is analytic on a neighbourhood of 

4.8. 

Next, for a closed subset E of p(T(t0 )) let 

13 = max !IV0R(t0 ,z)!l <: oo . 
zEE 

If D is any closed subset of the disk 

by Theorem 

then for all t E D , we have I t-t0 I s; i5 for some 5 ( 1/{J . Now, in 

Proposition 4.6, let S = E x D , and for (z, t) E E x D let 

~(z,t) k=O,l, ... ·. 

Then 

Since (35 < 1 it follows that the series (9.13) converges absolutely 

and uniformly for z E E and t E D // 

We move on to prove the analyticity of the spectral projection 

associated with T(t) and a curve f in p(T0 ) . Since f is a 

compact set and the function z ~ ra{V0R0(z)) is upper semicontinuous 

for z E f , we see by Corollary 5.5 that 
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The following open disk about 0 in the t-plane, which depends on 

the curve f in the z-plane, -will be of special interest to uso It was 

Hrst studied extensively in [C]o Let 

14) 

z-pla:ne t-plane 

/// spectrum of 

Figure 901 

Let us denote the spectral projection Pr(T0 ) by 

'J!'HEO~ 9.4 Let f c p(T0 ) o For t € or , we have f c p(T(t)) . 

The spectral projection P(t) € BL(X) associated with T( and f is 

an analytic function of t 0 In fact, for t E of , we have the 

Kato-Rellich perturbation series 

(9. 15) P(t) 

where 

(9016) {-lt+~ 
21fi 
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Proof Let z € f , so that z € p(T0) . Letting t 0 = 0 in Theorem 

9.3, we see that z € p(T(t)) for every t € ar , since 

Thus, r c p(T(t)) for every t € ar . 

Now, fix t 0 € ar . Letting E = f , in Theorem 9.3, we see that 

for t in some neighbourhood of t 0 , the series 

converges uniformly for z € r . This allows us to integrate the series 

term by term on r (cf. (4.8)). and obtain 

P(t) 

for t near enough to t 0 Thus, t ~ P(t) is analytic for t in a 

neighbourhood of t 0 . But since t 0 is an arbitrary point of ar , 

we see that P(t) is analytic on ar . The Taylor expansion of P{t) 

around t = 0 is given by the series (9.15). The converse part of 

Theorem 4.8 shows that this expansion is valid for all t in ar . II 

The analyticity of the spectral projection P(t) implies, in 

particular, that P(t) depends continuously on t : if t 1 and t 2 

are close then so are P(t1) and P(t2 ) as elements of BL(X) We 

wish to show that in this case, the ranks of P(t1) and P(t2 ) are 

equal. For this purpose, we prove some preliminary results which are 

important in their own right. 
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LBDfA 905 Let P and Q be projections in BL(X) such that 

r (P(P-Q)) 1 . 
a 

Then the map B : given by Bx = PQ-;l: , x E is 

invertible. In particular, 

which is invertible in BL(P(X)) . For 

X € 

-1 (A-B)A x = (A-B)x = x - PQx = P(P-Q)x 

. But 

i(I-P){X) . 

Since P(P--Q)P !P(X) = P(P-Q) 

have by (6.2) and (5. 

Now Theorem 9.1 shows that B : P(X) ~ P(X) is invertible. In 

particular, B is onto. Hence 

we 

rank P = dim B(P{X)) = dim PQ(P(X)) ~ dim P(Q(X)) ::: ran.."!( Q . // 

PROPOSITION 9.6 Let P and Q be projections in BL(X) such that 

(9.17) 

Then the map J : ~ Q(X) given by Jx = Qx x E P(X) is a 

linear homeomorphism onto. In particular, 

rank P = rank Q 
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These conclusions hold if 

r (P-Q) < 1 . 
a 

Proof The 1nap J is clearly linear and continuous. It is one to one 

since if Jx = Qx 0 for some x E P(X) , then PQx = 0 , and this 

implies that x = 0 , as the map B : P(X) _, P(X) given by Bx = PQx 

is one to one by Lermna 9.5. Next, we show that J is onto. Let y E 

Q(X). Then by interchanging P and Q in Lemma 9.5, we see that the 

map B : Q(X) _, Q(X) given by Ex = QPx x E Q(X) , is onto. Hence 

there is x E Q(X} such that QPx = y , Le., J(Px) == y As 

and Q(X) are closed subspaces of X , they are Banach spaces. The 

open mo:pping theorem now shows that is continuous, i.e., J is a 

homeomorphism. 

Final ~ let r (P-Q) < 1 a Since P and 

we see by (5. 

r (P{P-Q)) == r (P(P-Q}P) -a a 

Now, maps P(X) into P(X} Hence by 2) and (5.11) 

I ' < ra( !p-Q-~2} P(X) 1 - -~ ' 
[r (P-Q)]2 < 1 . 

a 

But we have seen in the proof of Lemma 9.5 that 

r fP(P-Q) a' , ) = r (P(P-Q)). a 

Thus, r 0 (P(P-Q)) < 1 . Also, r 0 (Q(P-Q)) < 1 interchanging P and 

Q . Hence the desired conclusions hold if r 0 .(P-Q) ( 1 . I/ 

Then for every t E af 

rank[I-P(t}] = rank(I-P0] 



142 

If {x1} is a basis of P 0 (X) , then {P( t)x1} is a basis of 

P( (X) when It I :is sufficiently sma.lL 

hoof By Theorem 9.4, the map t .., t) is analytic on and 

hence it is continuous. Thus, for every 

implies 

!I < 1 . 

0 

p P( a.nd Q P(t) 

in Proposition 9.6. Now, the nonernpty set 

€ ali' dim 
! 

dim } 

is open as well as closed in or , a..Yld as such it coincides 'Hi th 

since the d:isk ar :i.s connected. Thus, for all t € 

rank t) = rank P0 . 

The statement about rank[I-P( ] :follows similarly by considering the 

continuity of the map t ~ I - P( € 

, let be a basis of For t near 0 , 

consider the map J P0 (X) ~ P(t)(X) given 

Jx = X E 

By Proposition 9.6, J is linear, one to one and onto, and hence sends 

to a basis of P(t)(X) , showing that {P(t)x.} - ' ]. 
is a 

basis of P(t)(X) . // 

Theorem 9,4 and Corollary 9. 7 point out the following interesting 

facts. If f c p(T0 ) and the operator T0 :is perturbed to 

T( then as long as t € the curve f continues to 

lie in p(T( ) and the spectral projection P(t) associated with 



T(t) and r changes analytically with t ; more importantly, the 

dimension of P(t} equals the dimension of P(O) for all t E ar 

Since the spectrum of T( lying inside r is the spectrum of 

T(t}IP(t)(X) , we may expect the spectral values of t} inside r 

to depend a..alytically on t However, this is not the case for 

individual spectral values, As an exrunple, let X = ~2 , and 

11 0 ' . 
Let f denote the unit circle, which encloses the double eigenvalue 

Hence 

For z # 0 , 

fl/z 
- I 

l 0 

2 

1/z ]· 
1/z : 

a("V0R0{z)) 

l'a(Val-<0 (z)) = l/lzl2 

2 
,-1/z } ' 

{t E [: : It! 1} , 

1 ' 

Now, T(t) = [; ~] and for t E ar the spectral values of T(t) 

lying :inside r are ± .ft However, there is no analytic function 

t !-) :1\(t} € n Int f = {±-ft) for t € af 

All the same, we prove that if P0 is of finite rank, then the 

aritl:-mtetic mean of the spectral points of T(t) inside T is indeed an 

fu!alytic function of t € or 

THEORER 9.8 Let ran~ P0 = m , 1 ~ m < ro Tnen. for every t E or , 

the only spectral points of T(t) inside f are m eigenvalues, say, 

!\1(t), .. ,,A (t) , counted according to their algebraic multiplicities. 
m 

The function 5\ is analytic on a.,... 
Ji 

where 
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Let € X and be such that the matrix 

1 5; i,j :s: m :l.s invertible, and for t € ar ' let 

.{ 1 :S: i,j ~ m If A( denotes the matrix 
'J 

[a .. (t)] 
l.,J 

then for it! sufficiently small, A( is invertible; if 

[A(t)]-l t)P(t)x. 
1 

Lj 

then 

1 
liil m 

\' . ( . ( 
m L 

j=l 'J '1 

Proof By Corollary 9.7, rank P(t) = m < ro for all t € af . Hence by 

Theorem 7.9, the spectrum of inside r consists of a finite 

number of eigenvalues with finite multiplicities. 

Since T(t) and P(t) commute, we have 

R(T(t)P(t}) c R(P(t)) 

which is of dimension m Thus, the operator t) is of finite 

rank and Proposition 3.6 shows that 

tr(T( ) ) 

the sum of the eigenvalues 

This proves (9.18). 

of T(t)IP(t)(X) , by (7.18) 

= )\1 ( t) + ... 

= m t) . 

+ )\ (t) 
m 

For t € ar , let 

x.(t) = P(t)x. , 1 5; i :S: m 
l 1 
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Then A(t) = [<x.( 
1 

1 ~ i,j ~ m . Since 

is invertible <a•d the function t ~ x.(t) 
]. 

P(t)x. € X is analytic (m1d 
1 

hence continuous) for each i 1, ... ,m we see by Theorem 9.1 that 

A(t) is invertible if ltl is small 

It follows by Remark 3.4 that the set {x1 (t), ... , t)} is 

linearly independent and forms a basis of P(t)(X} . Also, if we let 

then 

(cf. 

* y .(t) 
J 

<x. (t) 1 . 

.6).) Now, 

m 

I 
k=l 

t)> 

m 

Since the functions t ~ T( 

i'5 •• 
l, J 

j 1, ... ,m , 

1, ... ,m . 

3.6 shows that for It! small enough, 

tr(T(t}P( ) 

m 

I <T(t)P(t}x.(t) > 
,j=l J 

m m 

l <T{t)P(t)x., I 
j:::::l J i=l 
m m 

·- I I b .. (t}c .. (t} 
i=l j=l 

l,J J,l 

E BL{X) and t ~ P( E X are 

analytic, we see that the functions t H> .(t) E [:and 
'J 

t H> c .. (t) E II: are analytic. (See Problem 4.1.) We conclude that the 
l,J 

function t "' t} is analytic on a neighbourhood of 0 . A very 

similar argument establishes the a1r1alytici ty of this function in a 

neighbourhood of an arbitrary point t 0 E of // 

Let the spectrum of T0 inside f consist of a single eigenvalue 

of finite algebraic multiplicity, Then by (7.8}, 
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We can use this Laurent expansion of R0 (z) to calculate the 

coefficients 

in the perturbation series (9.15) for P(t) in terms of P0 , s0 , 

and V 0 . These can then be used to obtain a series exp?....nsion of the 

arithmetic mean = tr(T(t)P( of the eigenvalues of T(t) 

i:nstde r 

shall not pursue their study here becaus,e the coefficients of these 

series cannot be calculated in an iterative naanner. Let 7\0 be a 

simple eigenvalue of T0 . In the next section, we shall cons:i.der 

series expansions for the simple eigenvalue t) of T(t) and for a 

suitably normalized eigenvector of t) corresponding to t) vihich 

can be calculated in an iterative manner. 'With this in view, let us 

study the important special case of a simple eigenvalue. 

COROil.ARY 9.9 Let the only spectral value of T0 inside r be a 

simple Then fo:r 'every t E r encloses only one 

spectral value 7\(t) of T(t) and it is also a simple eigenvalue. The 

function t » 7\(t) is analytic on ar 

Let EX * * and x0 € X be such that 

is small enough, we have 

(9.20) 

also, 

(9.21) 

is an eigenvector of 

t) 

x(t) = 

* <T(t)P(t)x0 ,x0> 

<P(t)x0 ,x~> 

t) corresponding to A(t) such that 

If It I 
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* <x(t),x0> = 1 x(t} is an analytic function of t in a neighbourhood 

of 0 . 

Proof We have m = dim P0 (X} = 1 . Hence by Theorem 9.8, 

t ~ ~(t} = A(t} is analytic on ar Also, let x1 = x0 and 

Then for It I small, we have 

a1. 1(t} * = <P(t}x0 ,x0> 

b1.1 (t} * 1 / <P(t}x0 ,x0> 

* c1. 1 (t) = <T(t}P(t}x0 ,x0> 

Thus, (9.20} follows directly from (9.19). Also, since 

* * <P{O}x0 .x0> = <P0x0 ,x0> ¢ 0 , we see that for ltl small, 

* <P(t}x0 ,x0> ¢ 0 , so that P(t}x0 ¢ 0 . Now, since A(t) is simple, 

we have P(t}x0 € P(t}(X} = Z(T(t}-A(t}I} This shows that x(t) is 

an eigenvector of T(t} corresponding to A(t) . The relation 

* <x(t},x0> = 1 is immediate. Since both the numerator and the 

denominator of x(t} are analytic and the denominator does not vanish, 

we see that x(t} is analytic on a neighbourhood of 0 . // 

One can give a direct proof of the analyticity of the function 

t ~ A(t} of Corollary 9.9 without invoking Theorem 9.8. Since A(t) 

is a simple eigenvalue of T(t} for t € ar , we have T(t}P(t} = 

A(t}P(t} , so that 

As we see that It I 

is sufficiently small. Hence the relation (9.20) holds. In particular, 

t ~ A(t} is an analytic function on a neighbourhood of 0 . 
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Probleil!IS 

9.1 Let A € BL(X) be invertible and BE BL(X) 

iiA -l II ( 1 . If Ax = a ru1d By = b , then 

) 

A € BL{X) and y E X . Consider an invertible 

= y- Ax. 
rl 

Let 

such that 

-X + U. - j J 

Then A is invertible and ) converges to the unique x € X such 

that Ax= y . 

9.3 (General Neumann. expansion) Let z € p(A) . If 

ra([(w-z)I+{A-B)]R(A, ) < 1 , 

then w E p(B) and 

00 

R(B,w) = R(A,z) L [[(w-z)I+(A-B)]R(A,z)]k . 
k=O 

(A= B gives (5. and w = z gives (9.10).) In particular, if 

-1 
cl + c2 :t; IIR(A,z)ll , lw-zl < c.1 and IIA-BII < c2 

IIR(B,w)ll ~ IIR(A,x}l!/(1-r) , 

IIR(B,w) - R(A,z)ll s; rllR(A,z)ll/(1-r) , 

then w E p(B) 

where r = ( lw-z!+IIA-BI!)IIR(A,z)li The function (A,z) ~ R(A,z) € BL(X) 

is jointly continuous on {(A,z) A E BL(X) , z E p(A)} C BL(X) x ~ . 
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9.4 Let A , BE BL(X} . Assume either that A and B commute, or 

that A and B are self-adjoint. Then 

max{ max dist(A.,a(B)) , max dist(/\,a(A))} S r (A-B) S IIA-BII . 
AEa(A) A.Ea(B) 0 

9.5 Let f and J be simple closed curves in such that 

r c Int f has no 

spectral values between f and f . Then for all t € or n af T( 

has no spectral values between f and r . 

9.6 Let P and Q be projections such. that r (P-Q) < 1 . a TI1.en the 

operator QP + (I-Q)( is invertible. It maps R(P) onto R(Q) 

and onto 

9.7 Let D be a ccm .. ""lected metric space and for s € D , let Q(s) be 

a projection in BL(X} . If s l., Q(s} is continuous, then the rank of 

s} is constant (f:i.:nite or infinite) for s € D . 

9.8 Let m 2 in 11;.eo:rem 9.8. Then for !ti small enough, 

X(t) = 
(a2,2cl,l- aL2c2,1- a2,lc1,2 + al,lc2,2)(t) 

2 (aL la2,2 - aL2a2, 1 )(t) 

9.9 Under the hypothesis of Corollary 9.9, let for ltl ( r , with r 

small enough, 

[P( ** ] X 0 
t) t) 

where -f denotes the principal branch of the square root. Then the 

function 

antianalytic 

t) E X is analytic, the function 

*­(i.e., t ~ y (t) is aTLalytic) and 

* t !") y (t} is 

* <y(t), y (t)> = 1 . 

In particular, if T0 and v0 are self-adjoint operators on a Hilbert 

* space X , t is real, and we choose x0 = x0 , then lly( t) II = 1 · 


