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EIGENSTRUCTURE SPECIFICATION VIA STATE BOUNDARY FEEDBACK 

FOR LINEAR SYSTEMS IN HILBERT SPACE 

Recently Clarke and Holland [1] investigated the problem of eigen­

structure specifica-tion for linear systems in Hilbert space with Distributed 

Control. By ·the cons-truction of a spectral representa-tion of the closed 

loop sys-tem i·t was shown ·tha·t spectral specifica·tion is possible u:1der 

certain critical conditions depending on the dimension of the control 

space being sufficiently large in relation to the dimension of the eigen­

spaces of the linear system operator, and, subject to an asymptotic 

condi-tion on the closed loop spectrum. 

In this paper the same spectral specification problem is investigated 

but with Boundary Control rather than Distributed Control. This is an 

impor·tant problem since, in practice, it is of~cen more practical to exert 

control by means of ·the boundary conditions, particularly for systems 

governed by linear partial differential equations [2]. Fattorini [3] deter­

mined certain controllability conditions by replacing the Boundary Control 

by Distributed Controls which have the same effect on the system and then 

applying known results for distributed parameter systems. This method 

has been further pursued by Curtain [4 ] and is the underlying approach 

used here also. 

Invoking Fattorini's controllability result it is shown that the 

possibility of spectral specification again depends critically on the 

dimension of the control space being sufficiently large in relation to 

the dimension of the eigenspaces of the linear system operator. However, 
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the asymptotic requir~ment for the spectrum of the closed loop system is 

found to be weaker than for the case of Distributed Control considered by 

Clarke and Holland previously [1]. This indicates that the effect of the 

implementaiton of Boundary Control on the system is more powerful than 

the effect of Distributed Control on the system. 

Following Fattorini ([3] pp.350-352) we consider the linear system 

(1.1) 

where x( ): [0, 00 ) ->-X, 

x ax 

Tx B u 
s 

(X a complex, separable Hilbert space) and 

u( ): [0, 00 )->- U, (U a finite dimensional complex inner product space) are 

functions, dim U = m,, a: X ->- X is a closed linear operator, T: X->- Z 

is a linear boundary operator with D(T) ~ D(a), Z is a finite dimensional 

space and B : U ->- Z 
s 

is a non-singular bounded linear operator. 

denotes the boundary of some domain I of Euclidean space 
r 

JR. 

Here s 

Typically 

a. would be a linear partial differential operator acting in X and T 

a linear differential operator ac·ting on the boundary S of I. 

We define another linear operator A on 

D (A) {x E D (a) I Tx 0} 

by Ax= ax, x E D(A). We assume that A is a discrete,spectral operator 

of scalar type [1], with cr(A) = {Ai' i 

01 inf o. 
]_ 

i 
o > 0 where o. 

]_ 

1,2, •.• } satisfying 
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Remark l. A is in fact the infinitesimal generator of a strongly 

continuous semi-group on X and consequently A and therefore a 

have dense domains in X. 

Using the notation of [1], the eigenvectors { ~~; i=l, 2, ..• , j=l, ••. , vi} 

corresponding to the eigenvalues . {:\.; i=l,2 .... } form a Riesz basis for 
~ 

X wi-th corresponding biorthogonal basis 

(the eigenvec'cors corresponding ·to the eigenvalues 

A*). Hence, any x EX has the unique representation 

where 

n 
(L2) c I 

i=l 

v. 
~ 

I 
j=l 

X 

v. 
~ 

I 2. < x, 
i=l j=l 

n 

I 
i=l 

V, 
l 

I 
j=l 

for all n = 1,2, ••. , and positive constants c,C, independent 

of x [6] (Ch.VI, Theorem 2.1). 

Fatterini [3] (p.351, Assumption 4) made the following important 

additional assumption on the linear boundary operator T. 

02: There exists a bounded linear operator B: U +X such that for all 

u E U, Bu E D(A) and T(Bu) = Bsu. 

Since dim U = m and Ker B = { 0}, there exists a basis 
s 

{z.; i = l, ... ,m} for Z of dimension m. Assumption 02 then implies that 
l 

there exist linearly independent b 1 , ••. ,bm EX such that 
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T (b o) z 0 

l l 

for i 

Remark 2. The importance of this assumption lies in the fact that any 

element of the form x- Bu (x E D (a)) is actually in D (A) since 

T (x- Bu) T (x) - T (Bu) 

B u - B u 
s s 

0. 

Upon introduction of state boundary feedback of the form u ~ Fx, the 

following· spectral assignment problem arises. Given a countable sequence 

of complex numbers J u 0 

l i u i~l,2, ..• } does there exist F: X + U bounded 

and linear such that the restriction aF of A defined on 

{x E D (a) I 

by 

(T- B F)x 
s 

ax 

o} 

is spectral,discrete and of scalar type with cr(~) 

2. Controllability Results 

1,2, .•. }. 

Fattorini [3] (pp.355-358, Theorem 3.3) showed that controllability 

of the linear system (1.1) is equivalent to the controllability of the 

linear system 

(2 .1) X Ax + (RA a - aRA )Bu, x E D(A) 
. 0 0 

(where is the resolvent operator for all A E p (A) • 
0 
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Letting Q = AB, which is a bounded linear operator by the Closed 

Graph Theorem, we are able to deduce the following Lemma. 

Lemma 2.1. 

i=l,2, .•. , 

The system (1.1) is controllable if and only if3 for each 

- - -1 -<\- 7t0 ) (Q*- AiB*) is an injection on each of the eigen-

spaces F. 
]_ 

Ker <\ -A*) for all :\0 E p (A). 

Proof. By another result of Fattorini [5] (Corollary 3.3), (2.1) is 

controllable if and o;·ily if B '* ('tJhere 

is an injection on each of the 

Letting f E F. we have 
]_ 

F. 
]_ 

(i 1, 2, ... ) 

B'*f (Q*R* - B* R* A)f 
Ao Ao 

for all 

- - -1 - - -1-
(Ao-\l Q*f- (A0 -Ai) \B*f 

for all :\0 E p(A) whence the result follows. 

From this the ensuing corollary is trivial. 

7t 0 E p (Al. 

Corollary 2.2. A necessary condition for controllability of the system 

(1.1) is that sup vi ~ m = dim u. 

Henceforth we assume that the system (1.1) is controllable and that 

7t 0 o E p (A). 
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Taking an orthonormal basis, {u1 , ••• ,um} for U it follows that 

the matrices Q~ (i = 1,2, ••• ), Q~: tv+ ~m given by 
~ ~ 

<(·A Q*- .B*)·'· u > ;i. "'1 I I 
[ 

--1 i 

i 1, 2 I • • • I 

--1 ,,,i > <(f;. Q*-B*)., ,u . ~ 1 m 

are all of rank vi (by Lemma 2.1). Thus, the matrices Qi (i 

Qi: em+ ~vi defined by 

1,2, ••• ), 

--1 
<<\. Q 

(2 .3) Qi 
--1 

<(/\ Q 
i 

(all being of rank vi) 

i 
- B)ul,l[Jl> 

--1 
<(\ Q 

i 
- B)um,l[Jl> 

i --1 i 
- B)u1 ,1[J > <(/\ Q - B)u ,1/J > 

vi i m Vi 

enable us to construct bases, {y~, j 
J 

(i = 1,2, ••• ) for U by putting 

(2 .4) 

where 

(2. 5) 

m 

I 
r=l 

w~ 
J 

i 
(W.) u 

J r r 
j 

(j 

* -1 i 
Q~(Q.Q.) e:. 
~ ~ ~ J 

1, ..• ,vi , 

is given by 

i 1,21 • • • 

1, .•. ,m} 

' i ~ 
({e:j; j = l, ••• ,vi} is the standard basis for t ~) and extending each 

I 

' { i . } linearly independent set Y.; J = l, .•. ,v. b . {i. 1 l to a as~s Y . ; J = , ••• ,nv 
J ~ 

' i 
for u by taking {yj; j v. 1 , ... ,m} 

~+ 

u. 
~ 

'( <'-1 * *) ,,,i span .. ''i Q -B ., 1 , 

as a basis of 
.L 

u. 
~ 

J 

where 
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From (2.4), (2.5) and (2.6) it follows that 

(2. 7) 
-1 i i 

<. ( fi.. Q - B) y . , tiJ > ]. J . (J 

for each i 

(2. 8) 

(2. 9) 

Moreover, 

v. 
]. 

I 
j=l 

I 
i=l 

3. Main Results 

j 

i 

I < 
i=l 

Let { ].1.; i = 1,2, ••. } be a countable collection of distinct complex 
]. 

numbers and {vi; i = 1,2, ..• } an associated countable collection of 

positive integers subject to the conditions 

Cl 

C2 

I I 12 _., 2 I 1-1 -1 2 
].1. - A. II (Q. Q~) II ( A. + cS • l < 

i=l 
J. J. J.J. J. J. 

(i) v. 
]. 

s m i 11 2 q • • • ' 

(ii) for some positive integer K, v. v. for i > K, 
J. J. 

k k 
(iii) I v. I V, 

i=l 
J. 

i=l 
J. 

We now define a countable collection of vectors {~~; i 

l, ... ,v.} in x by 
J. 

and 



(3 .1) 
{ 

-1 
A. (Jl.- A.) 

l l , 

RJli (Q- ]liB)y~ 

whenever Jli E P(A). 
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i i 
[R, (Q - ]1. B) y. + By.] 

~i l J J 

i 
+ Byj , j > vi 

Now, observing that 
i 

R (Q-Jl.B)y, E D(A) 
Jli l J 

and using Assumption 02 

it is easy to see that 

and 

i i 
(Jl, -A) [R (0- ]l.B)y. +By-;-] 

l Jli - l J J 

Hence, for each i 1, 2' ... 

(3. 2) 
[ -1 

A. (Jl.-A.) 
l l l 

Ti;~ 
J 

0 

and 

i ,; 
Bs yj I j v. 

l 

i 
Bs yj ' j > v. 

l 

Moreover, the sets 
i 

{E;j; j=l, .•• ,vi} are linearly independent for each 

For example, if 

0 

v. > v. 
l l 

V, 
l 

I 
j=l 

and 

for some choice of scalars a 1 , •.. ,a-, then 
V, 

l 
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v. v. 
~ -1 . i 

~ 
i 

0 TO I a. \ (lli ":' A.i) Bsyj + I ajBsyj 
j=l J j=v.+l 

~ 

Since Ker B = {O}, \l. E p(A) 
s ~ 

. i -
and {yj; j=l, ••• ,vi} are linearly 

independent we are able to conclude a 1 = a2 = ••• = av. 0. In fact: 
~ 

Lemma 3.1. 

fo!' x. 

1,2, ••• , j 1, ..• ,;,} fo~ a Riesz basis 
~ 

Proof. Follows from [6] (Ch.VI, Theorem 2.3, Remark 2.1). 

We are now able to define a linear operator F: X + u (on the 

Riesz basis · {s~}) by 
J 

( -1 i j ~ r , .. -Ll yj v. 

Fs~ 
. ~ ~ . ~ ~ 

(3.5) 
J i 

yj j > v. 
~ 

Thus the operator F: X+ u Ewell defined by the action (3.5). Moreover, 

it is a bounded operator since for any x E X, 

oo v~ 
~ i i 2 I I <x,n.> Fs.ll 

i=l j=l J J 

v. 
~ 

I I 
i K j=l 

. 2 
IIFs:u + 

J I 
i>K 

I 1-2! 12 -1.:. 2 A.. ·:)l.-\A., II<Q.Q~) II 
~ . ~ ~ ~ ~ 

(from Cl) 
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for some positive constant C'({n~} being the biorthogonal basis of 
J 

The restriction operator aF of a is now defined since by (3.2), 

(3. 6) 

for each i 

cr(a l = {Jl; 
F • 

(T -B F) I;~ 
s J 

1,2,... and j 

0 , 

Moreover 

i = 1,2, .•• } from (3.2) and (3.6). 

We now state the main result. 

Theorem 3.2. Let A be a discrete, spectral operator of scalar type on a 

Hilbert space x with cr(A) satisfying condition 01. Let B: u + x be 

a bounded linear operator satisfying 02. Further, suppose the linear 

system (1.1) is controllable. Then, for any countable collection of 

distinct complex numbers {Jli 

of positive integers {v. , i 
]_ 

i = 1,2, ... } and any countable collection 

1,2, .•. } which satisfy conditions C1 and 

C2, there exists a bounded linear operator F: x + u such that the closed 

loop operator aF is discrete, spectral and of scalar type and satisfies 

i=l,2, ••. } and dim Ker (11. I - a ) = v. (i = 1, 2, ••• ) • 
l F l 

Remark 3. In practice it often happens that 

< oo, so that the asymptotic condition Cl simply becomes 

l: 
i=l 

lv. -t...J2 <"" 
]_ ]_ 

which is a vast improvement on the result given in [1] for eigenstructure 

specification via linear state feedback. 
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