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An operator T in a Hilbert space :1 is said to be of type w if 

the spectrum is contained in the sector s ={{;Ea:; I !arg(l :S; w} and w 

the resolvent satisfies a bound of the type II(T-(1)-1 11 < c !(i-1 for 
- IJ. 

aH r with larg(l ~ ll and all ll > (,) Let us suppose for now that 

T is one-one with dense range. 

Such an operator has a fractional power Ts and, if w < v/2 , 

generates an analytic semi-group {exp(-tT)} See [3] for details. 

However it may or may not happen that it generates a -group 

{Tis I s E IR} f b d d o oun e operators. It was shown by Yagi that the 

operators T for which Tis € ~(:1) are precisely those for which the 

domains of the fractional powers of T (and of r* ) are the complex 

interpolation spaces between ~ and ~(T) (and between ~ and 

~(T*)) . They are also precisely those operators for which T and r* 

satisfy quadratic estimates [4]. 

It is shown in this paper that another equivalent property is the 

existence of an H (S0 ) 
00 ll 

functional calculus for M > w (where 

denotes the interior of sll ). 

In writing up this paper it seemed useful to have a precise 

definition of the operators f(T) for functions which are analytic {but 

not necessarily bounded) on s0 and for operators 
ll 

T which do not 

necessarily satisfy quadratic estimates. Such a definition is given in 

section 5, where it is shown in what sense formulae of the form 

(fg)(T) = f(T)g(T) hold. It appears that the basic properties of the 
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semigroups {exp(-tT)} and of the fractional powers Ts can be derived 

more simply in this way than usual. 

The material in this paper has two heritages. One is operator 

theory, in which area we use results of Kato, Yagi, and many others; the 

other is harmonic analysis, where the power of quadratic estimates has 

been recognized since the Littlewood-Paley theory appeared and the 

theory of g-functions was developed by Zygmund and his followers. In 

particular Stein has eA~lored the relationship of quadratic estiwates 

with multiplier results (which concern the functional calculus of 

i-ld/dx) . The motivation for this paper is to better understand the 

functional calculus of i-1dldzl, where "Y is a Lipschitz curve in 

the complex plane, though in fact this material is only briefly alluded 

to in the last section. This builds upon the work of Calderon, and of 

Coif man and Meyer. 

Thanks are due to Michael Cowling, who has been studying similar 

problems in L -spaces, and to Raphy Coifman, Carlos Kenig, Yves Meyer, 
p 

James Picton-Warlow, Werner Ricker, Wesley Wildman and At sushi Yagi, all 

of whom have contributed to my understanding of these topics. 

2. OPERATORS 

Throughout this paper :Jt denotes a complex Hilbert space. By an 

operator is meant a linear mapping T ~(T) ~ :Jt where the domain 

~(T) is a linear subspace of :if . The range of T is denoted by 

~(T) and the nuLlspace by N(T) The norm of T is the (possibly 

infinite) number 

liT II sup{ IITull I u E ~(T) , llull 1} . 
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We say that T is bounded if !:ll(T) = ;/f and IITii ( 00 and denote the 

algebra of all bounded operators by ~(;/f) We call T densely-defined 

if qzj(T) is dense in ;Jt , and dosed if its graph {(u, Tu) I u E 

qJJ(T)} is a closed subspace of ;/f x ;/f • 

When new operators are constructed from old, the dowains are taken 

to be the largest for which the construction makes sense. For example, 

and, if T is one-one, 

We write S C T if 

qJJ(S+T) 

qJJ(ST) 

£1J(S) n !:ll(T) 

{u E ~(T) I Tu E ~(S)} , 

c !:ll(T) and Su = Tu for all u E qJJ(S) . So 

S = T if and only if S C T and T C S . Note that 

and, if S is one-one, 

(ST)U = S(TU) , 

S(T+U) ~ ST + SU , 

(S+T)U = SU + TU 

s-sco. 

We remark that if B is bounded and T is closed then the 

following operators are closed: B , TB , B-lT (if B is one-one) and 

T-l (if T is one-one). 

The adjoint of a densely-defined operator T is the operator T* 

with largest domain which satisfies 
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<Tu,v> (u,T*v> 

for all u € ~(T) and v € ~(T*) . We remark that T* is closed and 

(T- 1)* -- (T*)-1 1"f T · d ha d 1s one-one an s ense range. 

The resolvent set p(T) of T is the set of all A € C for 

which (T-Al) is one-one and (T-AI)-1 € ~(~) . The spectrum a(T) of 

T is the complement of p(T) together with 00 if T is unbounded. 

3. RATIONAL FUNCfiONS OF T 

Suppose T is a closed densely-defined operator in ~ with non­

empty resolvent set. Then Tn is a closed densely-defined operator for 

all integers n ~ 0 . (We take 0 T =I .) Moreover, if m ~ n , 

is a dense subspace of ~(Tn) under the norm llull 
n 

then 

m k 
If p denotes the polynomial p(C) = I ckC 

k:O 
then p(T) is 

m k 
defined by p(T) = I ckT 

k=O 

~(p(T)) = ~(~) , dense in ~ 

This too is a closed operator with domain 

If q denotes a polynomial with no zeros in a(T) , and 

r(C) = p(C) / q(C) , then we define r(T) by r(T) = p(T)(q(T))-1 

This too is a closed densely-defined operator with domain ~(Tn) where 

n = max{O, deg p - deg q} . 

If r and r 1 are two such rational functions and a € C , then 

the following identities hold: 

{1) a(r(T)) + r 1 (T) 
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(3) a(r(T)) = r(a(T)) 

(4) * - * r(T) = r(T ) 

where r(C) = p(C)/q(C) . p(C) =I~ ck and q is defined similarly. 

Although the preceding paragraphs can be read quickly and appear 

reasonable, it is actually quite tedious to verify every detail. For 

example it is easy to see that * - * r(T) :J r(T ) , but it takes more work 

to get the equality. Note that (2) includes the statement 

~(r 1 (T)r(T)) = ~((r 1r)(T)) n ~(r(T)) . 

If r has no zeros in a(T) n C , it is a consequence of (2) and (4) 

that 

* -1 * ((1/r)(T)) = (r(T) ) . 

4. OPERATORS OF 1YPE ., 

If 0 ~ a ~ ~ , then 

Sa = {z € C I z = 0 or larg zl ~ a} 

and 

0 
Sa= {z € C I z ¢ 0 and larg zl < a} . 

If 0 ~ 61 < ~ , then an operator T in ~ is said to be of type 

61 if T is closed and densely-defined, a(T) C S61 U {ro} and for 

each -1 -1 
a € (61, ~] there exists ca < ro such that II(T-zi) II .~ ca lz I 

for all non-zero 

If 0 < ~ ~ ~ , then 
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H(X){S~} = {f : s~ -+a:: I f is analytic and llfii(X) < 00} 

where 0 llfll00 = sup{ lf{z) I I z € S1) • and 

w(S~) {f € H00(S~} I 3 s > 0 , c ~ 0 such that 

lf(z)l < clzls for all z € s~}. 
- 1+lzl2 s ,.... 

It is straightforward to define ~(T) if ~ € w(S0 ) and T is of 
1-L 

type w , where 0 ~ w < p. ~ v We proceed as follows. 

Let w < 9 < p. and let ~ be the contour defined by the function 

{ 
-i9 

-t e 

g(t) = t ei9 
0 ~ t < (X) 

Define ~(T) € ~(~) by 

~(T) = 2!i I (T-CI)-1~(C}dC . 
~ 

This integral is absolutely convergent in the norm topology on ~(~) 

It is not difficult to show that the definition is independent of 

9 € (w,p.) , and that, if ~ is a rational function, then this 

definition is consistent with the previous one. We can also show that, 

if ~1 

(1} 

{2} 

(3) 

{4) 

is also in 

Moreover, if 

0 w(S ) and a € a:: , 
1-L 

then 

a(~(T)) + ~1 (T) = (a~~1 )(T) 

~1 (T)~(T} = (~1~)(T) 

a(~(T)) = ~(a(T)) 

~(T)* = ~(T*) . 

r is a rational function which is bounded on S p. 
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r(T)~(T) = {r~)(T) = ~(T)r(T) . 

The operator (r+~)(T) can be defined without ambiguity by 

(r~)(T) ~ r(T) + +(T) . 

We conclude this section with a convergence theorem. 

1HEO~ Let T be an operator of type w where 0 ~ w < ~ ~ v Let 

be a net in such tha.t 

(a) If there exist c anil s ) 0 such that 

l~a(C) I ~ c!CI 5 (l+ICI 2s)-l 

ll~a(T)II -+ 0 . 

for aU. then 

(b) If there exist c, M and s) 0 such that l~a(C)I ~ ciCls for 

aU IC I ~ 1 and aU. a and ll~a(T)II 5; M for all. a , and if 

u € ~ , then ~a(T)u ~ 0 . 

(c) If there exists M such that ll~a(T)II S: M for aU a and if 

u € ~(T) , then ~a(T)u ~ 0 . 

Pr@of To prove (a), use the definition of +a(T) and break up the 

integral into three parts corresponding to ICI ( D , D :<; 1!:1 ~A , 

and ICI ) A for D sufficiently small and A sufficiently large. 

To prove (b) apply part (a) to the functions ~a defined by 

~ (C) = (1+()-l~ (C) to see that ~a(T)u ~ 0 for all u E ~(T) . Then a a 

use the uniform boundedness to obtain the result. 

Part (c) has a similar proof. 
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In this section 0 ~ w < p ~ ~ and T is an operator in ~ which 

is not only of type w but also one-one with dense range. Let 

{f : s0 ~ ~ I f is analytic a_nd 
J-1. 

lf(z)l ~ c(lzlk+lzl-k) for some 

[ ( Jk+l 
where ~(() = l+(2 . The operator (T) € 

k and c } 

was defined in 

section 4, while the operator ~(T) € ~(~) was defined in section 3. 

It follows from equation (2) of section 3 that ~(T) is one-one with 

dense range as its inverse is (1/~)(T) . So f(T) is a closed 

operator which is densely-defined because its domain includes 9l(~(T)} 

as is seen by noting that 

f(T)~(T) = ~(T)- 1 (f~)(T)~(T) 

= ~(T)-l~(T)(f~)(T) 

= (f~)(T) . 

It is not difficult to show that this definition is consistent with 

those of sections 3 and 4. Moreover if f , r1 E ~(S~) and a E ~ , 

then 

(1) 

(2) 

(3) * - * f (T) = f (T ) . 
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This time however there is no spectral mapping theorem. The 

problem is that f(T) may be unbounded even if f is bounded. 

The following can be said about bounds, as is seen by applying 

above. Suppose 0 and g = hf for h E :;r(s0} for f,g € !lJ:(S ) some 
11 J.l. 

which h(T) E ~(';H) (e.g. h = ,P + r where -P € >l/(So) and r is a 
11 

bounded rational function.) Then ~(g(T)) J ~(f(T)) and 

llg(T)ull ~ cllf(T)ull for aH u € ~(f and some c € lR 

We conclude this section, like the last, with a convergence 

theorem. 

Let T be an operator of type w which 

is one~one with dense range. Let (f ) 
a 

be a net in 

and suppose, for some M < oo that 

(a) 

(b) for each 0 < o < A < oo , sup{ If (C)-f(C)! lr E s0 
a 11 

and o ~ ICI ~A}~ o 

Then f(T) € ~(~) 

llf(T)II ~ M 

and f (T)u ~ f(T)u for aLL u € ~ . 
Of. 

So 

l.et 

Proof Let -P(C) = C(l+C)-2 Apply part (c) of the earlier theorem to 

see that fa(T)~(T)u = (for.,P)(T)u ~ (f,P)(T)u = f(T)~(T)u for all 

u E ;If • As ..Ji(T) has dense range, f (T) E ~(:11) and II f (T) II ~ M Now 

use the uniform boundedness to see that fa(T}u ..,. f(T)u for all 

u € :1f • 
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6. roMPLEl{ l"'O'ERS OF T 

We continue to assume that T is an operator of type w which is 

one-one with dense range. 

Let fA(O = rA for AEC. For each A fA E ~(S~) so we 

can define a closed densely-defined operator Tl\ by Tl\ fi\(T) This 

seems to be an efficient way to define Tl\ for not only is it 

included as part of a general functional calculus, but also the 

following facts follow from the results of section 5 without further 

ado: 

(1) 

(2) 

(3) 

(4) 

if 0 ~ ~e(M) < ~e(l\) , and 

and 

for " u € W(T ) . 

The formulae usually used to define TX can now be derived using 

the theorem in section 4. For example, to show that, if 0 < s < 1 . 

then 
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for all u € ~(T) , we apply that theorem to the net , R defined by 

What if we drop the assumption that T is one-one with closed 

range? We can proceed as follows. Let 

E c such that !f(O - f(O) I ~ c I!: Is 

for 1(1 ~ 1 and some s > 0} . 

For f € ~0(S~) define f(T) by 

f(T) = (9(T)}-1(f8)(T) 

where e(r) = (l+C)-k-l and k is large enough that lf(()l ~ cl(lk 

for Iii L 1 . Then (fS)(T) f(O)(l+T)-l + g(T) E ~(~) because 

g E W , where = (1+()-k-lf([) - (1+()-lf(O) . Also S(T) is a 

bounded one-one operator with dense range. So f(T) is a closed 

densely-defined operator. Now proceed as before and we find that 

operators can be defined which satisfy properties (1)-(4) provided 

'!fie A > 0 . 

7. QUADRATIC ESTIMATES 

In the theory developed in section 5, there is no guarantee that 

f(T) € ~(~) when f is bounded. Indeed this is not always the case. 

However it is if T and T* satisfy quadratic estimates. 
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Let T be an operator of type w where 0 ~ w ( ~ ~ ~ and let 

~(s0) To say that 
J.1 

T satisfies a quadratic estimate with respect 

to ']; means that 

{ £ 11-P( tT)ull2 dtt r/2 ~ qllull 

for some constant q and all u E ::Jf • 

Such an estimate holds for example if T is positive self-adjoint 

. r 
Wl th q "' l t} It also holds in a lot of other 

interesting cases. 

Let us use the notations 

0 for all t E 

and 

t() 0 < t < 00 • 

FIEOlRE\)1 Let 0 ~ w < Jl \'f , and let T he an operator of type w 

which is one-one with dense rattge. Suppose that T al'l.d. 

quadratic estimates with respect to functions ']; and f 

satisfy 

in ~+(S0 ) . 
J.1 

If 
00 0 

f E H (S ) 
/-1 

then the operator f 

a constw<t c such tl<nt 

II ~ cllfll 00 

fer all f E 

Proof Let B be any function in 

where <p 

is bow<ded, and there exists 

f<' 
such that J. <p(t)t 

0 
1 
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For f E H00(S~) and 0 ( 10 ( R ( oo , define fE-,R € \li(S~) by 

We shall use the quadratic estimates to show that 

llfe;.,R(T)II s cllfll00 

for some constant c depending only on T , M and e . The theorem in 

section 5 cmn ther1 be applied to give th'"' :result. 'i\'e note that it also 

gives the formula 

for all u E :if • 

rR dt 
f(T)u lim j_ (f~t)(T)u 1: 

E.-!0 E. 

R-4<> 

To prove the bounds on f R(T) we proceed as follows. Let 
E., 

u,v € :if • Then 

where q 1 and q2 are the constants appearing in the quadratic 

estimates. Recall that (f9t)(T) was defined in section 4 by a contour 

integral, 

(f9t)(T) = 2!i I (T-[I)-1f([)9(t[)d[ . 
"'I 
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Therefore 

II(H\)(T)II s 2~ llfll, I II(T-(I)-111 IB(tO I ld( I 
'Y 

cdlfll00 

where K depends on T , p. and 9 but not f . So 

for all 0 < c < R < oo , 

We have thus obtained the bounds on f and hence the result. // 
c,R 

The assumption in the theorem that T has dense range is in fact 

redundant as it follows from the other hypotheses. In fact if we drop 

the assumption that T is one-one then we find that ~ = N(T) 9 ~(T) 

where the symbol ffi denotes the direct sum in the sense of Banach 

spaces (and does not imply orthogonality). This is seen as follows. 

Define E+ by 

u E ~ . 

Then E+ is a bounded operator which is zero on N(T) and the identity 

on ~(T} So .N(T) Gl ~(T) C :It So 

N(T) (!) ~(T) = :It as required. In general we find that 

for u E :It , where T~ is the restriction of T to ~(T) 
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8. NECESSITY OF QUADRATIC ESTDIATES 

THBO~ Let T be a one-one operator of type w . Write T = UA and 

T* = VB where A and B are positive self-adjoint operators and U 

and V are isomorphisms. 

(a) 

The folLowing statements are equivalent: 

for a!l M ) w there exist c such that 
M 

(b) there exist M > w and c such that 

!If (T} II ~ cllfll00 

(c) {Tis I s E IR} is a 
0 

C group and, for atl ~ ) w , there exist 

c such that 
~ 

(d) there exists c such that 

(e) for each a € (0,1) 

exists c ) 0 such that 

c -liiAaull ~ IITaull ~ ciiAaull 

c -li1B12ull ~ IIT*aull ~ ciiBaull 

, s € IR 

-1 ~ s ~ 1 

u E ~(Ta) , 

u € ~(T*12 ) 

(f) there exist a , ~ € (0,1) and c such that ~(T12 ) C ~(A12 ) , 

W(T*~) C ~(B~) and 

IIA12ull ~ ciiTaull 

IIB(Jull ~ ciiT*~ull 
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(g) for aH there exist q such that 

2 dt}1/ 2 
11-P( tT)ull t ~ qllull and 

* 2 dt}1/ 2 
11-P( tT )ull t ~ qllull • u € ;Jf 

(h) there exist M > w , >/l € w+(S~) , t € w+(S~) and q such that 

2 dt}1/ 2 
11-P(tT)ull t ~ qllull 

* 2 dt}1/ 2 
lit( tT )ull t ~ qllull 

and 

,u€;Jf. 

Proof We shall verify the implications (a) ~ (c) ~ (e) ~ (g) ~ (a) 

The cycle (b) ~{d) ~(e) ~(f) ~(h) ~(b) is proved similarly. 

(a) ~ (c) The bounds in (c) are obtained by applying part (a) to 

is 
f(s)(t) = r . The theorem in section 5 can then be applied to see 

that f(s)(T)u ~u as s ~o for all u € ;Jf 

(c) ~ (e) This is a result on complex interpolation which can be 

proved as usual by applying the maximum modulus theorem on the strip 

{z € ~ I 0 ~ ~e z ~ 1} For example, the first inequality can be 

verified for u € ~(T) by applying it to the function 

f(z) 

All the technicalities needed to do so have been derived in sections 5 

and 6 . For example the continuity of f can be proved using the 

theorem in section 5 as can the analyticity of f on the open strip. 

Further details are left to the reader. 



226 

(e) ::? (g) For a E (0,1} , let 

show that T satisfies a quadratic estimate with respect to 

There exist bounded operators 

-1 
TA = U~~(A) 

It can easily be computed that 

so 

U and W such that a 

We first 

as required. We used the fact that the positive operator A satisfies 

a quadratic estimate. 

such that 

There exist e , ~ E ~(8°) and a, ~ € (0,1) 
jl 

On returning to the definition of ~(tT) we find that 

where K depends on 9 and ~ . It now follows from the quadratic 

estimates for ~(a) and ~(~) that T satisfies a quadratic estimate 

with respect to ~ . 
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The dual estimate is proved similarly. 

(g) ~ (a) This was proved in the previous section. // 

The above theorem, with the exception of parts (a) and (b), is 

essentially due to Yagi [4], though various parts of it were known 

previously. The implication (c)~ (e), for example, is taken from the 

proof of the Heinz-Kato theorem. 

We have already seen that positive self-adjoint operators satisfy 

quadratic estimates. So do normal operators w·ith spectra in a sector, 

and also maximal accretive operators. 

One could point to a large number of instances where estimates of 

one type or another of those listed in section 8 have been used by 

people working in partial differential equations or harmonic analysis. 

Yagi has used some of this material to show tl.at certain classes of 

elliptic operators with smooth coefficients satisfy quadratic estimates. 

(See the references at the end of his paper in this volume.) Thus such 

operators have an H00-functional calculus. 

How about the operator S in L2(m) with domain H2 (ffi) defined 

by 

(Su)(x) 

where g E L00 (ffi) and ~e g(x) l K > 0 for all x € ffi ? This can be 

handled via the following result. 
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THEOREM Let T = W-lA where A is a positive self-adjoint operator 

and W is a bounded operator satisfying 2 
!'Ae(Wu,u) L ~<.llull for some 

K ) 0 and aU u € :H • Then T and are one-one operators of type 

w < ~/2 which satisfy quadratic estimates if the following condition 

(C) is satisfied: 

(C) There exist constants c and m such that 

and 

for all u € :H and k = 1,2, ... , where 

Pt = (I+t2A2)-l , Qt = tA(I+t2A2)-l and B = I- XW 

for some X € (0,2KIIWII-2 ) 

Proof It is straightforward to check that IIBII < 1 , so 

T = X(I-B)-1A . Let T = tX Then 

where 

ro 

(I+itT)-1 = R I (BR )k(I-B) 
T k=O T 

and the series converges because IIRTII s 1 and IIBII < 1 . 

It is not difficult to show that T is a one-one operator of type 

w for some w ( ~ . 
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Let >/J(O 

>Jl(tT) 

Hence 

{£ 11>/l( tT)u112 dtt 
}1/2 

00 k ":; }1/2 
~ I I liB Ilk-s { [ IIQ (BP )s(I-B)uli2 

k=O s=O Q T T 

00 k 
~ I I IIBIIkc(l +sm) III -BII llull 

k=O s=O 

qllull , u E ;}I' , 

as required. The dual estimate is proved similarly. // 

To apply this theorem in the case when W denotes multiplication 

by the L 00 function g . and A = D2 where D = -i ~ we need to 

check that the condition (C) is satisfied. However this is a 

consequence of the similar estimates proved in [1] where Pt and Qt 

were defined in terms of D rather than A 

We thus have that the operator S defined before the theorem 

satisfies square function estimates, along with s* So, by the 

for As pointed out in Meyer's lecture notes in Madrid, 

these facts can be used as follows. Say we want to solve the elliptic 

boundary value problem: 



g(x) ~ (x,t) + 
at 
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82 

au 
at 0) = g(x) ' t > 0 . 

Then we find that the solution 

• 't) 
-t..fS -1/2 

-e S g 

is defined for all g E H1(m) and satisfies 

It is just as interesting, if not more so, to consider operators T 

with spectra in a double sector 

for 0 ~ w < ~/2 . We can again show that if T and T* satisfy 

quadratic estimates then f(T) is defined and satisfies 

llf(T)II ~ cJ.LIIfll00 for all 

In particular this applies when ~ = L2(~) , 

~ {s+ig(s) I s € ffi} • g is a Lipschitz function, and 

T D 1 d 1 Then T and T* satisfy quadratic estimates, so T ~=rdz~· 

has an H,-functional calculus. In particular sgn(T) € '.£(~) where 

sgn r = +1 if ~e c ) 0 and sgn r = -1 if ~e r < 1 The operator 

sgn(T) is none other than the Cauchy singular integral operator on ~ 

See [1] and [2], where the case of Lipschitz surfaces is treated too. 

This paper is already too long, so details will be left as a 

challenge to the reader. 
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